Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

The coronavirus helicase NSP13 plays a critical role in its life cycle. The found NSP13 inhibitors have been tested only but they definitely have the potential to become antiviral drugs. Thus, the search for NSP13 inhibitors is of great importance.

Objectives

The goal of the present work was to develop a general approach to the design of ligands of coronaviral NSP13 helicase and to propose on its basis potential inhibitors.

Methods

The structure of the NSP13 protein was refined by molecular dynamics and the cavity, responsible for RNA binding, was chosen as the inhibitor binding site. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation.

Results

A number of potential NSP13 inhibitors were identified and the binding modes and probable mechanism of action of potential inhibitors was clarified.

Conclusion

Using the molecular dynamics and molecular docking techniques, we have refined the structure of the coronavirus NSP13 helicase, a number of potential inhibitors, containing cage fragment were proposed and their probable mechanism of action was clarified. The proposed approach is also suitable for the design of ligands interacting with other viral helicases.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099247900231016055626
2023-10-27
2025-05-28
Loading full text...

Full text loading...

References

  1. LiG. De ClercqE. Therapeutic options for the 2019 novel coronavirus (2019-nCoV).Nat. Rev. Drug Discov.202019314915010.1038/d41573‑020‑00016‑0 32127666
    [Google Scholar]
  2. ZhangL. LinD. SunX. CurthU. DrostenC. SauerheringL. BeckerS. RoxK. HilgenfeldR. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science2020368648940941210.1126/science.abb3405 32198291
    [Google Scholar]
  3. OsipiukJ. AziziS.A. DvorkinS. EndresM. JedrzejczakR. JonesK.A. KangS. KathayatR.S. KimY. LisnyakV.G. MakiS.L. NicolaescuV. TaylorC.A. TesarC. ZhangY.A. ZhouZ. RandallG. MichalskaK. SnyderS.A. DickinsonB.C. JoachimiakA. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors.Nat. Commun.202112174310.1038/s41467‑021‑21060‑3 33531496
    [Google Scholar]
  4. AlamI. KamauA.A. KulmanovM. JaremkoŁ. AroldS.T. PainA. GojoboriT. DuarteC.M. Functional pangenome analysis shows key features of E protein are preserved in SARS and SARS-CoV-2.Front. Cell. Infect. Microbiol.20201040510.3389/fcimb.2020.00405 32850499
    [Google Scholar]
  5. NandiS. RoyH. GummadiA. SaxenaA.K. Exploring spike protein as potential target of novel coronavirus and to inhibit the viability utilizing natural agents.Curr. Drug Targets202122172006202010.2174/1389450122666210309105820 33687893
    [Google Scholar]
  6. ShamsiA. MohammadT. AnwarS. AmaniS. KhanM.S. HusainF.M. RehmanM.T. IslamA. HassanM.I. Potential drug targets of SARS-CoV-2: From genomics to therapeutics.Int. J. Biol. Macromol.20211771910.1016/j.ijbiomac.2021.02.071 33577820
    [Google Scholar]
  7. WondmkunY.T. MohammedO.A. A review on novel drug targets and future directions for COVID-19 treatment.Biologics202014778210.2147/BTT.S266487 32921981
    [Google Scholar]
  8. JiaZ. YanL. RenZ. WuL. WangJ. GuoJ. ZhengL. MingZ. ZhangL. LouZ. RaoZ. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis.Nucleic Acids Res.201947126538655010.1093/nar/gkz409 31131400
    [Google Scholar]
  9. WangM. CaoR. ZhangL. YangX. LiuJ. XuM. ShiZ. HuZ. ZhongW. XiaoG. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑0 32020029
    [Google Scholar]
  10. KwongA.D. RaoB.G. JeangK.T. Viral and cellular RNA helicases as antiviral targets.Nat. Rev. Drug Discov.200541084585310.1038/nrd1853 16184083
    [Google Scholar]
  11. FrickD. LamA. Understanding helicases as a means of virus control.Curr. Pharm. Des.200612111315133810.2174/138161206776361147 16611118
    [Google Scholar]
  12. ShirakiK. YasumotoS. ToyamaN. FukudaH. Amenamevir, a helicase-primase inhibitor, for the optimal treatment of herpes zoster.Viruses2021138154710.3390/v13081547 34452412
    [Google Scholar]
  13. LeeS. YoonK.D. LeeM. ChoY. ChoiG. JangH. KimB. JungD.H. OhJ.G. KimG.W. OhJ.W. JeongY.J. KwonH.J. BaeS.K. MinD.H. WindischM.P. HeoT.H. LeeC. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase.Br. J. Pharmacol.2016173119121110.1111/bph.13358 26445091
    [Google Scholar]
  14. LeeS. MailarK. KimM.I. ParkM. KimJ. MinD.H. HeoT.H. BaeS.K. ChoiW. LeeC. Plant-derived purification, chemical synthesis, and in vitro in vivo evaluation of a resveratrol dimer, viniferin, as an HCV replication inhibitor.Viruses2019111089010.3390/v11100890 31547617
    [Google Scholar]
  15. BassettoM. LeyssenP. NeytsJ. YerukhimovichM.M. FrickD.N. BrancaleA. Computer-aided identification, synthesis and evaluation of substituted thienopyrimidines as novel inhibitors of HCV replication.Eur. J. Med. Chem.2016123314710.1016/j.ejmech.2016.07.035 27474921
    [Google Scholar]
  16. Mayank; Kumar, D.; Kaur, N.; Giri, R.; Singh, N. A biscoumarin scaffold as an efficient anti-Zika virus lead with NS3-helicase inhibitory potential: In vitro and in silico investigations.New J. Chem.20204451872188010.1039/C9NJ05225A
    [Google Scholar]
  17. BonafouxD. NanthakumarS. BandarageU.K. MemmottC. LoweD. AronovA.M. BhisettiG.R. BonannoK.C. CollJ. LeemanJ. LepreC.A. LuF. PerolaE. RijnbrandR. TaylorW.P. WilsonD. ZhouY. ZwahlenJ. ter HaarE. Fragment-based discovery of dual JC virus and BK virus helicase inhibitors.J. Med. Chem.201659157138715110.1021/acs.jmedchem.6b00486 27385654
    [Google Scholar]
  18. HabtemariamS. NabaviS.F. BanachM. Berindan-NeagoeI. SarkarK. SilP.C. NabaviS.M. Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy?Arch. Med. Res.202051773373510.1016/j.arcmed.2020.05.024 32536457
    [Google Scholar]
  19. KaoR.Y. TsuiW.H.W. LeeT.S.W. TannerJ.A. WattR.M. HuangJ.D. HuL. ChenG. ChenZ. ZhangL. HeT. ChanK.H. TseH. ToA.P.C. NgL.W.Y. WongB.C.W. TsoiH.W. YangD. HoD.D. YuenK.Y. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics.Chem. Biol.20041191293129910.1016/j.chembiol.2004.07.013 15380189
    [Google Scholar]
  20. YangN. TannerJ.A. WangZ. HuangJ.D. ZhengB.J. ZhuN. SunH. Inhibition of SARS coronavirus helicase by bismuth complexes.Chem. Commun.200742424413441510.1039/b709515e 17957304
    [Google Scholar]
  21. SarafaniosS.G. AdedejiA.O. WO Patent Appl. 2013 188887 A12013
  22. LeeC. LeeJ.M. LeeN.R. KimD.E. JeongY.J. ChongY. Investigation of the pharmacophore space of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives.Bioorg. Med. Chem. Lett.200919164538454110.1016/j.bmcl.2009.07.009 19625187
    [Google Scholar]
  23. KimM.K. YuM.S. ParkH.R. KimK.B. LeeC. ChoS.Y. KangJ. YoonH. KimD.E. ChooH. JeongY.J. ChongY. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV).Eur. J. Med. Chem.201146115698570410.1016/j.ejmech.2011.09.005 21925774
    [Google Scholar]
  24. YoonH.J. KimM.K. MokH.J. ChongY.H. Selective Anti-HCV activity of 6,7-Bis-O-Arylmethyl-5,6,7-Trihydroxychromone derivatives.Bull. Korean Chem. Soc.20123382803280510.5012/bkcs.2012.33.8.2803
    [Google Scholar]
  25. LeeC. LeeJ.M. LeeN.R. JinB.S. JangK.J. KimD.E. JeongY.J. ChongY. Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase.Bioorg. Med. Chem. Lett.20091961636163810.1016/j.bmcl.2009.02.010 19233643
    [Google Scholar]
  26. KeselA. The bananins: New anticorona-RNA-viral agents with unique structural signature.Antiinfect. Agents Med. Chem.20065216117410.2174/187152106776359039
    [Google Scholar]
  27. TannerJ.A. ZhengB.J. ZhouJ. WattR.M. JiangJ.Q. WongK.L. LinY.P. LuL.Y. HeM.L. KungH.F. KeselA.J. HuangJ.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus.Chem. Biol.200512330331110.1016/j.chembiol.2005.01.006 15797214
    [Google Scholar]
  28. MohammadT.S.H. GuptaY. ReidlC.T. NicolaescuV. GulaH. DurvasulaR. KempaiahP. BeckerD.P. In silicobinding of 2-aminocyclobutanones to SARS-CoV-2 Nsp13 helicase and demonstration of antiviral activity.Int. J. Mol. Sci.2023246512010.3390/ijms24065120 36982188
    [Google Scholar]
  29. JoS. KimT. IyerV.G. Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM.J. Comput. Chem.200829111859186510.1002/jcc.20945 18351591
    [Google Scholar]
  30. BrooksB.R. BrooksC.L.III MackerellA.D.Jr NilssonL. PetrellaR.J. RouxB. WonY. ArchontisG. BartelsC. BoreschS. CaflischA. CavesL. CuiQ. DinnerA.R. FeigM. FischerS. GaoJ. HodoscekM. Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: The biomolecular simulation program.J. Comput. Chem.200930101545161410.1002/jcc.21287 19444816
    [Google Scholar]
  31. LeeJ. ChengX. SwailsJ.M. YeomM.S. EastmanP.K. LemkulJ.A. WeiS. BucknerJ. JeongJ.C. QiY. JoS. PandeV.S. CaseD.A. BrooksC.L.III MacKerellA.D.Jr KlaudaJ.B. Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/openMM simulations using the CHARMM36 additive force field.J. Chem. Theory Comput.201612140541310.1021/acs.jctc.5b00935 26631602
    [Google Scholar]
  32. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.23354 23832629
    [Google Scholar]
  33. PhillipsJ.C. BraunR. WangW. GumbartJ. TajkhorshidE. VillaE. ChipotC. SkeelR.D. KaléL. SchultenK. Scalable molecular dynamics with NAMD.J. Comput. Chem.200526161781180210.1002/jcc.20289 16222654
    [Google Scholar]
  34. HumphreyW. DalkeA. SchultenK. VMD: Visual molecular dynamics.J. Mol. Graph.1996141333810.1016/0263‑7855(96)00018‑5
    [Google Scholar]
  35. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera?A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  36. GowersR.J. LinkeM. BarnoudJ. ReddyT.J.E. MeloM.N. SeylerS.L. DotsonD.L. DomanskiJ. BuchouxS. KenneyI.M. BecksteinO. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations.Proceedings of the 15th Python in Science Conference20169810510.25080/Majora‑629e541a‑00e
    [Google Scholar]
  37. Michaud-AgrawalN. DenningE.J. WoolfT.B. BecksteinO. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations.J. Comput. Chem.201132102319232710.1002/jcc.21787 21500218
    [Google Scholar]
  38. ACD ChemSketch. Advanced Chemistry Development. 2015. Available from: www.acdlabs.com
  39. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  40. KoesD.R. BaumgartnerM.P. CamachoC.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.J. Chem. Inf. Model.20135381893190410.1021/ci300604z 23379370
    [Google Scholar]
  41. NewmanJ.A. DouangamathA. YadzaniS. YosaatmadjaY. AimonA. Brandão-NetoJ. DunnettL. Gorrie-stoneT. SkynerR. FearonD. SchapiraM. von DelftF. GileadiO. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase.Nat. Commun.2021121484810.1038/s41467‑021‑25166‑6 34381037
    [Google Scholar]
  42. Dassault Systèmes. BIOVIA, Discovery studio visualiser., 2019. Available from: https://discover.3ds.com/discovery-studio-visualizer-download?gcl id=Cj0KCQjw_5unBhCMARIsACZyzS3LvCEwLJ4bXlKX30QKlP-jvjHjIcJLZnoqdJIW6DevTKusfqCYs7kaAiHHEALw_wcB
  43. Perez-LemusG.R. MenéndezC.A. AlvaradoW. ByléhnF. de PabloJ.J. Toward wide-spectrum antivirals against coronaviruses: Molecular characterization of SARS-CoV-2 NSP13 helicase inhibitors.Sci. Adv.202281eabj452610.1126/sciadv.abj4526 34995115
    [Google Scholar]
  44. TaylorR.D. MacCossM. LawsonA.D.G. Rings in drugs.J. Med. Chem.201457145845585910.1021/jm4017625 24471928
    [Google Scholar]
  45. ShiryaevV.A. KlimochkinY.N. Heterocyclic inhibitors of viroporins in the design of antiviral compounds.Chem. Heterocycl. Compd.202056662663510.1007/s10593‑020‑02712‑6 32836315
    [Google Scholar]
/content/journals/cad/10.2174/0115734099247900231016055626
Loading
/content/journals/cad/10.2174/0115734099247900231016055626
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test