Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Flavonoid is a type of active constituent in herbs and always used as the quality control markers of herbal medicines. Owing to the extensive diversity of flavonoids, numerous reference compounds are necessitated for the analysis of flavonoids, and some are usually very expensive, which engenders challenges in the analysis of flavonoids in herbal medicines. Consequently, the development of a simple, rapid, and reference compounds saving method is important for the determination of flavonoids in herbal medicines.

Objective

In order to develop a high-performance liquid chromatography (HPLC) method for the determination of 5 flavonoids (mangiferin, hesperidin, baicalin, buddleoside, and rutin) in five herbal medicines (Anemarrhenae rhizome, Sophorae flos, Citri reticulatae pericarpium, Scutellariae radix, and Chrysanthemi indici flos) with rutin.

Methods

Five herbal medicine samples were prepared according to the Chinese Pharmacopoeia which includes ultrasound and reflux methods. The separation of the sample was performed on a PoroShell 120 EC-C18 (4.6 mm×100 mm, 2.7 μm) by gradient elution with 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. The wavelengths were set as follows: Anemarrhenae rhizome (363 nm), Sophorae flos (256 nm), Citri reticulatae pericarpium (236 nm), Scutellariae radix (263 nm), Chrysanthemi indici flos (354 nm).

Results

The method validation showed that the established HPLC method was accurate and stable for quantitative analysis of flavonoids in five herbal medicines. The comparative analysis revealed that the determination results of the current HPLC method and Chinese Pharmacopoeia method are consistent, exhibiting less than 1% relative error. Remarkably, the developed HPLC method needs one cheapest reference compound (rutin) and costs 8 min for sample HPLC analysis.

Conclusion

The developed HPLC method for quantitative analysis of five flavonoids in five herbal medicines is simple, rapid, and reference compound saving, which provides a good alternative method for quality control of flavonoids in herbal medicines.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110301556240605111849
2024-06-20
2025-01-13
Loading full text...

Full text loading...

References

  1. HuangY.C. SungM.Y. LinT.K. KuoC.Y. HsuY.C. Chinese herbal medicine compound of flavonoids adjunctive treatment for oral cancer. J. Formos. Med. Assoc.2023S0929-66462300409610.1016/j.jfma.2023.10.00937919197
    [Google Scholar]
  2. CaoY. XieL. LiuK. LiangY. DaiX. WangX. LuJ. ZhangX. LiX. The antihypertensive potential of flavonoids from Chinese herbal medicine: A review.Pharmacol. Res.202117410591910.1016/j.phrs.2021.105919 34601080
    [Google Scholar]
  3. WangY. LiL. JiW. LiuS. FanJ. LuH. WangX. Metabolomics analysis of different tissues of Lonicera japonica Thunb. based on liquid chromatography with mass spectrometry.Metabolites202313218610.3390/metabo13020186 36837805
    [Google Scholar]
  4. SunX. DengH. ShanB. ShanY. HuangJ. FengX. TangX. GeY. LiaoP. YangQ. Flavonoids contribute most to discriminating aged Guang Chenpi (Citrus reticulata ‘Chachi’) by spectrum‐effect relationship analysis between LC‐Q‐Orbitrap/MS fingerprint and ameliorating spleen deficiency activity.Food Sci. Nutr.202311117039706010.1002/fsn3.3629 37970411
    [Google Scholar]
  5. ZhangL.L. ZhangL.F. XuJ.G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.).Sci. Rep.2020101887610.1038/s41598‑020‑65802‑7 32483369
    [Google Scholar]
  6. GuanL.P. LiuB.Y. Antidepressant-like effects and mechanisms of flavonoids and related analogues.Eur. J. Med. Chem.2016121475710.1016/j.ejmech.2016.05.026 27214511
    [Google Scholar]
  7. FengZ. ZhangN. BaiJ. LinQ. XieY. XiaY. Biochanin A inhibits cardiac hypertrophy and fibrosis in vivo and in vitro.Biomed. Pharmacother.202417011600210.1016/j.biopha.2023.116002 38091641
    [Google Scholar]
  8. LaiC. HuangM. XiongQ. LiangY. JiangY. ZhangJ. Green and efficient approach to extract bioactive flavonoids with antioxidant, antibacterial, antiglycation, and enzyme inhibitory activities from navel orange peel.Sustain. Chem. Pharm.20243810147910.1016/j.scp.2024.101479
    [Google Scholar]
  9. WangY. MouY. LuS. XiaY. ChengB. Polymethoxylated flavonoids in citrus fruits: absorption, metabolism, and anticancer mechanisms against breast cancer.PeerJ202411e1671110.7717/peerj.16711 38188169
    [Google Scholar]
  10. WuR. WangC. FengX. LuW. FeiY. XuL. HuangF. XuW. The anti-inflammatory and autophagy-induced effects of baicalin in ankylosing spondylitis hip ligament fibroblasts.J. Herb. Med.20234210078010.1016/j.hermed.2023.100780
    [Google Scholar]
  11. PatleT.K. ShrivasK. KurreyR. UpadhyayS. JangdeR. ChauhanR. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy.Spectrochim. Acta A Mol. Biomol. Spectrosc.202024211871710.1016/j.saa.2020.118717 32745936
    [Google Scholar]
  12. MorlockG.E. HeilJ. GarciaI.A.M. MaederJ. Effect-directed profiling of powdered tea extracts for catechins, theaflavins, flavonols and caffeine.Antioxidants202110111710.3390/antiox10010117 33467615
    [Google Scholar]
  13. KontogianniV.G. PrimikyriA. SakkaM. GerothanassisI.P. Simultaneous determination of artemisinin and its analogs and flavonoids in Artemisia annua crude extracts with the use of NMR spectroscopy.Magn. Reson. Chem.202058323224410.1002/mrc.4971 31733071
    [Google Scholar]
  14. HyeonH. HyunH.B. KimS.C. GoB. YoonS.A. JungY.H. HamY.M. Simultaneous quantification method of flavonoids in jeju native citrus from different harvest times using a high-performance liquid chromatography–diode array detector (HPLC–DAD).Separations2023101156710.3390/separations10110567
    [Google Scholar]
  15. GrigoryanA.A. HayrapetyanA.A. AzaryanZ.A. HarutyunyanS.V. YengoyanA.P. HPLC analysis of vitamins C, E, beta-carotene, and some flavonoids in armenian red wines.Curr. Anal. Chem.202420210911410.2174/0115734110277255240102094823
    [Google Scholar]
  16. ParikhN.H. KothariC. Novel reverse-phase high-performance liquid chromatography (RPHPLC) method for the quantification of apigenin in ocimum basilicum linn seeds (Tukmaria).Curr. Anal. Chem.202117452853510.2174/1573411016999201026192955
    [Google Scholar]
  17. TianJ. WangX. ShiQ. XiangX. SuC. XieY. JinS. HuangR. SongC. Isolation and purification of kudinosides from kuding tea by semi-preparative HPLC combined with MCI-GEL resin.Curr. Anal. Chem.202016791492310.2174/1573411015666191031153352
    [Google Scholar]
  18. HaiC.T. UyenN.T. GiangD.H. MinhN.T.T. DuongH.T. Nhat LeB.T. ThanhN.T. MinhT.N. DatN.T. Quantitative HPLC-based metabolomics approach for the discrimination of processed rhizomes of atractylodes macrocephala.Curr. Anal. Chem.2024201415110.2174/0115734110283469231204061131
    [Google Scholar]
  19. EghbaliS. FarhadiF. AskariV.R. An overview of analytical methods employed for quality assessment of Crocus sativus (saffron).Food Chem. X20232010099210.1016/j.fochx.2023.100992 38144850
    [Google Scholar]
  20. LiZ. MaY. LiF. WeiY. ZhangL. YuL. ChenL. WangX. NingE. ZhangL. WangF. LiX. ChangC. FanY. Quality evaluation of peony petals based on the chromatographic fingerprints and simultaneous determination of sixteen bioactive constituents using UPLC-DAD-MS/MS.Molecules20232823774110.3390/molecules28237741 38067470
    [Google Scholar]
  21. ElsonbatyA. MadkourA.W. RaoofA.A.M. MonemA.A.H. AttarE.A.A.M.M. Computational design for eco-friendly visible spectrophotometric platform used for the assay of the antiviral agent in pharmaceutical dosage form.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227112089710.1016/j.saa.2022.120897 35066444
    [Google Scholar]
  22. ElsonbatyA. HassanW.S. EissaM.S. AbdulwahabS. Micelle-incorporated liquid chromatography in the light of green chemistry: An application for the quality control analysis of anti-platelet fixed-dose combinations.J. AOAC Int.202210551228123310.1093/jaoacint/qsac046 35595172
    [Google Scholar]
  23. ElsonbatyA. EissaM.S. HassanW.S. AbdulwahabS. Separation-free spectrophotometric platforms for rapid assessment of combined antiplatelet therapy in complex matrices.Bioanalysis202012533534810.4155/bio‑2019‑0293 32186937
    [Google Scholar]
  24. ZhangY. XieJ. LiuY. WangD. Identification and simultaneous determination of mangiferin, neomangiferin, timosaponin A-III, and timosaponin C in rhizoma anemarrhenae by rapid resolution liquid chromatography coupled with triple quadrupole mass spectrometry.Anal. Lett.201043142210221910.1080/00032711003717307
    [Google Scholar]
  25. LiF. NingS. LiY. YuY. ShenC. DuanG. Optimisation of infrared-assisted extraction of rutin from crude flos sophorae immaturus using response surface methodology and HPLC analysis.Phytochem. Anal.201223429229810.1002/pca.1357 22009940
    [Google Scholar]
  26. YangY.C. WeiM.C. HuangT.C. LeeS.Z. LinS.S. Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae.Ind. Crops Prod.20134518219010.1016/j.indcrop.2012.11.041
    [Google Scholar]
  27. ZhaoX. MaoX. XuX. LiX. BiK. JiaY. Determination and pharmacokinetics of linarin in rat plasma after intramuscular administration of linarin solution and Yejuhua injection by HPLC.Biomed. Chromatogr.201529216416610.1002/bmc.3269 24917464
    [Google Scholar]
  28. LiY. ZhangY. ZhangZ. HuY. CuiX. XiongY. Quality evaluation of Gastrodia Elata tubers based on HPLC fingerprint analyses and quantitative analysis of multi-components by single marker.Molecules2019248152110.3390/molecules24081521 30999716
    [Google Scholar]
  29. ZhanC. WangH. WangY. Quality evaluation of Atractylodis macrocephalae rhizoma through fingerprint qualitative analysis and quantitative analysis of multi-components by single marker.J. Pharm. Biomed. Anal.202221911489910.1016/j.jpba.2022.114899 35749964
    [Google Scholar]
  30. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China.1st edBeijing, ChinaChina Medical Science Press2020199
    [Google Scholar]
  31. FanS. YangG. ZhangJ. LiJ. BaiB. Optimization of ultrasound-assisted extraction using response surface methodology for simultaneous quantitation of six flavonoids in flos sophorae immaturus and antioxidant activity.Molecules2020258176710.3390/molecules25081767 32290627
    [Google Scholar]
  32. PretiR. Core-shell columns in high-performance liquid chromatography: Food analysis applications.Int. J. Anal. Chem.201620161910.1155/2016/3189724 27143972
    [Google Scholar]
  33. TanakaN. McCalleyD.V. Core–shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography.Anal. Chem.201688127929810.1021/acs.analchem.5b04093 26540635
    [Google Scholar]
  34. LiW. LeiQ. LiW. TanG. LiuX. QianZ. Determination of 4 nucleosides via one reference compound in chinese cordyceps by HPLC-UV at equal absorption wavelength.Nat. Prod. Commun.,20231831934578X231161410.1177/1934578X231161410
    [Google Scholar]
  35. QianZ. HuangD. HeZ. HeQ. TanG. HuangQ. SunY. LiW. LiS. Rapid determination of three organic acids in polygonum vivipari rhizoma via one marker by HPLC-UV at equal absorption wavelength and effervescence-assisted matrix solid-phase dispersion.Int. J. Anal. Chem.2023202311010.1155/2023/5546053 37416897
    [Google Scholar]
  36. QianZ. ChenJ. LeiQ. TanG. ZouY. PengG. XieJ. LiW. Rapid determination of multiple components in herbal medicine using a single reference compound by high‐performance liquid chromatography at equal absorption wavelength: Case study of Magnoliae officinalis cortex.Separ. Sci. Plus202471230007110.1002/sscp.202300071
    [Google Scholar]
  37. ZhangQ. LiJ. WangC. SunW. ZhangZ. ChengW. A gradient HPLC method for the quality control of chlorogenic acid, linarin and luteolin in Flos Chrysanthemi Indici suppository.J. Pharm. Biomed. Anal.200743275375710.1016/j.jpba.2006.07.037 16930915
    [Google Scholar]
  38. LuoM. LuoH. HuP. YangY. WuB. ZhengG. Evaluation of chemical components in Citri Reticulatae Pericarpium of different cultivars collected from different regions by GC – MS and HPLC.Food Sci. Nutr.20186240041610.1002/fsn3.569 29564108
    [Google Scholar]
  39. SeoaH.H. KimbY.J. JungbJ.Y. HPLC-PDA simultaneous determination and protective effect of anemarrhena asphodeloides against acute renal failure.Nat. Prod. Commun.20149829832 25115091
    [Google Scholar]
  40. LiJ. ZouS. YangW. PengM. ChenB. DengJ. WeiM. ZhengG. Identification of volatile and nonvolatile compounds in Citri Reticulatae Pericarpium Viride using GC–MS, UPLC‐Q‐EXACTIVE ORBITRAP‐MS, and HPLC‐PDA.Food Sci. Nutr.20231131415142510.1002/fsn3.3181 36911822
    [Google Scholar]
  41. LiJ. WangR. ShengZ. WuZ. ChenC. IshfaqM. Optimization of baicalin, wogonoside, and chlorogenic acid water extraction process from the roots of scutellariae radix and Lonicerae japonicae flos using response surface methodology (RSM).Processes 201971185410.3390/pr7110854
    [Google Scholar]
/content/journals/cac/10.2174/0115734110301556240605111849
Loading
/content/journals/cac/10.2174/0115734110301556240605111849
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test