Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

A new material of SiO-(1-(bis(2-aminoethyl)amino)-3-(silyl)propane-2-ol) (SiO-BAEASP) has been successfully synthesized as a promising SiO-based material for the filtration and capturing UO2+ ions. In this study, the chemical structure and possible uses of SiO2-BAEASP in environmental remediation are explored. Moreover, the methodologies and procedures for synthesizing and characterizing SiO-BAEASP are also described. In addition, the experimental methodologies regarding the capturing capacity, pH, initial concentrations, and temperature dependence are determined. The FT-IR spectra of SiO-BAEASP materials show distinct functional groups, including the disappearance of ν stretching vibrations and the appearance of sharp ν vibrations. However, detection of the primary and secondary amine stretching frequencies at 3251 cm-1 becomes difficult when it is chelated with UO2+ ions due to its weak density and interference with the –OH stretching frequency. Thermogravimetric analysis (TGA) and weight loss patterns for SiO-BAEASP before and after capturing UO2+ ions suggest the formation of coordination complexes between UO2+ ions and organic functional groups, impacting the thermal properties of the material. Furthermore, the Powder X-ray Diffraction (PXRD) spectrum indicates that the atomic arrangement within the crystals of the material remains largely unchanged before or after adsorption, suggesting that the adsorption of uranyl ions is likely to occur predominantly on the material's surface, with limited impact on the bulk structure. The SEM shows an increase in surface roughness or the formation of layers of nano-spherical particles on the surface, forming clusters or agglomerations. The maximal capturing capability of UO2+ ions into SiO-BAEASP is 99% under the experimental circumstances of pH = 5 - 7, = 50 mg L-1, = 55°C, osage = 2 g L-1, and 80 rpm. The capturing of uranyl ions follows the Langmuir isotherm model (2 ≈ 1) as a favorable process ( < 0.02). The capturing process has ΔG = - 8.2083 to -16.0568 kJ mol-1, ΔH (+69.7927 kJ mol−1), and ΔS (+2.616166 kJ mol-1 K-1), which indicates that the adsorption is energy-efficient and spontaneous. The pseudo-second-order and Weber-Morris intraparticle diffusion models (ca. = 1.0) suggest that the capturing mechanism follows chemisorption through three distinct stages of sorption, indicating that intraparticle diffusion primarily governs the transport of UO2+ ions into the SiO-BAEASP. The main findings confirm the ability of SiO-BAEASP to trap UO2+ ions in contaminated fluids efficiently and its importance in environmental remediation and resource recovery.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110299710240528074433
2024-06-06
2025-05-24
Loading full text...

Full text loading...

References

  1. LinY.W. Uranyl binding to proteins and structural-functional impacts.Biomolecules202010345710.3390/biom1003045732187982
    [Google Scholar]
  2. ZhangL. ChuJ. XiaB. XiongZ. ZhangS. TangW. Health effects of particulate uranium exposure.Toxics202210575
    [Google Scholar]
  3. MellahA. ChegroucheS. BarkatM. The precipitation of ammonium uranyl carbonate (AUC): Thermodynamic and kinetic investigations.Hydrometallurgy2007852-416317110.1016/j.hydromet.2006.08.011
    [Google Scholar]
  4. ChenF. LvM. YeY. MiaoS. TangX. LiuY. LiangB. QinZ. ChenY. HeZ. WangY. Insights on uranium removal by ion exchange columns: The deactivation mechanisms, and an overlooked biological pathway.Chem. Eng. J.202243413470810.1016/j.cej.2022.134708
    [Google Scholar]
  5. XingC. BernicotB. ArrachartG. RostaingP.S. Application of ultra/nano filtration membrane in uranium rejection from fresh and salt waters.Separ. Purif. Tech.202331412354310.1016/j.seppur.2023.123543
    [Google Scholar]
  6. RahimiM. HemmatiM. Chemically functionalized silica nanoparticles based solid phase extraction for effective pre-concentration of highly toxic metal ions from food and water samples.Appl. Organomet. Chem.2018322
    [Google Scholar]
  7. SolangiA.R. ShahabuddinM. JunejoR. Thermodynamic and kinetic studies for adsorption of reactive blue (RB-19) dye using calix[4]arene-based adsorbent.J. Dispers. Sci. Technol.201964834073415
    [Google Scholar]
  8. FanH-T. FanX. LiJ. GuoM. ZhangD. YanF. SunT. Selective removal of arsenic(V) from aqueous solution using a surface-ion-imprinted amine-functionalized silica gel sorbent.Ind. Eng. Chem. Res.201251145216522310.1021/ie202655x
    [Google Scholar]
  9. BarbarasD. BrozioJ. JohannsenI. AllmendingerT. Removal of heavy metals from organic reaction mixtures: Preparation and application of functionalized resins.Org. Process Res. Dev.20091361068107910.1021/op900102a
    [Google Scholar]
  10. ZavvarM. ShirkhanlooH. RashidiA.M. Preconcentration and separation of ultra-trace amounts of lead using ultrasound-assisted cloud point-micro solid phase extraction based on amine functionalized silica aero gel nano adsorbent.Microchem. J.201612523624110.1016/j.microc.2015.11.026
    [Google Scholar]
  11. LiP. ZhangX. ChenY. BaiT. LianH. HuX. One-pot synthesis of thiol- and amine-bifunctionalized mesoporous silica and applications in uptake and speciation of arsenic.RSC Advances2014490494214942810.1039/C4RA06563H
    [Google Scholar]
  12. AguadoJ. ArsuagaJ.M. ArencibiaA. LindoM. GascónV. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica.J. Hazard. Mater.2009163121322110.1016/j.jhazmat.2008.06.08018675509
    [Google Scholar]
  13. MohamedA. HabilaM.A. AbbasM. LabisJ. Facile strategy for fabricating an organosilica-modified Fe3O4 (OS/Fe3O4) hetero-nanocore and os/fe3o4@sio2 core–shell structure for wastewater treatment with promising recyclable efficiency.J. Chem. Eng.2014251441451
    [Google Scholar]
  14. QasemN.A.A. MohammedR.H. LawalD.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review.NPJ Clean Water2021436
    [Google Scholar]
  15. AkhgariM. MosaffaE. DogariH. RamshehN.A. GhafuriH. BanerjeeA. A magnetic nano-sorbent incorporating antimicrobial papain for the rapid and efficient removal of levofloxacin and Pb( ii ) from aqueous systems.Environ. Sci. Water Res. Technol.2023982112212710.1039/D3EW00259D
    [Google Scholar]
  16. Abou-El-SherbiniK.S. HassanienM.M. MohamedM. Synthesis of controlled‐pore silica glass functionalized with quercetin and its application for the separation and preconcentration of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II).Sep. Sci. Technol.20053951177120110.1081/SS‑120028578
    [Google Scholar]
  17. AlbaharH. AlfawazA.M. AlsilmeA.S. BeaganA.M. AlsalmeA. AlmeataqM.S. AlshahraniA. AlotaibiK.M. Evaluation of the adsorption efficiency of glycine-, iminodiacetic acid -, and amino propyl-functionalized silica nanoparticles for the removal of potentially toxic elements from contaminated water solution. A.J. Nanomater.202120216664252
    [Google Scholar]
  18. HuangX. ChangX. HeQ. CuiY. ZhaiY. JiangN. Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(III), Cd(II) and Pb(II) from waters.J. Hazard. Mater.2008157115416010.1016/j.jhazmat.2007.12.11318295398
    [Google Scholar]
  19. BoweC.A. PooréD.D. BensonR.F. MartinD.F. Extraction of heavy metals by amines adsorbed onto silica gel.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.2003381126532660, 2653-266010.1081/ESE‑12002445414533930
    [Google Scholar]
  20. GaoL. WeiY. Fabrication of a novel hydrophobic/ion‐exchange mixed‐mode adsorbent for the dispersive solid‐phase extraction of chlorophenols from environmental water samples.J. Sep. Sci.201639163186319410.1002/jssc.20150129927420911
    [Google Scholar]
  21. Al-AnberM.A. Al-MomaniI.F. ZaitounM.A. Al-QaisiW. Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium (VI) ion.J. Radioanal. Nucl. Chem.2020325260562310.1007/s10967‑020‑07270‑x
    [Google Scholar]
  22. ZaitounM.A. Al-AnberM.A. Functionalization of Silica Gel by triamine silylpropaneol.Preparation
    [Google Scholar]
  23. ZaitounM.A. AnberA.M.A. MomaniA.I.F. Sorption and removal aqueous iron(III) ion by tris(2-aminoethyl)amine moiety functionalized silica gel.Int. J. Environ. Anal. Chem.2020100131446146710.1080/03067319.2019.1654466
    [Google Scholar]
  24. AnberA.M.A. Ja’afrehA.M. MomaniA.I.F. HijaziA.K. SobolaD. SagadevanS. BayaydahA.S. Loading of silver (I) ion in l-cysteine-functionalized silica gel material for aquatic purification.Gels202391186510.3390/gels911086537998955
    [Google Scholar]
  25. Al-AnberM.A. HijaziA.K. Al-MomaniI.F. Al-MatarnehA. Al-BayedM. AlhalasahW. Impregnation of Benzyl-L-cysteine into silica gel for the removal of cadmium(II) ion from water.J. Sol-Gel Sci. Technol.2023106124626410.1007/s10971‑022‑06027‑0
    [Google Scholar]
  26. Al-AnberM.A. Al-QaisiW. Al-MomaniI.F. SobolaD. HijaziA.K. MousaM.S. MadanatM.A. Utilization of silica gel nanoparticles for selective capturing aqueous uranyl ion.J. Radioanal. Nucl. Chem.2023332124993500610.1007/s10967‑023‑09191‑x
    [Google Scholar]
  27. TripsC. Morphological Change.Oxford Research Encyclopedia of LinguisticsOxford University Press2023
    [Google Scholar]
  28. SasakiK. UesakiN. Conformationally restricted donors for stereoselective glycosylation.Adv. Carbohydr. Chem. Biochem.20228210715510.1016/bs.accb.2022.10.00536470647
    [Google Scholar]
  29. XieY. ChenCh. RenX. WangH. WangX. Emerging natural and tailored materials for Uranium contaminated water treatment and environmental remediation. Progress in materials science.Int. Rev. J.2019103180234
    [Google Scholar]
  30. GaffneyJ.S. MarleyN.A.J. Chemistry of Environmental Systems Fundamental Principles and Analytical MethodsJohn Wiley & Sons2020
    [Google Scholar]
  31. RosenbergE. PinsonG. TsosieR. Uranium remediation by ion exchange and sorption methods: A critical review.Johns. Matthey Technol. Rev.201660159
    [Google Scholar]
  32. MosaffaE. PatelR.I. PurohitA.M. BasakB.B. BanerjeeA. Efficient decontamination of cationic dyes from synthetic textile wastewater using poly(acrylic acid) composite containing amino functionalized biochar: A mechanism kinetic and isotherm study.J. Polym. Environ.20233162486250310.1007/s10924‑022‑02744‑3
    [Google Scholar]
  33. Al-AnberM.A. Al-AdailehN. Al-MomaniI.F. Al-AnberZ. Encapsulation of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione into the silica gel matrix for capturing uranium(VI) ion species.J. Radioanal. Nucl. Chem.2021329286588710.1007/s10967‑021‑07811‑y
    [Google Scholar]
  34. SuttonM. BurasteroS.R. Uranium(VI) solubility and speciation in simulated elemental human biological fluids.Chem. Res. Toxicol.200417111468148010.1021/tx049878k15540945
    [Google Scholar]
  35. WangJ. GuoX. Adsorption isotherm models: Classification, physical meaning, application and solving method.Chemosphere202025812727910.1016/j.chemosphere.2020.12727932947678
    [Google Scholar]
  36. HoY.S. McKayG. Pseudo-second order model for sorption processes.Process Biochem.199934545146510.1016/S0032‑9592(98)00112‑5
    [Google Scholar]
  37. HoY.S. OfomajaA.E. Kinetic studies of copper ion adsorption on palm kernel fibre.J. Hazard. Mater.200613731796180210.1016/j.jhazmat.2006.05.02316875778
    [Google Scholar]
  38. WeberW.J.Jr MorrisJ.C. Kinetics of adsorption on carbon from solution.J. Sanit. Engrg. Div.1963892315910.1061/JSEDAI.0000430
    [Google Scholar]
  39. RamshehN.A. DogariH. MosaffaE. AkhgariM. GhafuriH. BanerjeeA. Metformin-embedded biocompatible chitosan/poly(vinyl alcohol) beads with superior adsorption properties toward lead(II) and levofloxacin.ACS Appl. Polym. Mater.2023543148316010.1021/acsapm.3c00329
    [Google Scholar]
  40. LangmuirI. The adsorption of gases on plane surfaces of glass, mica, and platinum.J. Am. Chem. Soc.19184091361140310.1021/ja02242a004
    [Google Scholar]
  41. FreundlichH.M.F. On adsorption in solutionsJ. Phys. Chem.190657385470
    [Google Scholar]
  42. CooperA. Van’t hoff analysis and hidden thermodynamic variables.Encyclopedia of Biophysics. RobertsG. WattsA. Berlin, HeidelbergSpringer201810.1007/978‑3‑642‑35943‑9_10066‑1
    [Google Scholar]
/content/journals/cac/10.2174/0115734110299710240528074433
Loading
/content/journals/cac/10.2174/0115734110299710240528074433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test