Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Access to clean air, a vital necessity for life, faces severe constraints globally due to industrialization and urbanization, leading to widespread air quality deterioration. To safeguard human health and the environment from detrimental effects, the essential components of proper monitoring, assessment, and management of air quality are paramount. Conventional air quality analytical techniques such as gas chromatography/ mass spectrometry, selected ion flow tube mass spectrometry, thermal desorption/ gas chromatography, and mass spectrometry are widely used for air quality analysis. These methods, however, are laborious, necessitate sample preparation, require expansive and hazardous reagents, and have a high cost of equipment and maintenance. As such, more rapid, sensitive, specific, cost-effective, portable, user-friendly, and environmentally friendly analytical tools are required for efficient air quality monitoring and control. Over the years, various techniques have emerged to address these challenges, including mobile sensors, microbial monitoring, the Internet of Things (IoT), biomonitoring, and bio- and nanosensors in both indoor and outdoor settings. This paper offers an overview of recent advancements in air quality monitoring and assessment methods. The review encompasses sample preparations for air pollutants, data analysis methodologies, and monitoring strategies. It also delves into the crucial role of microorganisms in air quality analysis. Additionally, the paper explores the applications of the Internet of Things (IoT) and biosensors in air quality monitoring and assessment, elucidating their roles in advancing these endeavors. The paper concludes by presenting insightful perspectives on the current state of air quality monitoring techniques and outlining future directions for research and development in this critical field.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110302106240404105903
2024-04-15
2025-06-17
Loading full text...

Full text loading...

References

  1. ShinH.J. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution.Appl. Microbiol. Biotechnol.201189486787710.1007/s00253‑010‑2990‑821063700
    [Google Scholar]
  2. LongF. ZhuA. ShiH. Recent advances in optical biosensors for environmental monitoring and early warning.Sensors 20131310139281394810.3390/s13101392824132229
    [Google Scholar]
  3. GavrilașS. UrsachiC.Ș. Perța-CrișanS. MunteanuF.D. Recent trends in biosensors for environmental quality monitoring.Sensors 2022224151310.3390/s2204151335214408
    [Google Scholar]
  4. BadidaP. KrishnamurthyA. JayaprakashJ. Meta analysis of health effects of ambient air pollution exposure in low- and middle-income countries.Environ. Res.2023216Pt 411460410.1016/j.envres.2022.11460436375501
    [Google Scholar]
  5. DominskiF.H. Lorenzetti BrancoJ.H. BuonannoG. StabileL. Gameiro da SilvaM. AndradeA. Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses.Environ. Res.202120111148710.1016/j.envres.2021.11148734116013
    [Google Scholar]
  6. MohamedE. F. AwadG. Development of nano-sensor and biosensor as an air pollution detection technique for the foreseeable future.Environmental Nanotechnology: Implications and Applications202216318810.1016/bs.coac.2021.11.003
    [Google Scholar]
  7. WHO. Ambient (outdoor) air pollution. 2021. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (Accessed Oct 4, 2023).
  8. ZaidanM.A. MotlaghN.H. BoorB.E. LuD. NurmiP. PetäjäT. DingA. KulmalaM. TarkomaS. HusseinT. Virtual Sensors: Toward high-resolution air pollution monitoring using AI and IoT.IEEE Internet of Things Magazine202361768110.1109/IOTM.001.2200103
    [Google Scholar]
  9. KurtO.K. ZhangJ. PinkertonK.E. Pulmonary health effects of air pollution.Curr. Opin. Pulm. Med.201622213814310.1097/MCP.000000000000024826761628
    [Google Scholar]
  10. DominiciF. AntonellaZ. SchwartzJ. H. Assessing adverse health effects of long-term exposure to low levels of ambient air pollution: Implementation of causal inference methods.PubMed2022211156
    [Google Scholar]
  11. MaioS. SarnoG. TagliaferroS. PironaF. StanisciI. BaldacciS. ViegiG. Outdoor air pollution and respiratory health.Int. J. Tuberc. Lung Dis.202327171210.5588/ijtld.22.024936853127
    [Google Scholar]
  12. JinL. ApteJ.S. MillerS.L. TaoS. WangS. JiangG. LiX. Global endeavors to address the health effects of urban air pollution.Environ. Sci. Technol.202256116793679810.1021/acs.est.2c0262735674469
    [Google Scholar]
  13. XieX. SemanjskiI. GautamaS. TsiligianniE. DeligiannisN. RajanR. PasveerF. PhilipsW. A review of urban air pollution monitoring and exposure assessment methods.ISPRS Int. J. Geoinf.201761238910.3390/ijgi6120389
    [Google Scholar]
  14. GregisG. SanchezJ.B. BezverkhyyI. GuyW. BergerF. FierroV. BellatJ-P. CelzardA. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor.Sens. Actuators B Chem.201825539140010.1016/j.snb.2017.08.056
    [Google Scholar]
  15. Aguilar-GomezS. DwyerB. Graff ZivinJ. NeidellM. This is air: the “non-health” effects of air pollution.SSRN202210.2139/ssrn.4062400
    [Google Scholar]
  16. ChenH. OliverB.G. PantA. OliveraA. PoronnikP. PollockC.A. SaadS. Effects of air pollution on human health : Mechanistic evidence suggested by in vitro and in vivo modelling.Environ. Res.2022212Pt C11337810.1016/j.envres.2022.11337835525290
    [Google Scholar]
  17. Roger ChenY.H. LeeW.C. LiuB.C. YangP.C. HoC.C. HwangJ.S. HuangT.H. LinH.H. LoW.C. Quantifying the potential effects of air pollution reduction on population health and health expenditure in Taiwan.Environ. Pollut.202333612240510.1016/j.envpol.2023.12240537597736
    [Google Scholar]
  18. SinghD. DahiyaM. KumarR. NandaC. Sensors and systems for air quality assessment monitoring and management: A review.J. Environ. Manage.202128911251010.1016/j.jenvman.2021.11251033827002
    [Google Scholar]
  19. MarćM. TobiszewskiM. ZabiegałaB. GuardiaM. NamieśnikJ. Current air quality analytics and monitoring: A review.Anal. Chim. Acta201585311612610.1016/j.aca.2014.10.01825467453
    [Google Scholar]
  20. McKercherG.R. SalmondJ.A. VanosJ.K. Characteristics and applications of small, portable gaseous air pollution monitors.Environ. Pollut.201722310211010.1016/j.envpol.2016.12.04528162801
    [Google Scholar]
  21. KaragulianF. BarbiereM. KotsevA. SpinelleL. GerbolesM. LaglerF. RedonN. CrunaireS. BorowiakA. Review of the performance of low-cost sensors for air quality monitoring.Atmosphere 201910950610.3390/atmos10090506
    [Google Scholar]
  22. WangA. PaulS. deSouzaP. MachidaY. MoraS. DuarteF. RattiC. Key Themes, Trends, and drivers of mobile ambient air quality monitoring: A systematic review and meta-analysis.Environ. Sci. Technol.202357269427944410.1021/acs.est.2c0631037343238
    [Google Scholar]
  23. BellM.L. MorgensternR.D. HarringtonW. Quantifying the human health benefits of air pollution policies: Review of recent studies and new directions in accountability research.Environ. Sci. Policy201114435736810.1016/j.envsci.2011.02.006
    [Google Scholar]
  24. Kingsy GraceR. ManjuS. Comprehensive review of wireless sensor networks based air pollution monitoring systems.Wirel. Pers. Commun.201910842499251510.1007/s11277‑019‑06535‑3
    [Google Scholar]
  25. Hadj SassiM.S. Chaari FouratiL. Comprehensive survey on air quality monitoring systems based on emerging computing and communication technologies.Comput. Netw.202220910890410.1016/j.comnet.2022.108904
    [Google Scholar]
  26. RadadiaA.D. Salehi-KhojinA. MaselR.I. ShannonM.A. The effect of microcolumn geometry on the performance of micro-gas chromatography columns for chip scale gas analyzers.Sens. Actuators B Chem.2010150145646410.1016/j.snb.2010.07.002
    [Google Scholar]
  27. MorawskaL. ThaiP.K. LiuX. Asumadu-SakyiA. AyokoG. BartonovaA. BediniA. ChaiF. ChristensenB. DunbabinM. GaoJ. HaglerG.S.W. JayaratneR. KumarP. LauA.K.H. LouieP.K.K. MazaheriM. NingZ. MottaN. MullinsB. RahmanM.M. RistovskiZ. ShafieiM. TjondronegoroD. WesterdahlD. WilliamsR. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?Environ. Int.201811628629910.1016/j.envint.2018.04.01829704807
    [Google Scholar]
  28. SainiJ. DuttaM. MarquesG. Sensors for indoor air quality monitoring and assessment through Internet of Things: a systematic review.Environ. Monit. Assess.202119326610.1007/s10661‑020‑08781‑633452599
    [Google Scholar]
  29. MalleswariS.M.S.D. MohanaT.K. Air pollution monitoring system using IoT devices: Review.Mater. Today Proc.2022511147115010.1016/j.matpr.2021.07.114
    [Google Scholar]
  30. PrinceB.J. MilliganD.B. McEwanM.J. Application of selected ion flow tube mass spectrometry to real‐time atmospheric monitoring.Rapid Commun. Mass Spectrom.201024121763176910.1002/rcm.457420499321
    [Google Scholar]
  31. SchrippT. EtienneS. FauckC. FuhrmannF. MärkL. SalthammerT. Application of proton-transfer-reaction-mass-spectrometry for indoor air quality research.Indoor Air201424217818910.1111/ina.1206123869867
    [Google Scholar]
  32. HassaniS. MomtazS. VakhshitehF. MaghsoudiA.S. GanjaliM.R. NorouziP. AbdollahiM. Biosensors and their applications in detection of organophosphorus pesticides in the environment.Arch. Toxicol.201791110913010.1007/s00204‑016‑1875‑827761595
    [Google Scholar]
  33. MoufidM. BouchikhiB. TiebeC. BartholmaiM. El BariN. Assessment of outdoor odor emissions from polluted sites using simultaneous thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), electronic nose in conjunction with advanced multivariate statistical approaches.Atmos. Environ.202125611844910.1016/j.atmosenv.2021.118449
    [Google Scholar]
  34. GajskiG. PehnecG. SmoljoI. JakovljevićI. HorvatT. Development and optimization of a td-gc/ms method for measurement of vocs in indoor air.In International conference and 13th Croatian scientific and professional meeting “AIR PROTECTION”202366
    [Google Scholar]
  35. EltzovE. PavluchkovV. BurstinM. MarksR.S. Creation of a fiber optic based biosensor for air toxicity monitoring.Sens. Actuators B Chem.2011155285986710.1016/j.snb.2011.01.062
    [Google Scholar]
  36. JustinoC. DuarteA. Rocha-SantosT. Recent progress in biosensors for environmental monitoring: A review.Sensors 20171712291810.3390/s1712291829244756
    [Google Scholar]
  37. WangJ. NuñoveroN. NidetzR. PetersonS.J. BrookoverB.M. SteineckerW.H. ZellersE.T. Belt-mounted micro-gas-chromatograph prototype for determining personal exposures to volatile-organic-compound mixture components.Anal. Chem.20199174747475410.1021/acs.analchem.9b0026330836745
    [Google Scholar]
  38. VillanuevaF. RódenasM. RuusA. SaffellJ. GabrielM.F. Sampling and analysis techniques for inorganic air pollutants in indoor air.Appl. Spectrosc. Rev.202257753157910.1080/05704928.2021.2020807
    [Google Scholar]
  39. WightG. D. Fundamentals of Air Sampling.CRC Press: S.L2020
    [Google Scholar]
  40. HanB. WangH. HuangH. LiuT. WuG. WangJ. Micro-fabricated packed metal gas preconcentrator for enhanced monitoring of ultralow concentration of isoprene.J. Chromatogr. A20181572273610.1016/j.chroma.2018.08.05830195860
    [Google Scholar]
  41. LeeY.H. WangC.H. HsuP.H. HsiehH.C. WangJ.L. A wide range of toxic VOCs measured by dual-sorbent passive sampling with validation by field online measurements.Environ. Pollut.202231412020112020110.1016/j.envpol.2022.12020136210585
    [Google Scholar]
  42. GagaE.O. DöğeroğluT. ÖzdenÖ. AriA. YayO.D. AltuğH. AkyolN. ÖrnektekinS. Van DoornW. Evaluation of air quality by passive and active sampling in an urban city in Turkey: Current status and spatial analysis of air pollution exposure.Environ. Sci. Pollut. Res. Int.20121983579359610.1007/s11356‑012‑0924‑y22535226
    [Google Scholar]
  43. Al-AlamJ. LévyM. BaH. Pham-HuuC. MilletM. Measuring current-use pesticides in air: A comparison of silicon carbide foam to XAD as passive air samplers.Environ. Technol. Innov.20212410187610187610.1016/j.eti.2021.101876
    [Google Scholar]
  44. TrzcińskiJ.W. PinalliR. RiboniN. PedriniA. BianchiF. ZampolliS. ElmiI. MasseraC. UgozzoliF. DalcanaleE. Chiara massera; franco ugozzoli; enrico dalcanale. in search of the ultimate benzene sensor: the EtQxBox solution.ACS Sens.20172459059810.1021/acssensors.7b0011028723190
    [Google Scholar]
  45. GargA. AkbarM. VejeranoE. NarayananS. NazhandaliL. MarrL.C. AgahM. Zebra GC: A mini gas chromatography system for trace-level determination of hazardous air pollutants.Sens. Actuators B Chem.201521214515410.1016/j.snb.2014.12.136
    [Google Scholar]
  46. MohsenY. LahlouH. SanchezJ.B. BergerF. BezverkhyyI. WeberG. BellatJ.P. Development of a micro-analytical prototype for selective trace detection of orthonitrotoluene.Microchem. J.2014114485210.1016/j.microc.2013.12.001
    [Google Scholar]
  47. CollinW.R. SerranoG. WrightL.K. ChangH. NuñoveroN. ZellersE.T. Microfabricated gas chromatograph for rapid, trace-level determinations of gas-phase explosive marker compounds.Anal. Chem.201486165566310.1021/ac402961t24205966
    [Google Scholar]
  48. ZaidiN. TahirM. VellekoopM. LangW. Design of novel ceramic preconcentrator and integration in gas chromatographic system for detection of ethylene gas from ripening bananas.Sensors 2018188258910.3390/s1808258930087307
    [Google Scholar]
  49. JatnikaH. RifaiM.F. PurwantoY.S. Development of indoor air quality measuring device and application to support campus in post-covid-19 pandemic class preparation.Int. J. Soc. Serv. Res.20233102553256210.46799/ijssr.v3i10.572
    [Google Scholar]
  50. KarigoudarR.M. WavareS.M. KakhandkiL. BagaliS. KumarI.H. Comparison of active and passive methods of air sampling to evaluate the microbial contamination of air in operation theaters.J. Pure Appl. Microbiol.20201442691269710.22207/JPAM.14.4.47
    [Google Scholar]
  51. VianiI. ColucciM.E. PergreffiM. RossiD. VeronesiL. BizzarroA. CapobiancoE. AffanniP. ZoniR. SaccaniE. AlbertiniR. PasquarellaC. Passive air sampling: the use of the index of microbial air contamination.Acta Biomed.2020913-S9210510.23750/abm.v91i3‑S.943432275273
    [Google Scholar]
  52. MasiaM.D. DettoriM. DeriuG.M. SodduS. DeriuM. ArghittuA. AzaraA. CastigliaP. Microbial monitoring as a tool for preventing infectious risk in the operating room: results of 10 years of activity.Atmosphere 20201211910.3390/atmos12010019
    [Google Scholar]
  53. DaiP. ShenD. TangQ. HuangK. LiC. PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis.Environ. Pollut.202025611336810.1016/j.envpol.2019.11336831676097
    [Google Scholar]
  54. KumarP. SinghA.B. SinghR. Comprehensive health risk assessment of microbial indoor air quality in microenvironments.PLoS One2022172e026422610.1371/journal.pone.026422635213573
    [Google Scholar]
  55. OdonkorS.T. MahamiT. Microbial air quality in neighborhoods near landfill sites: implications for public health.J. Environ. Public Health2020202011010.1155/2020/460916432733576
    [Google Scholar]
  56. FangZ. WenT. LuoH. ZhengZ. DingL. YueS. WangQ. FengX. Investigation into microbial contamination in microapartments in a coastal city.Sustain Cities Soc.20239110439710.1016/j.scs.2023.104397
    [Google Scholar]
  57. FliesE.J. ClarkeL.J. BrookB.W. JonesP. Urbanisation reduces the abundance and diversity of airborne microbes but what does that mean for our health? A systematic review.Sci. Total Environ.202073814033710.1016/j.scitotenv.2020.14033732806360
    [Google Scholar]
  58. XieW. LiY. BaiW. HouJ. MaT. ZengX. ZhangL. AnT. The source and transport of bioaerosols in the air: A review.Front. Environ. Sci. Eng.20211534410.1007/s11783‑020‑1336‑833589868
    [Google Scholar]
  59. LiX. ChenH. YaoM. Microbial emission levels and diversities from different land use types.Environ. Int.202014310598810.1016/j.envint.2020.10598832717647
    [Google Scholar]
  60. ChaudhuriS. RoyM. Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring.Environ. Dev. Sustain.20232635735577310.1007/s10668‑023‑03043‑037363020
    [Google Scholar]
  61. BadamasiH. Biomonitoring of air pollution using plants.MAYFEB J. Environ. Sci.201722739
    [Google Scholar]
  62. AL-AlamJ. ChbaniA. FaljounZ. MilletM. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—a review.Environ. Sci. Pollut. Res. Int.201926109391940810.1007/s11356‑019‑04388‑830715709
    [Google Scholar]
  63. LeveiL. CadarO. Babalau-FussV. KovacsE. TorokA.I. LeveiE.A. OzunuA. Use of black poplar leaves for the biomonitoring of air pollution in an urban agglomeration.Plants202110354810.3390/plants1003054833799386
    [Google Scholar]
  64. BoonpengC. SangiamdeeD. NoikradS. BoonpragobK. Lichen biomonitoring of seasonal outdoor air quality at schools in an industrial city in Thailand.Environ. Sci. Pollut. Res. Int.20233021599095992410.1007/s11356‑023‑26685‑z37016263
    [Google Scholar]
  65. VijayP.J. MadhuriA. SriG.M. PrasadY.S.V.S.N. A survey on iot based air pollution monitoring system.In 2023 4th International Conference on Signal Processing and Communication2023525510.1109/ICSPC57692.2023.10125940
    [Google Scholar]
  66. NayakB. PaniS.K. ChowdhuryT. SatpathyS. MohantyS.N. Wireless sensor networks and internet of things: future directions and applicationsApple Academic Press ; CRC Press: Palm BayFL, USA, Burlington, ON, Canada2022
    [Google Scholar]
  67. FuL. LiJ. ChenY. An innovative decision making method for air quality monitoring based on big data-assisted artificial intelligence technique.J. Innova. Knowl.20238210029410.1016/j.jik.2022.100294
    [Google Scholar]
  68. CarnevaleC. AngelisE.D. FinziG. TurriniE. VoltaM. Application of data fusion techniques to improve air quality forecast: A case study in the northern Italy.Atmosphere 202011324410.3390/atmos11030244
    [Google Scholar]
  69. De VitoS. KaratzasK. BartonovaA. FattorusoG. Air quality networks.Springer Nature202310.1007/978‑3‑031‑08476‑8
    [Google Scholar]
  70. MasoudA.A. Spatio-temporal patterns and trends of the air pollution integrating MERRA-2 and in situ air quality data over Egypt (2013–2021).Air Qual. Atmos. Health20231681543157010.1007/s11869‑023‑01357‑637359392
    [Google Scholar]
  71. HanJ. YangY. YangX. WangD. WangX. SunP. Exploring air pollution characteristics from spatio-temporal perspective: A case study of the top 10 urban agglomerations in China.Environ. Res.202322411551211551210.1016/j.envres.2023.11551236804315
    [Google Scholar]
  72. MontanaroT. SergiI. BasileM. MainettiL. PatronoL. An IoT-aware solution to support governments in air pollution monitoring based on the combination of real-time data and citizen feedback.Sensors 2022223100010.3390/s2203100035161750
    [Google Scholar]
  73. TanasaI. CazacuM. SluserB. Air quality integrated assessment: Environmental impacts, risks and human health hazards.Appl. Sci. 2023132122210.3390/app13021222
    [Google Scholar]
  74. KhomenkoS. PisoniE. ThunisP. BessagnetB. CirachM. IungmanT. BarbozaE.P. KhreisH. MuellerN. TonneC. de HooghK. HoekG. ChowdhuryS. LelieveldJ. NieuwenhuijsenM. Spatial and sector-specific contributions of emissions to ambient air pollution and mortality in European cities: A health impact assessment.Lancet Public Health202387e546e55810.1016/S2468‑2667(23)00106‑837393093
    [Google Scholar]
  75. SilveiraC. FerreiraJ. MirandaA.I. A multiscale air quality and health risk modelling system: Design and application over a local traffic management case study.Atmos. Environ.202329411948111948110.1016/j.atmosenv.2022.119481
    [Google Scholar]
  76. LalaM.A. OnwunzoC.S. AdesinaO.A. SonibareJ.A. Particulate matters pollution in selected areas of Nigeria: Spatial analysis and risk assessment.Case Stud. Chem. Environ. Eng.2023710028810.1016/j.cscee.2022.100288
    [Google Scholar]
  77. ChukwuT.M. MorseS. MurphyR.J. Spatial analysis of air quality assessment in two cities in Nigeria: A comparison of perceptions with instrument-based methods.Sustainability 2022149540310.3390/su14095403
    [Google Scholar]
  78. PersisJ. Ben AmarA. Predictive modeling and analysis of air quality : Visualizing before and during COVID-19 scenarios.J. Environ. Manage.202332711691110.1016/j.jenvman.2022.11691136470187
    [Google Scholar]
  79. AbuludeF.O. DamodharanU. AchaS. AdamuA. ArifaloK.M. Preliminary assessment of air pollution quality levels of Lagos, Nigeria.Environ. Sci. Proc.2020512010.3390/IECG2020‑08549
    [Google Scholar]
  80. SajjadB. HussainS. RasoolK. HassanM. AlmomaniF. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition.Environ. Pollut.202333612247310.1016/j.envpol.2023.12247337659632
    [Google Scholar]
  81. ChoixF.J. PalaciosO.A. Nevarez-MoorillónG.V. Traditional and new proposals for environmental microbial indicators—a review.Environ. Monit. Assess.202319512152110.1007/s10661‑023‑12150‑437995003
    [Google Scholar]
  82. DemkováL. ÁrvayJ. BobuľskáL. HauptvoglM. MichalkoM. Activity of the soil enzymes and moss and lichen biomonitoring method used for the evaluation of soil and air pollution from tailing pond in Nižná Slaná (Slovakia).J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201954649550710.1080/10934529.2019.156715830676862
    [Google Scholar]
  83. StevensV. ThijsS. BongaertsE. NawrotT. MarchalW. Van HammeJ. VangronsveldJ. Ambient air pollution shapes bacterial and fungal ivy leaf communities.Microorganisms2021910208810.3390/microorganisms910208834683409
    [Google Scholar]
  84. CreamerR.E. StoneD. BerryP. KuiperI. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method.Appl. Soil Ecol.201697364310.1016/j.apsoil.2015.08.004
    [Google Scholar]
  85. WangM. ZhaoJ. WangY. MaoY. ZhaoX. HuangP. LiuQ. MaY. YaoY. YangZ. YuanW. CuiW. PayneT.J. LiM.D. Genome-wide DNA methylation analysis reveals significant impact of long-term ambient air pollution exposure on biological functions related to mitochondria and immune response.Environ. Pollut.202026411470710.1016/j.envpol.2020.11470732388307
    [Google Scholar]
  86. XiangY. ZhouT. DengS. ShaoZ. LiuY. HeQ. ChaiH. Nitrite improved nitrification efficiency and enriched ammonia-oxidizing archaea and bacteria in the simultaneous nitrification and denitrification process.Water Res. X20232110020410.1016/j.wroa.2023.10020438098882
    [Google Scholar]
  87. LiuY. LiuY. ZhaoT. HeY. ZhuT. ChaiH. PengL. Smaller aerobic granules significantly reduce N 2 O production by ammonia-oxidizing bacteria: Evidences from biochemical and isotopic analyses.Environ. Sci. Technol.202458154555610.1021/acs.est.3c0624638111342
    [Google Scholar]
  88. YangJ. YangX. LiangR. ZhuL. MaoY. DongP. HopkinsD.L. LuoX. ZhangY. The response of bacterial communities to carbon dioxide in high-oxygen modified atmosphere packaged beef steaks during chilled storage.Food Res. Int.202215111087210.1016/j.foodres.2021.11087234980405
    [Google Scholar]
  89. Romero-RodríguezA. Ruiz-VillafánB. Martínez-de la PeñaC.F. SánchezS. Targeting the impossible: A review of new strategies against endospores.Antibiotics 202312224810.3390/antibiotics1202024836830159
    [Google Scholar]
  90. NapoliC. MarcotrigianoV. MontagnaM.T. Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres.BMC Public Health201212159410.1186/1471‑2458‑12‑59422853006
    [Google Scholar]
  91. SantovitoE. ElisseevaS. KerryJ.P. PapkovskyD.B. Rapid detection of bacterial load in food samples using disposable respirometric sensor sachets.Sens. Actuators B Chem.202339013401610.1016/j.snb.2023.134016
    [Google Scholar]
  92. BerceaS. Năstase-BucurR. MireaI.C. MăntoiuD.Ş. KeneszM. PetculescuA. BariczA. AndreiA.Ş. BanciuH.L. PappB. ConstantinS. MoldovanO.T. Novel approach to microbiological air monitoring in show caves.Aerobiologia201834444546810.1007/s10453‑018‑9523‑9
    [Google Scholar]
  93. GongJ. QiJ. eB. YinY. GaoD. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution.Environ. Pollut.202025711348510.1016/j.envpol.2019.11348531708283
    [Google Scholar]
  94. ZhangB. ZhenY. MiT. QiJ. YuanG. Characterization of bacterial communities in aerosols over northern Chinese marginal seas and the northwestern pacific ocean in autumn.J. Ocean Univ. China202322113615010.1007/s11802‑023‑5243‑z
    [Google Scholar]
  95. GhoshB. LalH. SrivastavaA. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms.Environ. Int.20158525427210.1016/j.envint.2015.09.01826436919
    [Google Scholar]
  96. KallawichaK. ChaoH.J. KotchasatanN. Bioaerosol levels and the indoor air quality of laboratories in Bangkok metropolis.Aerobiologia201935111410.1007/s10453‑018‑9535‑5
    [Google Scholar]
  97. RaoY. LiH. ChenM. HuangK. ChenJ. XuJ. ZhuangG. Community structure and influencing factors of airborne microbial aerosols over three Chinese cities with contrasting social-economic levels.Atmosphere 202011431710.3390/atmos11040317
    [Google Scholar]
  98. MbarecheH. MorawskaL. DuchaineC. On the interpretation of bioaerosol exposure measurements and impacts on health.J. Air Waste Manag. Assoc.201969778980410.1080/10962247.2019.158755230821643
    [Google Scholar]
  99. MainelisG. Bioaerosol sampling: Classical approaches, advances, and perspectives.Aerosol Sci. Technol.202054549651910.1080/02786826.2019.167195035923417
    [Google Scholar]
  100. SiebielecS. WoźniakM. GałązkaA. SiebielecG. Microorganisms as indoor and outdoor air biological pollution. Adv. Post. Mikrobiolog. Advancem. Microbiol202059211512710.21307/PM‑2020.59.2.009
    [Google Scholar]
  101. ChenY. SuJ.Q. ZhangJ. LiP. ChenH. ZhangB. GinK.Y.H. HeY. High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system.Water Res.201914917918910.1016/j.watres.2018.11.00730447523
    [Google Scholar]
  102. AsrilM. SugiartoS. ZurfiA. Airborne microbial quality assessment in the educational buildings during the COVID-19 pandemic.Civil Eng. J.20239111412610.28991/CEJ‑2023‑09‑01‑09
    [Google Scholar]
  103. Mamta ShrivastavaJ.N. SatsangiG.P. KumarR. Assessment of bioaerosol pollution over Indo-Gangetic plain.Environ. Sci. Pollut. Res. Int.20152286004600910.1007/s11356‑014‑3776‑925380630
    [Google Scholar]
  104. XieZ. LiY. LuR. LiW. FanC. LiuP. WangJ. WangW. Characteristics of total airborne microbes at various air quality levels.J. Aerosol Sci.2018116576510.1016/j.jaerosci.2017.11.001
    [Google Scholar]
  105. SadighA. FataeiE. ArzanlooM. ImaniA.A. Bacteria bioaerosol in the indoor air of educational microenvironments: Measuring exposures and assessing health effects.J. Environ. Health Sci. Eng.20211921635164210.1007/s40201‑021‑00719‑534900294
    [Google Scholar]
  106. YoosephS. Andrews-PfannkochC. TenneyA. McQuaidJ. WilliamsonS. ThiagarajanM. BramiD. Zeigler-AllenL. HoffmanJ. GollJ.B. FadroshD. GlassJ. AdamsM.D. FriedmanR. VenterJ.C. A metagenomic framework for the study of airborne microbial communities.PLoS One2013812e8186210.1371/journal.pone.008186224349140
    [Google Scholar]
  107. YuY. LiangZ. LiaoW. YeZ. LiG. AnT. Contributions of meat waste decomposition to the abundance and diversity of pathogens and antibiotic-resistance genes in the atmosphere.Sci. Total Environ.202178414712810.1016/j.scitotenv.2021.14712834088047
    [Google Scholar]
  108. MokraniH. LounasR. BennaiM.T. SalhiD.E. DjerbiR. Air quality monitoring using IoT: a survey.2019 IEEE International Conference on Smart Internet of Things (SmartIoT)201910.1109/SmartIoT.2019.00028
    [Google Scholar]
  109. YoonJ. ShinM. LeeT. ChoiJ.W. Highly sensitive biosensors based on biomolecules and functional nanomaterials depending on the types of nanomaterials: A perspective review.Materials 202013229910.3390/ma1302029931936530
    [Google Scholar]
  110. BankoleO.E. VermaD.K. Chávez GonzálezM.L. CeferinoJ.G. Sandoval-CortésJ. AguilarC.N. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience.Food Biosci.20224710169510.1016/j.fbio.2022.101695
    [Google Scholar]
  111. NareshV. LeeN. A review on biosensors and recent development of nanostructured materials-enabled biosensors.Sensors 2021214110910.3390/s2104110933562639
    [Google Scholar]
  112. HuangC.W. LinC. NguyenM.K. HussainA. BuiX.T. NgoH.H. A review of biosensor for environmental monitoring: Principle, application, and corresponding achievement of sustainable development goals.Bioengineered2023141588010.1080/21655979.2022.209508937377408
    [Google Scholar]
  113. JainU. SaxenaK. HoodaV. BalayanS. SinghA.P. TikadarM. ChauhanN. Emerging vistas on pesticides detection based on electrochemical biosensors : An update.Food Chem.202237113112610.1016/j.foodchem.2021.13112634583176
    [Google Scholar]
  114. KumarH. KumariN. SharmaR. Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges.Environ. Impact Assess. Rev.20208510643810.1016/j.eiar.2020.106438
    [Google Scholar]
  115. PandeyS. Advance nanomaterials for biosensors.Biosensors 202212421910.3390/bios1204021935448278
    [Google Scholar]
  116. XiongJ. SunZ. YuJ. LiuH. WangX. Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances.Chem. Eng. J.202243013298210.1016/j.cej.2021.132982
    [Google Scholar]
  117. AbbasianF. Ghafar-ZadehE. MagierowskiS. Microbiological sensing technologies: a review.Bioengineering 2018512010.3390/bioengineering501002029498670
    [Google Scholar]
  118. ChenC. WangJ. Optical biosensors: An exhaustive and comprehensive review.Analys202014551605162810.1039/C9AN01998G31970360
    [Google Scholar]
  119. KhanamZ. GuptaS. VermaA. Endophytic fungi-based biosensors for environmental contaminants : A perspective.S. Afr. J. Bot.202013440140610.1016/j.sajb.2020.08.007
    [Google Scholar]
  120. McConnellE.M. NguyenJ. LiY. Aptamer-based biosensors for environmental monitoring.Front Chem.2020843410.3389/fchem.2020.0043432548090
    [Google Scholar]
  121. HuangX. ZhuY. KianfarE. Nano Biosensors: Properties, applications and electrochemical techniques.J. Mater. Res. Technol.2021121649167210.1016/j.jmrt.2021.03.048
    [Google Scholar]
  122. TaoL. YueQ. HouY. WangY. ChenC. LiC.Z. Resonance light scattering aptasensor for urinary 8-hydroxy-2′-deoxyguanosine based on magnetic nanoparticles: A preliminary study of oxidative stress association with air pollution.Mikrochim. Acta2018185941910.1007/s00604‑018‑2937‑930121832
    [Google Scholar]
  123. BhallaN. JollyP. FormisanoN. EstrelaP. Introduction to biosensors.Essays Biochem.20166011810.1042/EBC2015000127365030
    [Google Scholar]
  124. VigneshvarS. SudhakumariC.C. SenthilkumaranB. PrakashH. Recent advances in biosensor technology for potential applications : An overview.Front. Bioeng. Biotechnol.201641110.3389/fbioe.2016.0001126909346
    [Google Scholar]
  125. ChadhaU. BhardwajP. AgarwalR. RawatP. AgarwalR. GuptaI. PanjwaniM. SinghS. AhujaC. SelvarajS.K. BanavothM. SonarP. BadoniB. ChakravortyA. Recent progress and growth in biosensors technology: A critical review.J. Ind. Eng. Chem.2022109215110.1016/j.jiec.2022.02.010
    [Google Scholar]
  126. BohrnU. StützE. FuchsK. FleischerM. SchöningM.J. WagnerP. Air quality monitoring using a whole-cell based sensor system.Procedia Eng.2011251421142410.1016/j.proeng.2011.12.351
    [Google Scholar]
  127. JiangY. LiangP. HuangX. RenZ.J. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.Chemosphere2018203212510.1016/j.chemosphere.2018.03.16929604426
    [Google Scholar]
  128. ZhouS. HuangS. LiY. ZhaoN. LiH. AngelidakiI. ZhangY. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring.Talanta201818636837110.1016/j.talanta.2018.04.08429784375
    [Google Scholar]
  129. WuS.S. HernándezM. DengY.C. HanC. HongX. XuJ. ZhongW.H. DengH. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China.FEMS Microbiol. Ecol.2019953fiz01810.1093/femsec/fiz01830715248
    [Google Scholar]
  130. KimJ. KatoS. TakeuchiK. TatsumaT. KangI.J. Evaluation on potential for assessing indoor formaldehyde using biosensor system based on swimming behavior of Japanese medaka (oryzias latipes).Build. Environ.201146484985410.1016/j.buildenv.2010.10.014
    [Google Scholar]
  131. KhanM. RaoM. LiQ. Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S.Sensors 201919490510.3390/s1904090530795591
    [Google Scholar]
  132. NazemiH. JosephA. ParkJ. EmadiA. Advanced micro- and nano-gas sensor technology: a review.Sensors 2019196128510.3390/s1906128530875734
    [Google Scholar]
  133. GrozdanovA. DimitrievskaI. PaunovicP. Recent advancements in nano sensors for air and water pollution control.Mat. Sci. Eng. Int. J.20237211312810.15406/mseij.2023.07.00214
    [Google Scholar]
  134. KumarR. Al-DossaryO. KumarG. UmarA. Zinc oxide nanostructures for NO2 gas–sensor applications: A review.Nano-Micro Lett.2015729712010.1007/s40820‑014‑0023‑330464961
    [Google Scholar]
  135. LabisJ.P. Al-AnaziA.Q. Al-BrithenH.A. HezamM. AlduraibiM.A. AlgarniA. AlharbiA.A. Al-AwadiA.S. KhanA. El-ToniA.M. Designing zinc oxide nanostructures (nanoworms, nanoflowers, nanowalls, and nanorods) by pulsed laser ablation technique for gas‐sensing application.J. Am. Ceram. Soc.201910274367437510.1111/jace.16270
    [Google Scholar]
  136. RenQ. CaoY.Q. ArulrajD. LiuC. WuD. LiW.M. LiA.D. Review—resistive-type hydrogen sensors based on zinc oxide nanostructures.J. Electrochem. Soc.2020167606752810.1149/1945‑7111/ab7e23
    [Google Scholar]
  137. KouX. XieN. ChenF. WangT. GuoL. WangC. WangQ. MaJ. SunY. ZhangH. LuG. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping.Sens. Actuators B Chem.201825686186910.1016/j.snb.2017.10.011
    [Google Scholar]
  138. Gómez-SuárezJ. ArroyoP. Cerrato-ÁlvarezM. HontañónE. MasaS. MeniniP. PresmanesL. AlfonsoR. Pinilla-GilE. LozanoJ. Development and field validation of low-cost metal oxide nanosensors for tropospheric ozone monitoring in rural areas.Chemosensors 2022101147847810.3390/chemosensors10110478
    [Google Scholar]
  139. VogrincD. VodovnikM. Marinšek-LogarR. Microbial biosensors for environmental monitoring.Acta Agric. Slov.20151062677510.14720/aas.2015.106.2.1
    [Google Scholar]
  140. BilalM. IqbalH.M.N. Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook.Process Saf. Environ. Prot.201912481710.1016/j.psep.2019.01.032
    [Google Scholar]
  141. KarmanS.B. IbrahimS.B. KhuenC.C. Engineered Microbial Sensing Element-Based Biosensor for Sustainable Biomedical Engineering Application.Sustainable Material for Biomedical Engineering Application.SingaporeSpringer Nature Singapore202318320510.1007/978‑981‑99‑2267‑3_10
    [Google Scholar]
  142. LimJ.W. HaD. LeeJ. LeeS.K. KimT. Review of micro/nanotechnologies for microbial biosensors.Front. Bioeng. Biotechnol.201536110.3389/fbioe.2015.0006126029689
    [Google Scholar]
  143. IdreesZ. ZhengL. Low cost air pollution monitoring systems: A review of protocols and enabling technologies.J. Ind. Inf. Integr.20201710012310.1016/j.jii.2019.100123
    [Google Scholar]
  144. BarotV. KapadiaV. Air quality monitoring systems using IoT: A review.2020 International Conference on Computational Performance Evaluation (ComPE),Shillong, India, 2020, pp. 226-231.10.1109/ComPE49325.2020.9200053
    [Google Scholar]
  145. KumarT. DossA. AIRO: Development of an intelligent IoT-based air quality monitoring solution for urban areas.Procedia Comput. Sci.202321826227310.1016/j.procs.2023.01.008
    [Google Scholar]
  146. DhingraS. MaddaR.B. GandomiA.H. PatanR. DaneshmandM. Internet of things mobile air pollution monitoring system (IoT-Mobair).IEEE Internet Things J.2019635577558410.1109/JIOT.2019.2903821
    [Google Scholar]
  147. GangwarA. SinghS. MishraR. PrakashS. The state-of-the-art in air pollution monitoring and forecasting systems using IoT, big data, and machine learning.Wirel. Pers. Commun.202313031699172910.1007/s11277‑023‑10351‑1
    [Google Scholar]
  148. FadhilM.J. GharghanS.K. SaeedT.R. Air pollution forecasting based on wireless communications: review.Environ. Monit. Assess.202319510115210.1007/s10661‑023‑11756‑y37670163
    [Google Scholar]
  149. GhoneimM. HamedS.M. Towards a smart sustainable city: air pollution detection and control using Internet of Things.IEEE Xplore201910.1109/ICOA.2019.8727690
    [Google Scholar]
  150. ZhaoL. WuW. LiS. Design and implementation of an IoT-based indoor air quality detector with multiple communication interfaces.IEEE Internet Things J.2019669621963210.1109/JIOT.2019.2930191
    [Google Scholar]
  151. FaiazuddinS. LakshmaiahM.V. AlamK.T. RavikiranM. IoT based indoor air quality monitoring system using Raspberry Pi4.4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)714719IEEE202010.1109/ICECA49313.2020.9297442
    [Google Scholar]
  152. HasenfratzD. SaukhO. SturzeneggerS. ThieleL. Participatory air pollution monitoring using smartphones.Mobile Sens.115
    [Google Scholar]
  153. MansourS. NasserN. KarimL. AliA. Wireless sensor network-based air quality monitoring system.2014 International Conference on Computing, Networking and Communications (ICNC)201410.1109/ICCNC.2014.6785394
    [Google Scholar]
  154. YiW. LoK. MakT. LeungK. LeungY. MengM. A survey of wireless sensor network based air pollution monitoring systems.Sensors 20151512313923142710.3390/s15122985926703598
    [Google Scholar]
  155. TanujK. KumarA. SinghS. Air quality monitoring systems using IoT: a review. In 2020 International Conference on Computational Performance Evaluation (ComPE).IEEE201616Available from: https://ieeexplore.ieee.org/document/9200053
    [Google Scholar]
  156. PavaniM. RaoP.T. monitoring real-time urban carbon monoxide (CO) emissions using wireless sensor networks. SatapathyS. JoshiA. information and communication technology for intelligent systems (ICTIS 2017)2ICTIS 2017. Smart Innovation, Systems and Technologies, vol 84. Springer, Cham, 2018.10.1007/978‑3‑319‑63645‑0_32
    [Google Scholar]
  157. MumtazR. ZaidiS.M.H. ShakirM.Z. ShafiU. MalikM.M. HaqueA. MumtazS. ZaidiS.A.R. Internet of Things (IoT) Based indoor air quality sensing and predictive analytic—a Covid-19 perspective.Electronics 202110218410.3390/electronics10020184
    [Google Scholar]
  158. JanarthananA. ParamarthalingamA. ArivunambiA. VincentP.M.D.R. Real-time indoor air quality monitoring using the Internet of Things.2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)202210.1109/ICICICT54557.2022.9917990
    [Google Scholar]
  159. AashiqM.N.M. KureraW.T.C.C. ThilekaratneM.G.S.P. SajaA.M.A. RouzinM.R.M. NeranjanN. YassinH. An IoT-based handheld environmental and air quality monitoring station.Acta IMEKO20231231910.21014/actaimeko.v12i3.1487
    [Google Scholar]
  160. LogeshP. MonishaC. SivachandranC. DhanasekaranD. IoT based vehicle pollution monitoring system using PIC microcontroller.2nd International Conference on Vision towards Emerging Trends in Communication and Networking Technologies (ViTECoN)202310.1109/ViTECoN58111.2023.10157911
    [Google Scholar]
/content/journals/cac/10.2174/0115734110302106240404105903
Loading
/content/journals/cac/10.2174/0115734110302106240404105903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test