Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

In recent years, research and development efforts have been heavily focused on conductive diamond electrodes for electrochemical applications. Such initiatives may have been spurred by their broad potential window, low background current, chemical inertness, and mechanical robustness. Compared to other carbon-based materials, conducting diamond can oxidize several analytes before the breakdown of water in aqueous electrolytes. Since the evolution of oxygen and hydrogen does not obstruct the analysis, this is significant for the detection and/or identification of species in solution. As a result, conductive diamond electrodes expand the application of electrochemical detection and make it possible to use them for analytes that are incompatible with traditional electrode materials. Fabricating boron-doped diamond films chemical vapor deposition on different substrates is of special interest. This article highlights the therapeutic and electroanalytical applications of boron-doped diamond electrodes in various aspects in addition to the synthetic strategies to obtain Boron Doped Diamond Electrodes (BDDE), the cost-effectiveness of BDD and its compatibility that will help the analytical researchers to learn almost everything about the previous studies done on BDDE and encourage them to work more efficiently in this research field.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110304322240430053410
2024-05-07
2025-05-23
Loading full text...

Full text loading...

References

  1. WilliamsG. CalvoJ.A. FailiF. DodsonJ. ObeloerT. TwitchenD.J. Thermal conductivity of electrically conductive highly boron doped diamond and its applications at high frequencies17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)29 May 2018 - 01 June 2018, San Diego, CA, USA, pp. 235-239, 2018.10.1109/ITHERM.2018.8419493
    [Google Scholar]
  2. Espinoza-MonteroP.J. Alulema-PullupaxiP. Frontana-UribeB.A. Barrera-DiazC.E. Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode.Curr. Opin. Solid State Mater. Sci.202226310098810.1016/j.cossms.2022.100988
    [Google Scholar]
  3. ReadT.L. CobbS.J. MacphersonJ.V. An sp2 patterned boron doped diamond electrode for the simultaneous detection of dissolved oxygen and pH.ACS Sens.20194375676310.1021/acssensors.9b0013730793885
    [Google Scholar]
  4. FreitasJ.M. OliveiraT.C. MunozR.A.A. RichterE.M. Boron doped diamond electrodes in flow-based systems.Front Chem.2019719010.3389/fchem.2019.0019031024886
    [Google Scholar]
  5. EinagaY. Boron-Doped Diamond Electrodes: Fundamentals for Electrochemical Applications.Acc. Chem. Res.202255243605361510.1021/acs.accounts.2c0059736475616
    [Google Scholar]
  6. PalyanovY.N. KupriyanovI.N. KhokhryakovA.F. BorzdovY.M. High-pressure crystallization and properties of diamond from magnesium-based catalysts.CrystEngComm201719314459447510.1039/C7CE01083D
    [Google Scholar]
  7. AshcheulovP. OtakeA. AkaiK. TaylorA. KlimšaL. HubíkP. More-ChevalierJ. EinagaY. Surface morphology-assisted electrochemical conversion of carbon dioxide to formic acid via nanocrystalline boron-doped diamond electrodes.Chem. Eng. J.202347314546310.1016/j.cej.2023.145463
    [Google Scholar]
  8. CobbS.J. AyresZ.J. MacphersonJ.V. Boron doped diamond: a designer electrode material for the twenty-first century.Annu. Rev. Anal. Chem.201811146348410.1146/annurev‑anchem‑061417‑01010729579405
    [Google Scholar]
  9. MacphersonJ.V. A practical guide to using boron doped diamond in electrochemical research.Phys. Chem. Chem. Phys.20151752935294910.1039/C4CP04022H25518988
    [Google Scholar]
  10. LiuZ. BaluchováS. SartoriA.F. LiZ. Gonzalez-GarciaY. SchreckM. BuijnstersJ.G. Heavily boron-doped diamond grown on scalable heteroepitaxial quasi-substrates: A promising single crystal material for electrochemical sensing applications.Carbon20232011229124010.1016/j.carbon.2022.10.023
    [Google Scholar]
  11. KeskinE. YardimY. LeventA. ŞentürkZ. Electrochemical determination of norepinephrine by adsorptive stripping voltammetry using a bare boron-doped diamond electrode.Rev. Roum. Chim.202064121063107210.33224/rrch/2019.64.12.06
    [Google Scholar]
  12. LongH. LiuX. XieY. HuN. DengZ. JiangY. WeiQ. YuZ. ZhangS. Thickness effects of Ni on the modified boron doped diamond by thermal catalytic etching for non-enzymatic glucose sensing.J. Electroanal. Chem.201983283235336010.1016/j.jelechem.2018.11.018
    [Google Scholar]
  13. ZhaoJ WuD ZhiJ. A direct electrochemical method for diabetes diagnosis based on as-prepared boron-doped nanocrystalline diamond thin film electrodes.J. Electroanal. Chem.20096261-29810210.1016/j.jelechem.2008.11.007
    [Google Scholar]
  14. ZhengK. LongnH. WeiQ. MaL. QiaoL. LiC. MengL. LinC.T. JiangY. ZhaoT. ZhouK. Non-enzymatic glucose sensor based on hierarchical Au/Ni/boron-doped diamond heterostructure electrode for improving performances.J. Electrochem. Soc.20191666B37310.1149/2.0561906jes
    [Google Scholar]
  15. SouzaKA NunesAM PimentelDM VerlyRM GilES MalaguttiAR dos SantosWT Altered electrochemistry of amiloride drug on boron-doped diamond electrode: Rapid and selective detection in urine by square-wave cathodic stripping voltammetry for application in doping control.Electrochimica Acta202137313789110.1016/j.electacta.2021.137891
    [Google Scholar]
  16. BrychtM BaluchováS TaylorA MortetV SedlákováS KlimšaL KopečekJ Schwarzová-PeckováK Comparison of electrochemical performance of various boron-doped diamond electrodes: Dopamine sensing in biomimicking media used for cell cultivation.Bioelectrochemistry202113710764610.1016/j.bioelechem.2020.107646
    [Google Scholar]
  17. LiH. GuoY. ZengS. WeiQ. SharelP.E. ZhuR. CaoJ. MaL. ZhouK. MengL. High-sensitivity, selective determination of dopamine using bimetallic nanoparticles modified boron-doped diamond electrode with anodic polarization treatment.J. Mater. Sci.20215674700471510.1007/s10853‑020‑05577‑4
    [Google Scholar]
  18. Tyszczuk-RotkoK. JaworskaI. JędruchniewiczK. Application of unmodified boron-doped diamond electrode for determination of dopamine and paracetamol.Microchem. J.201914614666467210.1016/j.microc.2019.01.064
    [Google Scholar]
  19. LiuZ. SartoriA.F. BuijnstersJ.G. Role of sp2 carbon in non-enzymatic electrochemical sensing of glucose using boron-doped diamond electrodes.Electrochem. Commun.202113010709610.1016/j.elecom.2021.107096
    [Google Scholar]
  20. PalecekE. TkacJ. BartosikM. BertokT. OstatnaV. PalecekJ. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomicsChem. Rev.20151152045e210810.1021/cr500279h
    [Google Scholar]
  21. TakemuraK. IwasakiW. MoritaN. OhmagariS. High-density and monodisperse electrochemical gold nanoparticle synthesis utilizing the properties of boron-doped diamond electrodes.Nanomaterials20221210174110.3390/nano1210174135630964
    [Google Scholar]
  22. ŢuchiuB.M. Stefan-van StadenR.I. van StadenJ.K. Recent trends in ibuprofen and ketoprofen electrochemical quantification. A review.Crit. Rev. Anal. Chem.202271210.1080/10408347.2022.205034835286214
    [Google Scholar]
  23. BroslerP. GirãoA.V. SilvaR.F. TedimJ. OliveiraF.J. In-house vs. commercial boron-doped diamond electrodes for electrochemical degradation of water pollutants: A critical review.Front. Mater.202310102064910.3389/fmats.2023.1020649
    [Google Scholar]
  24. PolushinN.I. LaptevA.I. SpitsynB.V. AlexenkoA.E. PolyanskyA.M. MaslovA.L. MartynovaT.V. Deposition of boron-doped thin CVD diamond films from methane-triethyl borate-hydrogen gas mixture.Processes20208666610.3390/pr8060666
    [Google Scholar]
  25. WoodG.F. Zvoriste-WaltersC.E. MundayM.G. NewtonM.E. ShkirskiyV. UnwinP.R. MacphersonJ.V. High pressure high temperature synthesis of highly boron doped diamond microparticles and porous electrodes for electrochemical applications.Carbon202117184585610.1016/j.carbon.2020.09.038
    [Google Scholar]
  26. KimS. JeongY. ParkM.O. JangY. BaeJ.S. HongK.S. KimS. SongP. YoonJ.H. Development of boron doped diamond electrodes material for heavy metal ion sensor with high sensitivity and durability.J. Mater. Res. Technol.2023231375138510.1016/j.jmrt.2023.01.116
    [Google Scholar]
  27. WuL. LiuX. YuX. XuS. ZhangS. GuoS. Fabrication of boron-doped diamond film electrode for detecting trace lead content in drinking water.Materials20221517601310.3390/ma1517601336079392
    [Google Scholar]
  28. CrawfordK.G. MainiI. MacdonaldD.A. MoranD.A.J. Surface transfer doping of diamond: A review.Prog. Surf. Sci.202196110061310.1016/j.progsurf.2021.100613
    [Google Scholar]
  29. ShaoG. WangJ. ZhangS. WangY. WangW. WangH.X. Effect of rapid thermal annealing on performances of vertical boron-doped diamond Schottky diode with LaB6 interlayer.Diamond Relat. Mater.202313210967810.1016/j.diamond.2023.109678
    [Google Scholar]
  30. KondoT. Recent electroanalytical applications of boron-doped diamond electrodes.Curr. Opin. Electrochem.20223210089110.1016/j.coelec.2021.100891
    [Google Scholar]
  31. JoshiP. RileyP. GoudK.Y. MishraR.K. NarayanR. Recent advances of boron-doped diamond electrochemical sensors toward environmental applications.Curr. Opin. Electrochem.20223210092010.1016/j.coelec.2021.100920
    [Google Scholar]
  32. WeiM. TerashimaC. LvM. FujishimaA. GuZ.Z. Boron-doped diamond nanograss array for electrochemical sensors.Chem. Commun.2009243624362610.1039/b903284c19521629
    [Google Scholar]
  33. BaluchováS. DaňhelA. DejmkováH. OstatnáV. FojtaM. Schwarzová-PeckováK. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review.Anal. Chim. Acta20191077306610.1016/j.aca.2019.05.04131307723
    [Google Scholar]
  34. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  35. DengZ. LongH. WangY. YuZ. MaL. ZhouK. WeiQ. Template-free synthesis of millimeter-scale carbon nanorod arrays on boron-doped diamond with superior glucose sensing performance.Appl. Surf. Sci.202257215146810.1016/j.apsusc.2021.151468
    [Google Scholar]
  36. GongZ. HuN. YeW. ZhengK. LiC. MaL. WeiQ. YuZ. ZhouK. HuangN. LinC.T. LuoJ. High-performance non-enzymatic glucose sensor based on Ni/Cu/boron-doped diamond electrode.J. Electroanal. Chem.201984113514110.1016/j.jelechem.2019.03.043
    [Google Scholar]
  37. ZhuR. ZhaoZ. CaoJ. LiH. MaL. ZhouK. YuZ. WeiQ. Effect of Pt-Ni deposition sequence in ptni-modified boron-doped diamond on catalytic performance for glucose oxidation under neutral pH conditions.SSRN 3920309202110.2139/ssrn.3920309
    [Google Scholar]
  38. LiG. HuoH. XuC. Ni 0.31 Co 0.69 S 2 nanoparticles uniformly anchored on a porous reduced graphene oxide framework for a high-performance non-enzymatic glucose sensor.J. Mater. Chem. A Mater. Energy Sustain.2015394922493010.1039/C4TA06553K
    [Google Scholar]
  39. AltunkaynakY. ÖnalG. LeventA. Application of boron-doped diamond electrode for rapid and sensitive voltammetric detection of vildagliptin in anionic surfactant medium.Monatsh. Chem.2023154218119010.1007/s00706‑022‑03020‑9
    [Google Scholar]
  40. McGawEA SwainGM A comparison of boron-doped diamond thin-film and Hg-coated glassy carbon electrodes for anodic strip voltammetric determination of heavy metal ions in aqueous media.Analytica Chimica Acta2006575218018910.1016/j.aca.2006.05.094
    [Google Scholar]
  41. El TallO. Jaffrezic-RenaultN. SigaudM. VittoriO. Anodic stripping voltammetry of heavy metals at nanocrystalline boron‐doped diamond electrode. Electroanalysis.Electroanalysis200719111152115910.1002/elan.200603834
    [Google Scholar]
  42. HoshyarSA BarzaniHA YardımY ŞentürkZ The effect of CTAB, a cationic surfactant, on the adsorption ability of the boron-doped diamond electrode: Application for voltammetric sensing of Bisphenol A and Hydroquinone in water samples.Coll. Surf. A: Physicochem. Eng.202161012591610.1016/j.colsurfa.2020.125916
    [Google Scholar]
  43. KeskinE AllahverdiyevaS ŞeyhoE YardımY Determination of tramadol in pharmaceutical forms and urine samples using a boron-doped diamond electrode.J. Serb. Chem. Soc.202085792392710.2298/JSC190906138K
    [Google Scholar]
  44. ChopraA. KumariY. Kumar VermaS. BhatiaR. Boron-doped diamond electrochemical sensors: a promising approach in the therapy of human ailments.Curr. Pharm. Anal.202319752152610.2174/1573412919666230809100748
    [Google Scholar]
  45. LiH QinJ LiM LiC XuS QianL YangB. Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor.Sens. Actuators B: Chem.202030212720910.1016/j.snb.2019.127209
    [Google Scholar]
  46. CetinkayaA TopalBD AticiEB OzkanSA Simple and highly sensitive assay of axitinib in dosage form and biological samples and its electrochemical behavior on the boron-doped diamond and glassy carbon electrodes.Electrochimica Acta202138613844310.1016/j.electacta.2021.138443
    [Google Scholar]
  47. YiğitA YardımY ŞentürkZ Square-wave adsorptive stripping voltammetric determination of hesperidin using a boron-doped diamond electrode.J. Analyti. Chem.20207565366110.1134/S1061934820050184
    [Google Scholar]
  48. SochrJ. ŠvorcĽ. RievajM. BustinD. Electrochemical determination of adrenaline in human urine using a boron-doped diamond film electrode.Diamond Relat. Mater.2014434351110.1016/j.diamond.2014.01.005
    [Google Scholar]
  49. MoraesJ.T. Salamanca-NetoC.A.R. ŠvorcĽ. SartoriE.R. Advanced sensing performance towards simultaneous determination of quaternary mixture of antihypertensives using boron-doped diamond electrode.Microchem. J.201713413417318010.1016/j.microc.2017.06.001
    [Google Scholar]
  50. AslanaM. LeventA. New voltammetric strategy for determination and electrochemical behaviors of oxaliplatin by CPT-BDD electrode.J. Indian Chem. Soc.20209710c20432049
    [Google Scholar]
  51. ÖnalG. Investigation of the electrochemical properties of vinblastine on boron-doped diamond electrode treated with anodic pre-treatment in anionic surfactant medium.Diamond Relat. Mater.202313310969910.1016/j.diamond.2023.109699
    [Google Scholar]
  52. KiliçA. AslanM. LeventA. Investigation of the electrochemical properties of edoxaban using glassy carbon and boron-doped diamond electrodes and development of an eco-friendly and cost effective voltammetric method for its determination.Anal. Biochem.202468511538610.1016/j.ab.2023.11538637977214
    [Google Scholar]
  53. LeventA. YardımY. ŞentürkZ. Electrochemical performance of boron-doped diamond electrode in surfactant-containing media for ambroxol determination.Sens. Actuators B Chem.201420351752610.1016/j.snb.2014.07.035
    [Google Scholar]
  54. YardımY. LeventA. KeskinE. ŞentürkZ. Voltammetric behavior of benzo[a]pyrene at boron-doped diamond electrode: A study of its determination by adsorptive transfer stripping voltammetry based on the enhancement effect of anionic surfactant, sodium dodecylsulfate.Talanta201185144144810.1016/j.talanta.2011.04.00521645723
    [Google Scholar]
  55. LeventA. Electrochemical determination of melatonin hormone using a boron-doped diamond electrode.Diamond Relat. Mater.20122111411910.1016/j.diamond.2011.10.018
    [Google Scholar]
  56. NdangiliPM ArotibaOA BakerPG IwuohaEI A potential masking approach in the detection of dopamine on 3-mercaptopropionic acid capped ZnSe quantum dots modified gold electrode in the presence of interferences.J. Electroanal. Chem.20106431-2778110.1016/j.jelechem.2010.03.006
    [Google Scholar]
  57. SajidM. NazalM.K. ManshaM. AlsharaaA. JillaniS.M.S. BasheerC. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review.Trends Analyt. Chem.20167676152910.1016/j.trac.2015.09.006
    [Google Scholar]
  58. AlothmanZA BukhariN WabaidurSM HaiderS Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode.Sens. Actuators B Chem2010146131432010.1016/j.snb.2010.02.024
    [Google Scholar]
  59. BabaeiA. YousefiA. AfrasiabiM. ShabanianM. A sensitive simultaneous determination of dopamine, acetaminophen and indomethacin on a glassy carbon electrode coated with a new composite of MCM-41 molecular sieve/nickel hydroxide nanoparticles/multiwalled carbon nanotubes.J. Electroanal. Chem.2015740740283610.1016/j.jelechem.2014.12.042
    [Google Scholar]
  60. AlcaideM. TaylorA. FjorbackM. ZacharV. PennisiC.P. Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation.Front. Neurosci.2016108710.3389/fnins.2016.0008727013949
    [Google Scholar]
  61. DongH. WangS. GalliganJ.J. SwainG.M. Boron-doped diamond nano microelectrodes for biosensing and in vitro measurements.Front. Biosci.2011S3251854010.2741/s16921196394
    [Google Scholar]
  62. WangP. YuanX. CuiZ. XuC. SunZ. LiJ. LiuJ. TianY. LiH. A nanometer-sized graphite/boron-doped diamond electrochemical sensor for sensitive detection of acetaminophen.ACS Omega2021696326633410.1021/acsomega.0c0614133718723
    [Google Scholar]
  63. YangZ. LiM. LiH. LiH. LiC. YangB. Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin.Anal. Chim. Acta20201135738210.1016/j.aca.2020.08.04233070861
    [Google Scholar]
  64. ChangA.Y. SiddiquiS. ArumugamP.U. Nafion and multiwall carbon nanotube modified ultrananocrystalline diamond microelectrodes for detection of dopamine and serotonin.Micromachines202112552310.3390/mi1205052334066363
    [Google Scholar]
  65. LiH. ZhouK. CaoJ. WeiQ. LinC.T. PeiS.E. MaL. HuN. GuoY. DengZ. YuZ. ZengS. YangW. MengL. A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum.Carbon2021171162810.1016/j.carbon.2020.08.019
    [Google Scholar]
  66. BaluchováS. TaylorA. MortetV. SedlákováS. KlimšaL. KopečekJ. HákO. Schwarzová-PeckováK. Porous boron doped diamond for dopamine sensing: Effect of boron doping level on morphology and electrochemical performance.Electrochim. Acta201932713502510.1016/j.electacta.2019.135025
    [Google Scholar]
  67. ChangA.Y. DuttaG. SiddiquiS. ArumugamP.U. Surface fouling of ultrananocrystalline diamond microelectrodes during dopamine detection: improving lifetime via electrochemical cycling.ACS Chem. Neurosci.201910131332210.1021/acschemneuro.8b0025730285418
    [Google Scholar]
  68. FanB. RusinekC.A. ThompsonC.H. SetienM. GuoY. RechenbergR. GongY. WeberA.J. BeckerM.F. PurcellE. LiW. Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing.Microsyst. Nanoeng.2020614210.1038/s41378‑020‑0155‑132685185
    [Google Scholar]
  69. PereiraD.F. SantanaE.R. PiovesanJ.V. SpinelliA. A novel electrochemical strategy for determination of vitamin B12 by Co(I/II) redox pair monitoring with boron-doped diamond electrode.Diamond Relat. Mater.202010510779310.1016/j.diamond.2020.107793
    [Google Scholar]
  70. ChýlkováJ. JaníkováL. SedlákM. VáňaJ. ŠelešovskáR. Voltammetric determination of plant hormone indole-3-butyric acid in acidic media employing boron-doped diamond electrode.Monatsh. Chem.2019150344344910.1007/s00706‑018‑2347‑z
    [Google Scholar]
  71. AllahverdiyevaS. Talay PınarP. YardımY. ŞentürkZ. First report for the electrochemical investigation of a new HIV integrase inhibitor dolutegravir: Its voltammetric determination in tablet dosage forms and human urine using a boron-doped diamond electrode.Diamond Relat. Mater.202111410833210.1016/j.diamond.2021.108332
    [Google Scholar]
  72. AllahverdiyevaS. KeskinE. PınarP.T. YunusoğluO. YardımY. ŞentürkZ. Electroanalytical investigation and determination of hepatitis C antiviral drug ledipasvir at a non-modified boron-doped diamond electrode.Diamond Relat. Mater.202010810796210.1016/j.diamond.2020.10796233303147
    [Google Scholar]
  73. SouzaK.A.O. NunesA.M.F. PimentelD.M. VerlyR.M. GilE.S. MalaguttiA.R. dos SantosW.T.P. Altered electrochemistry of amiloride drug on boron-doped diamond electrode: Rapid and selective detection in urine by square-wave cathodic stripping voltammetry for application in doping control.Electrochim. Acta202137313789110.1016/j.electacta.2021.137891
    [Google Scholar]
  74. CetinkayaA. TopalB.D. AticiE.B. OzkanS.A. Simple and highly sensitive assay of axitinib in dosage form and biological samples and its electrochemical behavior on the boron-doped diamond and glassy carbon electrodes.Electrochim. Acta202138613844310.1016/j.electacta.2021.138443
    [Google Scholar]
  75. AlghamdiH. AlsaeediM. BuzidA. GlennonJ.D. LuongJ.H.T. Electroanalysis of benzalkonium chloride in ophthalmic formulation by boron-doped diamond electrode.Electroanalysis20213351137114210.1002/elan.202060582
    [Google Scholar]
  76. SarakhmanO. DubenskaL. ŠvorcĽ. First voltammetric behavior study of non-narcotic analgesic drug nefopam and its reliable determination on boron-doped diamond electrodes.J. Electroanal. Chem.202085811375910.1016/j.jelechem.2019.113759
    [Google Scholar]
  77. Mielech-ŁukasiewiczK. DomalewskaM. Electrochemical determination of ciclopirox olamine by using boron-doped diamond electrode modified with overoxidized polypyrrole film.Electrocatalysis202112328329410.1007/s12678‑021‑00651‑0
    [Google Scholar]
  78. TekerT. HasanA.M.H. AslanogluM. A boron doped diamond electrode modified with nano-carbon black for the sensitive electrochemical determination of chlorogenic acid.Electroanalysis201931122446245410.1002/elan.201900305
    [Google Scholar]
  79. NegreaS. DiaconuL.A. NicorescuV. Motoc M IliesS. OrhaC. ManeaF. Graphene oxide electroreduced onto boron-doped diamond and electrodecorated with silver (AG/GO/BDD) electrode for tetracycline detection in aqueous solution.Nanomaterials2021116156610.3390/nano1106156634198696
    [Google Scholar]
  80. MatsunagaT. KondoT. OsasaT. KotsugaiA. ShitandaI. HoshiY. ItagakiM. AikawaT. TojoT. YuasaM. Sensitive electrochemical detection of ciprofloxacin at screen-printed diamond electrodes.Carbon202015924725410.1016/j.carbon.2019.12.051
    [Google Scholar]
  81. MatsunagaT. KondoT. ShitandaI. HoshiY. ItagakiM. TojoT. YuasaM. Sensitive electrochemical detection of l-Cysteine at a screen-printed diamond electrode.Carbon202117339540210.1016/j.carbon.2020.10.096
    [Google Scholar]
  82. KondoT. Conductive boron-doped diamond powder/nanoparticles for electrochemical applications.Chem. Lett.202150473374110.1246/cl.200870
    [Google Scholar]
  83. AllahverdiyevaS. ÇalışırM. KeskinE. YardımY. ŞentürkZ. First electroanalytical investigation and simple quantification of a thrombopoietin-receptor agonist drug eltrombopag in the presence of cationic surfactant at a non-modified boron-doped diamond electrode.Diamond Relat. Mater.202011010814610.1016/j.diamond.2020.108146
    [Google Scholar]
  84. AllahverdiyevaS. YardımY. ŞentürkZ. Electrooxidation of tetracycline antibiotic demeclocycline at unmodified boron-doped diamond electrode and its enhancement determination in surfactant-containing media.Talanta2021223Pt 112169510.1016/j.talanta.2020.12169533303147
    [Google Scholar]
  85. FreitasJ.M. WachterN. Rocha-FilhoR.C. Determination of bisphenol S, simultaneously to bisphenol A in different water matrices or solely in electrolyzed solutions, using a cathodically pretreated boron-doped diamond electrode.Talanta202021712104110.1016/j.talanta.2020.12104132498895
    [Google Scholar]
  86. Garcia de Freitas JuniorG. FlorêncioT.M. MendonçaR.J. Salazar-BandaG.R. OliveiraR.T.S. SalazarBanda GR, Oliveira RTS: Simultaneous voltammetric determination of benzene, toluene and xylenes (BTX) in water using a cathodically pre-treated boron-doped diamond electrode.Electroanalysis201931355455910.1002/elan.201800661
    [Google Scholar]
  87. ŠelešovskáR. HerynkováM. SkopalováJ. Kelíšková-MartinkováP. JaníkováL. CankařP. BednářP. ChýlkováJ. Oxidation behavior of insecticide azoxystrobin and its voltammetric determination using boron-doped diamond electrode.Electroanalysis201931236337310.1002/elan.201800647
    [Google Scholar]
  88. da SilvaJ.I.L. dos SantosV.B. NevesC.A. de SouzaJ.P.I. An ecologically correct electroanalytical method to determine the herbicide Picloram in Amazon waters using a miniaturized boron-doped diamond electrode and a 3D compact electrochemical cell.Chem. Pap.20217531055106710.1007/s11696‑020‑01357‑1
    [Google Scholar]
  89. TrianaY. Irkham, Einaga Y: Electrochemical oxidation behavior of nitrogen dioxide for gas detection using boron doped diamond electrodes.Electroanalysis202110.1002/elan.202100122
    [Google Scholar]
  90. HoshyarS.A. BarzaniH.A.H. YardımY. ŞentürkZ. The effect of CTAB, a cationic surfactant, on the adsorption ability of the boron-doped diamond electrode: Application for voltammetric sensing of Bisphenol A and Hydroquinone in water samples.Colloids Surf. A Physicochem. Eng. Asp.202161012591610.1016/j.colsurfa.2020.125916
    [Google Scholar]
  91. KomkovaM.A. PasquarelliA. AndreevE.A. GalushinA.A. KaryakinA.A. Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors.Electrochim. Acta202033913592410.1016/j.electacta.2020.135924
    [Google Scholar]
  92. PujolL. EvrardD. GrosP. FreyssinierM. Ruffien-CizsakA. Groenen SerranoK. Boron-doped diamond as an all-in-one system for the mineralization and detection of lead in waters.ChemElectroChem2019641225122810.1002/celc.201801717
    [Google Scholar]
  93. PeiJ. YuX. ZhangZ. ZhangJ. WeiS. BoukherroubR. In-situ graphene modified self-supported boron-doped diamond electrode for Pb(II) electrochemical detection in seawater.Appl. Surf. Sci.202052714676110.1016/j.apsusc.2020.146761
    [Google Scholar]
  94. CulkováE. Lukáčová-ChomistekováZ. BellováR. MelicherčíkováD. DurdiakJ. RievajM. VojsM. TomčíkP. Voltammetric detection of silver in commercial products on boron doped diamond electrode: stripping at lowered potential in the presence of thiosulfate ions.Monatsh. Chem.202015171009101710.1007/s00706‑020‑02634‑1
    [Google Scholar]
  95. McLaughlinM.H.S. Pakpour-TabriziA.C. JackmanR.B. A detailed EIS study of boron doped diamond electrodes decorated with gold nanoparticles for high sensitivity mercury detection.Sci. Rep.2021111950510.1038/s41598‑021‑89045‑233947929
    [Google Scholar]
  96. ŠtenclováP. VyskočilV. SzabóO. IžákT. PotockýŠ. KromkaA. Structured and graphitized boron doped diamond electrodes: Impact on electrochemical detection of Cd2+ and Pb2+ ions.Vacuum201917010895310.1016/j.vacuum.2019.108953
    [Google Scholar]
  97. MartonM. MichniakP. BehulM. RehacekV. Vojs StanovaA. RedhammerR. VojsM. Bismuth modified boron doped diamond electrode for simultaneous determination of Zn, Cd and Pb ions by square wave anodic stripping voltammetry: Influence of boron concentration and surface morphology.Vacuum201916718218810.1016/j.vacuum.2019.06.012
    [Google Scholar]
  98. AgustianyT. KhalilM. EinagaY. JiwantiP.K. IvandiniT.A. Stable iridium-modified boron-doped diamond electrode for the application in electrochemical detection of arsenic (III).Mater. Chem. Phys.202024412272310.1016/j.matchemphys.2020.122723
    [Google Scholar]
  99. FerreiraR. ChaarJ. BaldanM. BragaN. Simultaneous voltammetric detection of Fe3+, Cu2+, Zn2+, Pb2+ e Cd2+ in fuel ethanol using anodic stripping voltammetry and boron-doped diamond electrodes.Fuel202129112010410.1016/j.fuel.2020.120104
    [Google Scholar]
  100. Němečková-MakrlíkováA. NavrátilT. BarekJ. ŠtenclováP. KromkaA. VyskočilV. Determination of tumour biomarkers homovanillic and vanillylmandelic acid using flow injection analysis with amperometric detection at a boron doped diamond electrode.Anal. Chim. Acta20191087445010.1016/j.aca.2019.08.06231585565
    [Google Scholar]
  101. SelesovskáR Schwarzová-PeckováK SokolováR KrejcováK Martinková-KelískováP The first study of triazole fungicide difenoconazole oxidation and its voltammetric and flow amperometric detection on boron doped diamond electrode.Electrochim Acta202138113826010.1016/j.electacta.2021.138260
    [Google Scholar]
  102. HayesP.E. GlennonJ.D. LuongJ.H.T. Electroanalysis of gallic and ellagic acids at a boron-doped diamond electrode coupled with high-performance liquid chromatography.Electroanalysis20203292027203510.1002/elan.202060021
    [Google Scholar]
  103. GotoH. KanaiY. YotsuiA. ShimokiharaS. ShitaraS. OyobikiR. FujiwaraK. WatanabeT. EinagaY. MatsumotoY. MikiN. DoiN. Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases.Lab Chip202020485286110.1039/C9LC01263J31984406
    [Google Scholar]
  104. KowalczeM. JakubowskaM. Multivariate approach in voltammetric identification and simultaneous determination of eugenol, carvacrol, and thymol on boron-doped diamond electrode.Monatsh. Chem.20191506991100210.1007/s00706‑019‑02394‑7
    [Google Scholar]
  105. LiuZ. BaluchováS. BrockenB. AhmedE. PobedinskasP. HaenenK. BuijnstersJ.G. Inkjet printing-manufactured boron-doped diamond chip electrodes for electrochemical sensing purposes.ACS Appl. Mater. Interfa.20231533399153992510.1021/acsami.3c0482437556596
    [Google Scholar]
  106. DeBrosseM. YuanY. BrothersM. KarajicA. van DurenJ. KimS. HussainS. HeikenfeldJ. A dual approach of an oil–membrane composite and boron-doped diamond electrode to mitigate biofluid interferences.Sensors20212123806310.3390/s2123806334884067
    [Google Scholar]
  107. XuJ. NatsuiK. NaoiS. NakataK. EinagaY. Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes.Diamond Relat. Mater.20188616717210.1016/j.diamond.2018.04.028
    [Google Scholar]
  108. GongY. JiaW. ZhouB. ZhengK. MaD. LiZ. GaoJ. MaY. HeiH. YuS. XueY. WuY. Effect of boron doping levels on the microstructure and characteristics of high-quality boron-doped diamond electrodes prepared by MPCVD.Diamond Rela. Mater.202313911037710.1016/j.diamond.2023.110377
    [Google Scholar]
  109. SantosK.D. BragaO.C. VieiraI.C. SpinelliA. Electroanalytical determination of estriol hormone using a boron-doped diamond electrode.Talanta20108051999200610.1016/j.talanta.2009.10.05820152445
    [Google Scholar]
  110. ShellaiahM. SunK.W. Diamond-based electrodes for detection of metal ions and anions.Nanomaterials20211216410.3390/nano1201006435010014
    [Google Scholar]
/content/journals/cac/10.2174/0115734110304322240430053410
Loading
/content/journals/cac/10.2174/0115734110304322240430053410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test