Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Research on potential therapeutic targets and new mechanisms of action can greatly improve the efficiency of new drug development.

Aims

Polygenic genetic diseases, such as diabetes, are caused by the interaction of multiple gene loci and environmental factors.

Objectives

In this study, a disease target identification algorithm based on protein recognition is proposed.

Materials and Methods

In this method, the related and unrelated targets are collected from literature databases for treating diabetes. The transcribed proteins corresponding to each target are queried in order to construct a protein dataset. Six protein feature extraction algorithms (AAC, CKSAAGP, DDE, DPC, GAAP, and TPC) are utilized to obtain the feature vectors of each protein, which are merged into the full feature vectors.

Results

A novel classifier (forgeNet_GPC) based on forgeNet and Gaussian process classifier (GPC) is proposed to classify the proteins.

Conclusion

In forgeNet_GPC, forgeNet is utilized to select the important features, and GPC is utilized to solve the classification problem. The experimental results reveal that forgeNet_GPC performs better than 22 classifiers in terms of ROC-AUC, PR-AUC, MCC, Youden Index, and Kappa.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099258183230929173855
2024-01-03
2025-05-22
Loading full text...

Full text loading...

References

  1. SacksD.A. GreenspoonJ.S. Abu-FadilS. HenryH.M. Wolde-TsadikG. YaoJ.F.F. Toward universal criteria for gestational diabetes: The 75-gram glucose tolerance test in pregnancy.Am. J. Obstet. Gynecol.1995172260761410.1016/0002‑9378(95)90580‑4 7856693
    [Google Scholar]
  2. AlbertiK.G.M.M. ZimmetP. ShawJ. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation.Diabet. Med.200623546948010.1111/j.1464‑5491.2006.01858.x 16681555
    [Google Scholar]
  3. OlawaleF.G. AjajaU.I. AninyeI.I. NwozoS.O. AdaramoyeO.A. Long term effects of streptozotocin induced diabetes mellitus on hepatic, nephrotic and cardiac physiology of female wistar rats.Nige. J. Pharma. Res.2021171718010.4314/njpr.v17i1.8
    [Google Scholar]
  4. YangH. FanS. SongD. WangZ. MaS. LiS. LiX. XuM. XuM. WangX. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress.Mol. Med. Rep.20137243144010.3892/mmr.2012.1227 23232924
    [Google Scholar]
  5. AndersonE.J. KypsonA.P. RodriguezE. AndersonC.A. LehrE.J. NeuferP.D. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart.J. Am. Coll. Cardiol.200954201891189810.1016/j.jacc.2009.07.031 19892241
    [Google Scholar]
  6. RizzoM. CianfloneD. MarantaF. Treatment of diabetes and heart failure: Facts and hopes.Int. J. Cardiol.202235911811910.1016/j.ijcard.2022.04.035 35439587
    [Google Scholar]
  7. MarchettiP. BuglianiM. LupiR. MarselliL. MasiniM. BoggiU. FilipponiF. WeirG.C. EizirikD.L. CnopM. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients.Diabetologia200750122486249410.1007/s00125‑007‑0816‑8 17906960
    [Google Scholar]
  8. KhinP.P. LeeJ.H. JunH.S. A brief review of the mechanisms of β-Cell dedifferentiation in type 2 diabetes.Nutrients2021135159310.3390/nu13051593 34068827
    [Google Scholar]
  9. BuenaventuraT. KandaN. DouzenisP.C. JonesB. BloomS.R. ChabosseauP. CorrêaI.R.Jr BoscoD. PiemontiL. MarchettiP. JohnsonP.R. ShapiroA.M.J. RutterG.A. TomasA. A targeted RNAi screen identifies endocytic trafficking factors that control glp-1 receptor signaling in pancreatic β-cells.Diabetes201867338539910.2337/db17‑0639 29284659
    [Google Scholar]
  10. WuT. ZhangS XuJ. ZhangY. SunT. ShaoY. WangJ. TangW. ChenF. HanX. HRD1, an important player in pancreatic β-Cell failure and therapeutic target for type 2 diabetic mice.American Diabetes Association202069594095310.2337/db19‑1060
    [Google Scholar]
  11. D’AddioF. MaestroniA. AssiE. Ben NasrM. AmabileG. UsuelliV. LoretelliC. BertuzziF. AntonioliB. CardarelliF. El EssawyB. SoliniA. GerlingI.C. BianchiC. BecchiG. MazzucchelliS. CorradiD. FadiniG.P. FoschiD. MarkmannJ.F. OrsiE. ŠkrhaJ.Jr CamboniM.G. AbdiR. James ShapiroA.M. FolliF. LudvigssonJ. Del PratoS. ZuccottiG. FiorinaP. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis.Nat. Commun.202213168410.1038/s41467‑022‑28360‑2 35115561
    [Google Scholar]
  12. KatzL.S. BrillG. ZhangP. KumarA. Baumel-AlterzonS. HonigL.B. Gómez-BanoyN. KarakoseE. TanaseM. DoridotL. AlvarssonA. DavenportB. WangP. LambertiniL. StanleyS.A. HomannD. StewartA.F. LoJ.C. HermanM.A. Garcia-OcañaA. ScottD.K. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure.Nat. Commun.2022131442310.1038/s41467‑022‑32162‑x 35908073
    [Google Scholar]
  13. NagA. DhindsaR.S. MitchellJ. VasavdaC. HarperA.R. VitsiosD. AhnmarkA. BilicanB. Madeyski-BengtsonK. ZarroukiB. ZoghbiA.W. WangQ. SmithK.R. Alegre-DíazJ. Kuri-MoralesP. BerumenJ. Tapia-ConyerR. EmbersonJ. TorresJ.M. CollinsR. SmithD.M. ChallisB. PaulD.S. Bohlooly-YM. SnowdenM. BakerD. Fritsche-DanielsonR. PangalosM.N. PetrovskiS. Human genetics uncovers MAP3K15 as an obesity-independent therapeutic target for diabetes.Sci. Adv.2022846eadd543010.1126/sciadv.add5430 36383675
    [Google Scholar]
  14. WangK. ZhangZ. HangJ. LiuJ. GuoF. DingY. LiM. NieQ. LinJ. ZhuoY. SunL. LuoX. ZhongQ. YeC. YunC. ZhangY. WangJ. BaoR. PangY. WangG. GonzalezF.J. LeiX. QiaoJ. JiangC. Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target.Science20233816657eadd578710.1126/science.add5787 37535747
    [Google Scholar]
  15. HsuJ.T. JeanT.C. ChanM.A. YingC. Differential display screening for specific gene expression induced by dietary nonsteroidal estrogen.Mol. Reprod. Dev.199952214114810.1002/(SICI)1098‑2795(199902)52:2<141:AID‑MRD4>3.0.CO;2‑V 9890744
    [Google Scholar]
  16. McCoubreyW.K.Jr CooklisM.A. MainesM.D. The structure, organization and differential expression of the rat gene encoding biliverdin reductase.Gene1995160223524010.1016/0378‑1119(95)00112‑J 7642101
    [Google Scholar]
  17. HatfieldG.W. HungS. BaldiP. Differential analysis of DNA microarray gene expression data.Mol. Microbiol.200347487187710.1046/j.1365‑2958.2003.03298.x 12581345
    [Google Scholar]
  18. RapaportF. KhaninR. LiangY. PirunM. KrekA. ZumboP. MasonC.E. SocciN.D. BetelD. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data.Genome Biol.2013149R9510.1186/gb‑2013‑14‑9‑r95 24020486
    [Google Scholar]
  19. FinotelloF. Di CamilloB. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis.Brief. Funct. Genomics201514213014210.1093/bfgp/elu035 25240000
    [Google Scholar]
  20. DasS. RaiS.N. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data.Genomics202111331308132410.1016/j.ygeno.2021.02.014 33662531
    [Google Scholar]
  21. TusherV.G. TibshiraniR. ChuG. Significance analysis of microarrays applied to the ionizing radiation response.Proc. Natl. Acad. Sci.20019895116512110.1073/pnas.091062498 11309499
    [Google Scholar]
  22. YuanT. LiuG. MingZ. YiZ. ZhouC. A comparison: Three analysis methods for identifying differentially expressed genes.2010 2nd International Conference on Signal Processing System.July 2010vol.321652169
    [Google Scholar]
  23. LiJ. WittenD.M. JohnstoneI.M. TibshiraniR. Normalization, testing, and false discovery rate estimation for RNA-sequencing data.Biostatistics201213352353810.1093/biostatistics/kxr031 22003245
    [Google Scholar]
  24. ZhangG. LiQ. ChenQ. SuS. Network pharmacology: A new approach for chinese herbal medicine research.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/621423 23762149
    [Google Scholar]
  25. ZhangA. SunH. YangB. WangX. Predicting new molecular targets for rhein using network pharmacology.BMC Syst. Biol.2012612010.1186/1752‑0509‑6‑20 22433437
    [Google Scholar]
  26. ZhangY. MaoX. GuoQ. LinN. LiS. Network pharmacology-based approaches capture essence of chinese herbal medicines.Chin. Herb. Med.20168210711610.1016/S1674‑6384(16)60018‑7
    [Google Scholar]
  27. RoyS. MartinezD. PlateroH. LaneT. Werner-WashburneM. Exploiting amino acid composition for predicting protein-protein interactions.PLoS One2009411e781310.1371/journal.pone.0007813 19936254
    [Google Scholar]
  28. WangY. WangP. GuoY. HuangS. ChenY. XuL. prPred: A predictor to identify plant resistance proteins by incorporating k-spaced amino acid (group) pairs.Front. Bioeng. Biotechnol.2021864552010.3389/fbioe.2020.645520 33553134
    [Google Scholar]
  29. SaravananV. GauthamN. Harnessing computational biology for exact linear b-cell epitope prediction: A novel amino acid composition-based feature descriptor.OMICS2015191064865810.1089/omi.2015.0095 26406767
    [Google Scholar]
  30. DingY. CaiY. ZhangG. XuW. The influence of dipeptide composition on protein thermostability.FEBS Lett.20045691-328428810.1016/j.febslet.2004.06.009 15225649
    [Google Scholar]
  31. KabirM. AhmadS. IqbalM. HayatM. iNR-2L: A two-level sequence-based predictor developed via Chou’s 5-steps rule and general PseAAC for identifying nuclear receptors and their families.Genomics2020112127628510.1016/j.ygeno.2019.02.006 30779939
    [Google Scholar]
  32. ChenZ. ZhaoP. LiF. Marquez-LagoT.T. LeierA. RevoteJ. ZhuY. PowellD.R. AkutsuT. WebbG.I. ChouK.C. SmithA.I. DalyR.J. LiJ. SongJ. iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data.Brief. Bioinform.20202131047105710.1093/bib/bbz041 31067315
    [Google Scholar]
  33. KongY. YuT. forgeNet: A graph deep neural network model using tree-based ensemble classifiers for feature graph construction.Bioinformatics202036113507351510.1093/bioinformatics/btaa164 32163118
    [Google Scholar]
  34. KongY. YuT. A graph-embedded deep feedforward network for disease outcome classification and feature selection using gene expression data.Bioinformatics201834213727373710.1093/bioinformatics/bty429 29850911
    [Google Scholar]
  35. SunS. ZhongP. XiaoH. WangR. Active learning with gaussian process classifier for hyperspectral image classification.IEEE Trans. Geosci. Remote Sens.20155341746176010.1109/TGRS.2014.2347343
    [Google Scholar]
  36. XiaoG. ChengQ. ZhangC. Detecting travel modes using rule-based classification system and gaussian process classifier.IEEE Access2019711674111675210.1109/ACCESS.2019.2936443
    [Google Scholar]
  37. RafeV. HosseiniM. MoghaddamM.J. KarimiR. An efficient approach to breast cancer prediction based on neural network, adaboost and gaussian process.J. Med. Imaging Health Inform.20155353353810.1166/jmihi.2015.1420
    [Google Scholar]
  38. ZhaoG.Y. XuZ.W. LiuJ. Prediction method of seismic-induced sand liquefaction based on the Gauss Process classification.Chi. J. Geo. Haz. Con.20193019399
    [Google Scholar]
  39. Díaz-UriarteR. Alvarez de AndrésS. Gene selection and classification of microarray data using random forest.BMC Bioinformatics200671310.1186/1471‑2105‑7‑3 16398926
    [Google Scholar]
  40. SaundersC. StitsonM.O. BottouJ. ScholkopfL. SmolaB.A Support vector machine weston, royal holloway.Computer ence20021412810.1007/978‑3‑642‑27733‑7_299‑3
    [Google Scholar]
  41. CollinsM. SchapireR.E. SingerY. Logistic regression, adaboost and bregman distances.Mach. Learn.200248123253285
    [Google Scholar]
  42. LiJ. SunL. ZhangQ. ZhangC. Application of native Bayes classifier to text classification.J. Harbin Eng. Uni.20032417174
    [Google Scholar]
  43. ZhagparovZ. BuribayevZ. JoldasbayevS. YerkosovaA. ZhassuzakM. Building a system for predicting the yield of grain crops based on machine learning using the xgbregressor algorithm.2021IEEE International Conference on Smart Information Systems and Technologies (SIST)28-30 April 2021Nur-Sultan, Kazakhstan1510.1109/SIST50301.2021.9465938
    [Google Scholar]
  44. JiaoF. XuJ. YuL. SchuurmansD. Protein fold recognition using the gradient boost algorithm.Computational Systems Bioinformatics20064353
    [Google Scholar]
  45. HoerlA.E. KennardR.W. Ridge regression: Biased estimation for nonorthogonal problems.Technometrics2000421808610.1080/00401706.2000.10485983
    [Google Scholar]
  46. GardnerW.A. Learning characteristics of stochastic-gradient-descent algorithms: A general study, analysis, and critique.Signal Processing19846211313310.1016/0165‑1684(84)90013‑6
    [Google Scholar]
  47. BaoW. CuiQ. ChenB. YangB. Phage_UniR_LGBM: Phage virion proteins classification with unirep features and lightgbm model.Comput. Math. Methods Med.202220221810.1155/2022/9470683 35465015
    [Google Scholar]
  48. KaoH.J. NguyenV.N. HuangK.Y. ChangW.C. LeeT.Y. SuccSite: Incorporating amino acid composition and informative k-spaced amino acid pairs to identify protein succinylation sites.Genomics Proteomics Bioinformatics202018220821910.1016/j.gpb.2018.10.010 32592791
    [Google Scholar]
  49. BarukabO. AliF. AlghamdiW. BassamY. Afzal KhanS. DBP-CNN: Deep learning-based prediction of DNA-binding proteins by coupling discrete cosine transform with two-dimensional convolutional neural network.Expert Syst. Appl.202219711672910.1016/j.eswa.2022.116729
    [Google Scholar]
  50. YangL. GaoH. LiuZ. TangL. Identification of phage virion proteins by using the g-gap tripeptide composition.Lett. Org. Chem.201916433233910.2174/1570178615666180910112813
    [Google Scholar]
/content/journals/cad/10.2174/0115734099258183230929173855
Loading
/content/journals/cad/10.2174/0115734099258183230929173855
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): classification; diabetes; feature extraction; polygenic genetic diseases; Protein; target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test