Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Nanoplastics (NPs) have emerged as a concerning environmental pollutant due to their ubiquitous presence and potential adverse effects on human health. This review aims to elucidate the routes of NP contamination and their associated toxic effects on various systems within the human body. The inhalation of NPs presents a significant route of exposure, where particles can deposit deep within the respiratory tract, leading to potential respiratory health complications. Similarly, ingestion of NPs through contaminated food and water sources poses a risk to gastrointestinal and urinary tract health. Additionally, dermal permeation of NPs highlights another avenue for exposure, raising concerns about skin health. The potential toxic effects of micro(nano)plastics (MNPs) on human health span across multiple physiological systems. MNPs have been implicated in respiratory ailments, gastrointestinal disturbances, cardiovascular complications, blood abnormalities, compromised immune responses, neurological impairments, and reproductive dysfunctions. Understanding these toxic effects is crucial for developing strategies to mitigate NP exposure and protect human health. This review underscores the urgent need for interdisciplinary research efforts aimed at assessing NP toxicity comprehensively and implementing measures to reduce NP contamination in the environment.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110305991240523073849
2024-01-04
2025-06-20
Loading full text...

Full text loading...

References

  1. PatersonH. Plastic habits – An overview for the collection ‘Plastics and Sustainable Earth’.Sustainable Earth2019211010.1186/s42055‑019‑0017‑6
    [Google Scholar]
  2. WeinbergS.A. El-HibriJ. Polyarylethersulfones (PAES).ENGINEERING PLASTICS HANDBOOK. MargolisJ.M. New York2006289325
    [Google Scholar]
  3. DeRudderJ. RosenquistN. SappB. SybertP. Polycarbonates.ENGINEERING PLASTICS HANDBOOK, McGraw-Hill. MargolisJ.M. New York2006327383
    [Google Scholar]
  4. NorthE.J. HaldenR.U. Plastics and environmental health: the road ahead.Rev. Environ. Health20132811810.1515/reveh‑2012‑003023337043
    [Google Scholar]
  5. StanghelliniC. KempkesF.L.K. KniesP. Enhancing environmental quality in agricultural systems.Acta Hortic.200360927728310.17660/ActaHortic.2003.609.41
    [Google Scholar]
  6. UnderwoodG. Polyamide-imide (PAI).ENGINEERING PLASTICS HANDBOOK, McGraw-Hill. MargolisJ.M. New York2006257287
    [Google Scholar]
  7. PazienzaP. De LuciaC. For a new plastics economy in agriculture: Policy reflections on the EU strategy from a local perspective.J. Clean. Prod.202025311984410.1016/j.jclepro.2019.119844
    [Google Scholar]
  8. BaghiF. GharsallaouiA. DumasE. GhnimiS. Advancements in biodegradable active films for food packaging: effects of nano/microcapsule incorporation.Foods202211576010.3390/foods1105076035267394
    [Google Scholar]
  9. BozsakyD. The historical development of thermal insulation materials.Periodica Polytechnica Architecture2011412495610.3311/pp.ar.2010‑2.02
    [Google Scholar]
  10. FawaierM. BokorB. Dynamic insulation systems of building envelopes: A review.Energy Build.202227011226810.1016/j.enbuild.2022.112268
    [Google Scholar]
  11. MoritaA. Thermoplastic Polyimide (TPI).ENGINEERING PLASTICS HANDBOOK, McGraw-Hill. MargolisJ.M. New York2006221238
    [Google Scholar]
  12. ChoiG-D. Polybutylene Terephthalate (PBT).ENGINEERING PLASTICS HANDBOOK, McGraw-Hill. MargolisJ.M. New York2006131154
    [Google Scholar]
  13. InoueT. YamanakaT. MakabeY. Liquid Crystal Polymer (LCP).ENGINEERING PLASTICS HANDBOOK, McGraw-Hill. MargolisJ.M. New York2006239256
    [Google Scholar]
  14. ZhangW. XuJ. Advanced lightweight materials for Automobiles: A review.Mater. Des.202222111099410.1016/j.matdes.2022.110994
    [Google Scholar]
  15. CzerwinskiF. Current trends in automotive lightweighting strategies and materials.Materials20211421663110.3390/ma1421663134772154
    [Google Scholar]
  16. PradelA. CatrouilletC. GigaultJ. The environmental fate of nanoplastics: What we know and what we need to know about aggregation.NanoImpact20232910045310.1016/j.impact.2023.10045336708989
    [Google Scholar]
  17. Statista Research Department, Annual production of plastics worldwide from 1950 to 2021.2022Available from: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950 (accessed March 28, 2023).
  18. MaterićD. KjærH.A. VallelongaP. TisonJ.L. RöckmannT. HolzingerR. Nanoplastics measurements in Northern and Southern polar ice.Environ. Res.202220811274110.1016/j.envres.2022.11274135063429
    [Google Scholar]
  19. WaymanC. NiemannH. The fate of plastic in the ocean environment – A minireview.Environ. Sci. Process. Impacts202123219821210.1039/D0EM00446D33475108
    [Google Scholar]
  20. AlhammadiM. AliyaS. UmapathiR. OhM.H. HuhY.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine.Microchem. J.202319510942710.1016/j.microc.2023.109427
    [Google Scholar]
  21. SafarkhaniM. KimH. HanS. TaghavimandiF. ParkY. UmapathiR. JeongY.S. ShinK. HuhY.S. Advances in sprayable sensors for nerve agent detection.Coord. Chem. Rev.202450921580410.1016/j.ccr.2024.215804
    [Google Scholar]
  22. Venkateswara RajuC. Hwan ChoC. Mohana RaniG. ManjuV. UmapathiR. Suk HuhY. Pil ParkJ. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions.Coord. Chem. Rev.202347621492010.1016/j.ccr.2022.214920
    [Google Scholar]
  23. UmapathiR. Venkateswara RajuC. Majid GhoreishianS. Mohana RaniG. KumarK. OhM.H. Pil ParkJ. Suk HuhY. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants.Coord. Chem. Rev.202247021470810.1016/j.ccr.2022.214708
    [Google Scholar]
  24. StapletonP.A. Microplastic and nanoplastic transfer, accumulation, and toxicity in humans.Curr. Opin. Toxicol.202128626910.1016/j.cotox.2021.10.00134901583
    [Google Scholar]
  25. LettZ. HallA. SkidmoreS. AlvesN.J. Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system.Environ. Pollut.202129111819010.1016/j.envpol.2021.11819034563850
    [Google Scholar]
  26. StapletonP.A. Toxicological considerations of nano-sized plastics.AIMS Environ. Sci.20196536737810.3934/environsci.2019.5.36731745497
    [Google Scholar]
  27. MattssonK. JohnsonE.V. MalmendalA. LinseS. HanssonL.A. CedervallT. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.Sci. Rep.2017711145210.1038/s41598‑017‑10813‑028904346
    [Google Scholar]
  28. BrandtsI. CánovasM. TvarijonaviciuteA. LlorcaM. VegaA. FarréM. PastorJ. RoherN. TelesM. Nanoplastics are bioaccumulated in fish liver and muscle and cause DNA damage after a chronic exposure.Environ. Res.2022212Pt A11343310.1016/j.envres.2022.11343335580665
    [Google Scholar]
  29. GoodmanK.E. HareJ.T. KhamisZ.I. HuaT. SangQ.X.A. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes.Chem. Res. Toxicol.20213441069108110.1021/acs.chemrestox.0c0048633720697
    [Google Scholar]
  30. MaterićD. HolzingerR. NiemannH. Nanoplastics and ultrafine microplastic in the Dutch Wadden Sea – The hidden plastics debris?Sci. Total Environ.202284615737110.1016/j.scitotenv.2022.157371
    [Google Scholar]
  31. Fuentes-cebrianV. MorionesO.H. MarcosR. HernA. A new source of representative secondary PET nanoplastics . Obtention , characterization , and hazard evaluation.J Hazard Mater.202243912959310.1016/j.jhazmat.2022.129593
    [Google Scholar]
  32. HuangZ. WengY. ShenQ. ZhaoY. JinY. Microplastic: A potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment.Sci. Total Environ.202178514736510.1016/j.scitotenv.2021.14736533933760
    [Google Scholar]
  33. RamachandraiahK. AmeerK. JiangG. HongG.P. Micro- and nanoplastic contamination in livestock production: Entry pathways, potential effects and analytical challenges.Sci. Total Environ.202284415723410.1016/j.scitotenv.2022.15723435810901
    [Google Scholar]
  34. SangkhamS. FaikhawO. MunkongN. SakunkooP. ArunlertareeC. ChavaliM. MousazadehM. TiwariA. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health.Mar. Pollut. Bull.202218111383210.1016/j.marpolbul.2022.11383235716489
    [Google Scholar]
  35. YangS. ChengY. ChenZ. LiuT. YinL. PuY. LiangG. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model.Ecotoxicol. Environ. Saf.202122611283710.1016/j.ecoenv.2021.11283734619472
    [Google Scholar]
  36. LehnerR. WederC. Petri-FinkA. Rothen-RutishauserB. Emergence of nanoplastic in the environment and possible impact on human health.Environ Sci Technol 20195341748176510.1021/acs.est.8b05512
    [Google Scholar]
  37. de OliveiraC.R.S. da Silva JúniorA.H. MulinariJ. FerreiraA.J.S. da SilvaA. Fibrous microplastics released from textiles: Occurrence, fate, and remediation strategies.J. Contam. Hydrol.202325610416910.1016/j.jconhyd.2023.10416936893526
    [Google Scholar]
  38. JiY. WangY. ShenD. KangQ. ChenL. Mucin corona delays intracellular trafficking and alleviates cytotoxicity of nanoplastic-benzopyrene combined contaminant.J. Hazard. Mater.202140612430610.1016/j.jhazmat.2020.12430633109409
    [Google Scholar]
  39. de OliveiraC.R.S. da Silva JúniorA.H. MulinariJ. ImmichA.P.S. Textile re-engineering: Eco-responsible solutions for a more sustainable industry.Sustainable Production and Consumption2021281232124810.1016/j.spc.2021.08.001
    [Google Scholar]
  40. DangF. WangQ. HuangY. WangY. XingB. Key knowledge gaps for One Health approach to mitigate nanoplastic risks.Eco-Environment & Health202211112210.1016/j.eehl.2022.02.00138078201
    [Google Scholar]
  41. ArikanB. Ozfidan-KonakciC. YildiztugayE. TuranM. CavusogluH. Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat.Environ. Pollut.202231111985110.1016/j.envpol.2022.11985135987286
    [Google Scholar]
  42. Keerthana DeviM. KarmegamN. ManikandanS. SubbaiyaR. SongH. KwonE.E. SarkarB. BolanN. KimW. RinklebeJ. GovarthananM. Removal of nanoplastics in water treatment processes: A review.Sci. Total Environ.202284515716810.1016/j.scitotenv.2022.15716835817120
    [Google Scholar]
  43. GouinT. Ellis-HutchingsR. Thornton HamptonL.M. LemieuxC.L. WrightS.L. Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks – development and application of a toxicity study assessment tool.Microplastics and Nanoplastics202221210.1186/s43591‑021‑00023‑x35098152
    [Google Scholar]
  44. RodriguesA.C.B. de JesusG.P. WakedD. GomesG.L. SilvaT.M. YariwakeV.Y. da SilvaM.P. MagaldiA.J. VerasM.M. Scientific evidence about the risks of micro and nanoplastics (MNPLs) to human health and their exposure routes through the environment.Toxics202210630810.3390/toxics1006030835736916
    [Google Scholar]
  45. RubioL. MarcosR. HernándezA. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models.J. Toxicol. Environ. Health B Crit. Rev.2020232516810.1080/10937404.2019.170059831822207
    [Google Scholar]
  46. VethaakA.D. LeglerJ. Microplastics and human health.Science 2021371202167267410.1126/science.abe5041
    [Google Scholar]
  47. ShiQ. TangJ. LiuR. WangL. Toxicity in vitro reveals potential impacts of microplastics and nanoplastics on human health: A review.Crit. Rev. Environ. Sci. Technol.202252213863389510.1080/10643389.2021.1951528
    [Google Scholar]
  48. WangJ. LiY. LuL. ZhengM. ZhangX. TianH. WangW. RuS. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma).Environ. Pollut.2019254Pt B11302410.1016/j.envpol.2019.11302431454586
    [Google Scholar]
  49. SmithM. LoveD.C. RochmanC.M. NeffR.A. Microplastics in seafood and the implications for human health.Curr. Environ. Health Rep.20185337538610.1007/s40572‑018‑0206‑z30116998
    [Google Scholar]
  50. RahmanA. SarkarA. YadavO.P. AchariG. SlobodnikJ. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review.Sci. Total Environ.202175714387210.1016/j.scitotenv.2020.14387233310568
    [Google Scholar]
  51. Amato-LourençoL.F. Carvalho-OliveiraR. JúniorG.R. dos Santos GalvãoL. AndoR.A. MauadT. Presence of airborne microplastics in human lung tissue.J. Hazard. Mater.202141612612410.1016/j.jhazmat.2021.12612434492918
    [Google Scholar]
  52. PrataJ.C. Airborne microplastics: Consequences to human health?Environ. Pollut.201823411512610.1016/j.envpol.2017.11.04329172041
    [Google Scholar]
  53. PrataJ.C. da CostaJ.P. LopesI. DuarteA.C. Rocha-SantosT. Environmental exposure to microplastics: An overview on possible human health effects.Sci. Total Environ.202070213445510.1016/j.scitotenv.2019.13445531733547
    [Google Scholar]
  54. WrightS.L. KellyF.J. Plastic and human health: A micro issue?Environ. Sci. Technol.201751126634664710.1021/acs.est.7b0042328531345
    [Google Scholar]
  55. LimD. JeongJ. SongK.S. SungJ.H. OhS.M. ChoiJ. Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412.Chemosphere202126212833010.1016/j.chemosphere.2020.12833033182093
    [Google Scholar]
  56. LuK. LaiK.P. StoegerT. JiS. LinZ. LinX. ChanT.F. FangJ.K.H. LoM. GaoL. QiuC. ChenS. ChenG. LiL. WangL. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology.J. Hazard. Mater.202141612606910.1016/j.jhazmat.2021.12606934492895
    [Google Scholar]
  57. XuM. HalimuG. ZhangQ. SongY. FuX. LiY. LiY. ZhangH. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell.Sci. Total Environ.201969413379410.1016/j.scitotenv.2019.13379431756791
    [Google Scholar]
  58. DongC.D. ChenC.W. ChenY.C. ChenH.H. LeeJ.S. LinC.H. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment.J. Hazard. Mater.202038512157510.1016/j.jhazmat.2019.12157531727530
    [Google Scholar]
  59. FanZ. XiaoT. LuoH. ChenD. LuK. ShiW. SunC. BianQ. A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics.Environ. Int.202216310722310.1016/j.envint.2022.10722335390562
    [Google Scholar]
  60. BrownD.M. WilsonM.R. MacNeeW. StoneV. DonaldsonK. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines.Toxicol. Appl. Pharmacol.2001175319119910.1006/taap.2001.924011559017
    [Google Scholar]
  61. ZhaoX. WangY. JiY. MeiR. ChenY. ZhangZ. WangX. ChenL. Polystyrene nanoplastics demonstrate high structural stability in vivo: A comparative study with silica nanoparticles via SERS tag labeling.Chemosphere202230013456710.1016/j.chemosphere.2022.13456735413362
    [Google Scholar]
  62. CoxK.D. CoverntonG.A. DaviesH.L. DowerJ.F. JuanesF. DudasS.E. Human consumption of microplastics.Environ. Sci. Technol.201953127068707410.1021/acs.est.9b0151731184127
    [Google Scholar]
  63. JennerL.C. RotchellJ.M. BennettR.T. CowenM. TentzerisV. SadofskyL.R. Detection of microplastics in human lung tissue using μFTIR spectroscopy.Sci. Total Environ.202283115490710.1016/j.scitotenv.2022.15490735364151
    [Google Scholar]
  64. EylesJ.E. BramwellV.W. WilliamsonE.D. AlparH.O. Microsphere translocation and immunopotentiation in systemic tissues following intranasal administration.Vaccine200119324732474210.1016/S0264‑410X(01)00220‑111535324
    [Google Scholar]
  65. McCrightJ. SkeenC. YarmovskyJ. MaiselK. Nanoparticles with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes.Acta Biomater.202214514615810.1016/j.actbio.2022.03.05435381399
    [Google Scholar]
  66. GregoryJ. V. KadiyalaP. DohertyR. CadenaM. HabeelS. RuoslahtiE. LowensteinP.R. CastroM.G. LahannJ. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy.Nat Commun.2020111568710.1038/s41467‑020‑19225‑7
    [Google Scholar]
  67. SantosM. TorresD. CardosoP.C. PandisN. Flores-MirC. MedeirosR. NormandoA.D. Are cloth masks a substitute to medical masks in reducing transmission and contamination? A systematic review.Braz. Oral Res.202034e12310.1590/1807‑3107bor‑2020.vol34.0123
    [Google Scholar]
  68. OBET.G. HowardJ. Masks for all? The science says yes.2020Available from: https://www.fast.ai/posts/2020-04-13-masks-summary.html (accessed March 19, 2023).
  69. AragawT.A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario.Mar. Pollut. Bull.202015911151710.1016/j.marpolbul.2020.11151732763564
    [Google Scholar]
  70. FadareO.O. OkoffoE.D. Covid-19 face masks: A potential source of microplastic fibers in the environment.Sci. Total Environ.202073714027910.1016/j.scitotenv.2020.14027932563114
    [Google Scholar]
  71. LiL. ZhaoX. LiZ. SongK. COVID-19: Performance study of microplastic inhalation risk posed by wearing masks.J. Hazard. Mater.202141112495510.1016/j.jhazmat.2020.12495533445045
    [Google Scholar]
  72. BanerjeeA. ShelverW.L. Micro- and nanoplastic induced cellular toxicity in mammals: A review.Sci. Total Environ.2021755Pt 214251810.1016/j.scitotenv.2020.14251833065507
    [Google Scholar]
  73. AnR. WangX. YangL. ZhangJ. WangN. XuF. HouY. ZhangH. ZhangL. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats.Toxicology202144915266510.1016/j.tox.2020.15266533359712
    [Google Scholar]
  74. RamspergerA.F.R.M. NarayanaV.K.B. GrossW. MohanrajJ. ThelakkatM. GreinerA. SchmalzH. KressH. LaforschC. Environmental exposure enhances the internalization of microplastic particles into cells.Sci. Adv.2020650eabd121110.1126/sciadv.abd121133298447
    [Google Scholar]
  75. LeslieH.A. van VelzenM.J.M. BrandsmaS.H. VethaakA.D. Garcia-VallejoJ.J. LamoreeM.H. Discovery and quantification of plastic particle pollution in human blood.Environ. Int.202216310719910.1016/j.envint.2022.10719935367073
    [Google Scholar]
  76. HahladakisJ.N. VelisC.A. WeberR. IacovidouE. PurnellP. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling.J. Hazard. Mater.201834417919910.1016/j.jhazmat.2017.10.01429035713
    [Google Scholar]
  77. AzoulayD. VillaP. ArellanoY. GordonM. MoonD. MillerK. ThompsonK. Plastic & Health: The Hidden Costs of a Plastic Planet.Washington, DCCenter for International Environmental Law2019
    [Google Scholar]
  78. DengY. YanZ. ShenR. WangM. HuangY. RenH. ZhangY. LemosB. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut.Environ. Int.202014310591610.1016/j.envint.2020.10591632615348
    [Google Scholar]
  79. SchwablP. KöppelS. KönigshoferP. BucsicsT. TraunerM. ReibergerT. LiebmannB. Detection of various microplastics in human stool: A prospective case series.Ann. Intern. Med.2019171745345710.7326/M19‑061831476765
    [Google Scholar]
  80. IbrahimY.S. Tuan AnuarS. AzmiA.A. Wan Mohd KhalikW.M.A. LehataS. HamzahS.R. IsmailD. MaZ.F. DzulkarnaenA. ZakariaZ. MustaffaN. Tuan SharifS.E. LeeY.Y. Detection of microplastics in human colectomy specimens.JGH Open20215111612110.1002/jgh3.1245733490620
    [Google Scholar]
  81. SchirinziG.F. Pérez-PomedaI. SanchísJ. RossiniC. FarréM. BarcelóD. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells.Environ. Res.201715957958710.1016/j.envres.2017.08.04328898803
    [Google Scholar]
  82. DawsonA.L. KawaguchiS. KingC.K. TownsendK.A. KingR. HustonW.M. Bengtson NashS.M. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill.Nat. Commun.201891100110.1038/s41467‑018‑03465‑929520086
    [Google Scholar]
  83. DuB. YuM. ZhengJ. Transport and interactions of nanoparticles in the kidneys.Nat Rev Mater2018335837410.1038/s41578‑018‑0038‑3
    [Google Scholar]
  84. LiuS. WuX. GuW. YuJ. WuB. Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models.Chemosphere202025612720410.1016/j.chemosphere.2020.12720432470746
    [Google Scholar]
  85. GautamR. JoJ. AcharyaM. MaharjanA. LeeD. K CP.B. KimC. KimK. KimH. HeoY. Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines.Sci. Total Environ.2022838Pt 215608910.1016/j.scitotenv.2022.15608935605862
    [Google Scholar]
  86. StockV. FahrensonC. ThuenemannA. DönmezM.H. VossL. BöhmertL. BraeuningA. LampenA. SiegH. Impact of artificial digestion on the sizes and shapes of microplastic particles.Food Chem. Toxicol.202013511101010.1016/j.fct.2019.11101031794801
    [Google Scholar]
  87. LiuL. XuK. ZhangB. YeY. ZhangQ. JiangW. Cellular internalization and release of polystyrene microplastics and nanoplastics.Sci. Total Environ.202177914652310.1016/j.scitotenv.2021.14652334030247
    [Google Scholar]
  88. BarbozaL.G.A. LopesC. OliveiraP. BessaF. OteroV. HenriquesB. RaimundoJ. CaetanoM. ValeC. GuilherminoL. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure.Sci. Total Environ.202071713462510.1016/j.scitotenv.2019.13462531836230
    [Google Scholar]
  89. YangY.F. ChenC.Y. LuT.H. LiaoC.M. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice.J. Hazard. Mater.201936670371310.1016/j.jhazmat.2018.12.04830583240
    [Google Scholar]
  90. DengY. ZhangY. LemosB. RenH. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure.Sci. Rep.2017714668710.1038/srep4668728436478
    [Google Scholar]
  91. BraeuningA. Uptake of microplastics and related health effects: A critical discussion of Deng et al., Scientific reports 7:46687, 2017.Arch. Toxicol.201993121922010.1007/s00204‑018‑2367‑930470843
    [Google Scholar]
  92. QiaoR. DengY. ZhangS. WoloskerM.B. ZhuQ. RenH. ZhangY. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish.Chemosphere201923612433410.1016/j.chemosphere.2019.07.06531310986
    [Google Scholar]
  93. HeslerM. AengenheisterL. EllingerB. DrexelR. StraskrabaS. JostC. WagnerS. MeierF. von BriesenH. BüchelC. WickP. Buerki-ThurnherrT. KohlY. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro.Toxicol. In Vitro 20196110461010.1016/j.tiv.2019.10461031362040
    [Google Scholar]
  94. LuL. WanZ. LuoT. FuZ. JinY. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice.Sci. Total Environ.2018631-63244945810.1016/j.scitotenv.2018.03.05129529433
    [Google Scholar]
  95. JinY. LuL. TuW. LuoT. FuZ. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice.Sci. Total Environ.201964930831710.1016/j.scitotenv.2018.08.35330176444
    [Google Scholar]
  96. LiZ. ZhuS. LiuQ. WeiJ. JinY. WangX. ZhangL. Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats.Environ. Pollut.2020265Pt A11502510.1016/j.envpol.2020.11502532806417
    [Google Scholar]
  97. LiuS. LiH. WangJ. WuB. GuoX. Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance.Sci. Total Environ.202283315519810.1016/j.scitotenv.2022.15519835427627
    [Google Scholar]
  98. HaleR.C. SeeleyM.E. La GuardiaM.J. MaiL. ZengE.Y. A global perspective on microplastics.J. Geophys. Res. Oceans20201251e2018JC01471910.1029/2018JC014719
    [Google Scholar]
  99. HuangW. SongB. LiangJ. NiuQ. ZengG. ShenM. DengJ. LuoY. WenX. ZhangY. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health.J. Hazard. Mater.202140512418710.1016/j.jhazmat.2020.12418733153780
    [Google Scholar]
  100. PrüstM. MeijerJ. WesterinkR.H.S. The plastic brain: Neurotoxicity of micro- and nanoplastics.Part. Fibre Toxicol.20201712410.1186/s12989‑020‑00358‑y32513186
    [Google Scholar]
  101. ChangX. XueY. LiJ. ZouL. TangM. Potential health impact of environmental micro‐ and nanoplastics pollution.J. Appl. Toxicol.202040141510.1002/jat.391531828819
    [Google Scholar]
  102. HirtN. Body-MalapelM. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature.Part Fibre Toxicol. 20201715710.1186/s12989‑020‑00387‑7
    [Google Scholar]
  103. CormierB. Le BihanicF. CabarM. CrebassaJ.C. BlancM. LarssonM. DubocqF. YeungL. ClérandeauC. KeiterS.H. CachotJ. BégoutM.L. CousinX. Chronic feeding exposure to virgin and spiked microplastics disrupts essential biological functions in teleost fish.J. Hazard. Mater.202141512562610.1016/j.jhazmat.2021.12562633740727
    [Google Scholar]
  104. LeeB.-J. KimB. LeeK. Air pollution exposure and cardiovascular disease.Toxicol Res 201430717510.5487/TR.2014.30.2.071
    [Google Scholar]
  105. LeugeringH.J. PüschnerH. Identification of wear particles in tissue after implantation of different plastic materials.J. Biomed. Mater. Res.197812457157810.1002/jbm.820120411355257
    [Google Scholar]
  106. GopinathP.M. SaranyaV. VijayakumarS. Mythili MeeraM. RuprekhaS. KunalR. PranayA. ThomasJ. MukherjeeA. ChandrasekaranN. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics.Sci. Rep.201991886010.1038/s41598‑019‑45139‑631222081
    [Google Scholar]
  107. KatzH.S. MileskiJ.V. Handbook Of Fillers For Plastics.1st edNew YorkSpringer New York1988
    [Google Scholar]
  108. MaY. LiaoS. LiQ. GuanQ. JiaP. ZhouY. Physical and chemical modifications of poly(vinyl chloride) materials to prevent plasticizer migration - Still on the run.React. Funct. Polym.202014710445810.1016/j.reactfunctpolym.2019.104458
    [Google Scholar]
  109. ThompsonR.C. MooreC.J. vom SaalF.S. SwanS.H. Plastics, the environment and human health: current consensus and future trends.Philos. Trans. R. Soc. Lond. B Biol. Sci.200936415262153216610.1098/rstb.2009.005319528062
    [Google Scholar]
  110. TanakaT. Reproductive and neurobehavioural toxicity study of bis(2-ethylhexyl) phthalate (DEHP) administered to mice in the diet.Food Chem. Toxicol.200240101499150610.1016/S0278‑6915(02)00073‑X12387315
    [Google Scholar]
  111. MallowE.B. FoxM.A. Phthalates and critically ill neonates: Device-related exposures and non-endocrine toxic risks.J. Perinatol.2014341289289710.1038/jp.2014.15725357096
    [Google Scholar]
  112. HaldenR.U. Halden, plastics and health risks.Annu Rev Public Health 20103017919410.1146/annurev.publhealth.012809.103714
    [Google Scholar]
  113. KoniecznaA. RutkowskaA. RachońD. Health risk of exposure to Bisphenol A (BPA).Rocz. Panstw. Zakl. Hig.201566151125813067
    [Google Scholar]
  114. HanS. BangJ. ChoiD. HwangJ. KimT. OhY. HwangY. ChoiJ. HongJ. Surface pattern analysis of microplastics and their impact on human-derived cells.ACS Appl. Polym. Mater.20202114541455010.1021/acsapm.0c00645
    [Google Scholar]
  115. LiuY. WangY. LingX. YanZ. WuD. LiuJ. LuG. Effects of nanoplastics and butyl methoxydibenzoylmethane on early zebrafish embryos identified by single-cell rna sequencing.Environ. Sci. Technol.20215531885189610.1021/acs.est.0c0647933445878
    [Google Scholar]
  116. LaiW. XuD. LiJ. WangZ. DingY. WangX. LiX. XuN. MaiK. AiQ. Dietary polystyrene nanoplastics exposure alters liver lipid metabolism and muscle nutritional quality in carnivorous marine fish large yellow croaker (Larimichthys crocea).J. Hazard. Mater.202141912645410.1016/j.jhazmat.2021.12645434198221
    [Google Scholar]
  117. Elizalde-VelázquezA. CragoJ. ZhaoX. GreenM.J. Cañas-CarrellJ.E. In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion and intraperitoneal injection of polystyrene nanoplastics.Sci. Total Environ.202073513946110.1016/j.scitotenv.2020.13946132470671
    [Google Scholar]
  118. MuraliK. KeneseiK. LiY. DemeterK. KörnyeiZ. MadarászE. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: In vitro studies on neural tissue cells.Nanoscale2015794199421010.1039/C4NR06849A25673096
    [Google Scholar]
  119. JeongB. BaekJ.Y. KooJ. ParkS. RyuY.K. KimK.S. ZhangS. ChungC. DoganR. ChoiH.S. UmD. KimT.K. LeeW.S. JeongJ. ShinW.H. LeeJ.R. KimN.S. LeeD.Y. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny.J. Hazard. Mater.202242612781510.1016/j.jhazmat.2021.12781534823950
    [Google Scholar]
  120. ShanS. ZhangY. ZhaoH. ZengT. ZhaoX. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice.Chemosphere202229813426110.1016/j.chemosphere.2022.13426135302003
    [Google Scholar]
  121. SökmenT.Ö. SulukanE. TürkoğluM. BaranA. ÖzkaracaM. CeyhunS.B. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio).Neurotoxicology202077515910.1016/j.neuro.2019.12.01031862285
    [Google Scholar]
  122. LiangB. HuangY. ZhongY. LiZ. YeR. WangB. ZhangB. MengH. LinX. DuJ. HuM. WuQ. SuiH. YangX. HuangZ. Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson’s disease-like neurodegeneration by causing energy metabolism disorders in mice.J. Hazard. Mater.202243012845910.1016/j.jhazmat.2022.12845935739658
    [Google Scholar]
  123. AmerehF. BabaeiM. EslamiA. FazelipourS. RafieeM. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: From a hypothetical scenario to a global public health challenge.Environ. Pollut.202026111415810.1016/j.envpol.2020.11415832088433
    [Google Scholar]
  124. TallecK. HuvetA. Di PoiC. González-FernándezC. LambertC. PettonB. Le GoïcN. BerchelM. SoudantP. Paul-PontI. Nanoplastics impaired oyster free living stages, gametes and embryos.Environ. Pollut.2018242Pt B1226123510.1016/j.envpol.2018.08.02030118910
    [Google Scholar]
  125. RossiG. BarnoudJ. MonticelliL. Polystyrene nanoparticles perturb lipid membranes.J. Phys. Chem. Lett.20145124124610.1021/jz402234c26276207
    [Google Scholar]
  126. SussarelluR. SuquetM. ThomasY. LambertC. FabiouxC. PernetM.E.J. Le GoïcN. QuillienV. MingantC. EpelboinY. CorporeauC. GuyomarchJ. RobbensJ. Paul-PontI. SoudantP. HuvetA. Oyster reproduction is affected by exposure to polystyrene microplastics.Proc. Natl. Acad. Sci. USA201611392430243510.1073/pnas.151901911326831072
    [Google Scholar]
  127. CaoJ. YangQ. JiangJ. DaluT. KadushkinA. SinghJ. FakhrullinR. WangF. CaiX. LiR. Coronas of micro/nano plastics: A key determinant in their risk assessments.Part. Fibre Toxicol.20221915510.1186/s12989‑022‑00492‑935933442
    [Google Scholar]
/content/journals/cac/10.2174/0115734110305991240523073849
Loading
/content/journals/cac/10.2174/0115734110305991240523073849
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test