Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

In desalination, addressing fouling challenges, particularly concerning silica, is pivotal for generating pure water from seawater and brackish sources. Efficient silica removal is vital for various applications, including power generation and electronics. Electrodeionization (EDI) has proven highly effective in achieving a high removal rate for silica.

Objective

Optimize silica removal through a combined membrane approach—water-soluble polymer-enhanced ultrafiltration and Electrodeionization (EDI)—for efficient water treatment and improved water quality.

Methods

The study utilized a 400 mL stirred Amicon cell for Ultrafiltration (UF) in combination with a water-soluble polymer. Additionally, a microflow EDI cell is employed, filled with Porolite A600 anion exchange resin and SST60 cation exchange resin, to optimize silica removal.

Results

The water-soluble polymer-enhanced ultrafiltration achieved a 25% removal of SiO, with the remaining silica effectively removed by EDI, resulting in a concentration of 11 µg/L.

Conclusion

The combined approach of water-soluble polymer-enhanced ultrafiltration and Electrodeionization (EDI) demonstrated effective silica removal.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110301699240514052704
2024-05-21
2025-01-13
Loading full text...

Full text loading...

References

  1. KooT. LeeY.J. SheikholeslamiR. Silica fouling and cleaning of reverse osmosis membranes.Desalination20011391-3435610.1016/S0011‑9164(01)00293‑4
    [Google Scholar]
  2. LiJ. HowZ.T. ZengH. Gamal El-DinM. Treatment technologies for organics and silica removal in steam-assisted gravity drainage produced water: A comprehensive review.Energy Fuels20223631205123110.1021/acs.energyfuels.1c03751
    [Google Scholar]
  3. LatourI. MirandaR. BlancoA. Silica removal in industrial effluents with high silica content and low hardness.Environ. Sci. Pollut. Res. Int.201421169832984210.1007/s11356‑014‑2906‑8 24777323
    [Google Scholar]
  4. HernonB. ZanapalidouH. PratoT. ZhangL. Removal of weakly ionized species by EDI.Proceedings of the Proceedigs of the International Water Conference 59th Annual Meeting Engineers Society of Western Pennsylvania,Pennsylvania 1998236245
    [Google Scholar]
  5. BushJ.A. VannesteJ. GustafsonE.M. WaechterC.A. JassbyD. TurchiC.S. CathT.Y. Prevention and management of silica scaling in membrane distillation using pH adjustment.J. Membr. Sci.201855436637710.1016/j.memsci.2018.02.059
    [Google Scholar]
  6. WentenI.G. Khoiruddin; Arfianto, F.; Zudiharto, Bench scale electrodeionization for high pressure boiler feed water.Desalination201331410911410.1016/j.desal.2013.01.008
    [Google Scholar]
  7. GuanY.F. Marcos-HernándezM. LuX. ChengW. YuH.Q. ElimelechM. VillagránD. Silica removal using magnetic iron–aluminum hybrid nanomaterials: Measurements, adsorption mechanisms, and implications for silica scaling in reverse osmosis.Environ. Sci. Technol.20195322133021331110.1021/acs.est.9b02883 31621307
    [Google Scholar]
  8. Salvador CobS. HofsB. MaffezzoniC. AdamusJ. SiegersW.G. CornelissenE.R. Genceli GünerF.E. WitkampG.J. Silica removal to prevent silica scaling in reverse osmosis membranes.Desalination201434413714310.1016/j.desal.2014.03.020
    [Google Scholar]
  9. NguyenT.T.N. LeeM.S. The removal of silicate(IV) by adsorption onto hydrocalumite from the sodium hydroxide leaching solution of black dross.Processes 20197961210.3390/pr7090612
    [Google Scholar]
  10. Sik AliM.B. HamrouniB. BouguechaS. DhahbiM. Silica removal using ion-exchange resins.Desalination200416727327910.1016/j.desal.2004.06.136
    [Google Scholar]
  11. HermosillaD. OrdóñezR. BlancoL. de la FuenteE. BlancoÁ. pH and particle structure effects on silica removal by coagulation.Chem. Eng. Technol.20123591632164010.1002/ceat.201100527
    [Google Scholar]
  12. QiuY. RenL.F. XiaL. ShaoJ. ZhaoY. Van der BruggenB. Investigation of fluoride and silica removal from semiconductor wastewaters with a clean coagulation-ultrafiltration process.Chem. Eng. J.202243813556210.1016/j.cej.2022.135562
    [Google Scholar]
  13. MaW. PatelS.K. Marcos-HernándezM. WangX. ZhouX. PanW. ShinY. VillagránD. ElimelechM. Rapid, selective, and chemical-free removal of dissolved silica from water via electrosorption: Feasibility and mechanisms.Environ. Sci. Technol.202458194795910.1021/acs.est.3c08067 38153969
    [Google Scholar]
  14. TanakaY. Chapter 4 Electro-deionization. In: Ion Exchange Membranes: Fundamentals and Applications. TanakaY. AmsterdamElsevier Science B. V2007437460
    [Google Scholar]
  15. RathiB.S. KumarP.S. ParthibanR. A review on recent advances in electrodeionization for various environmental applications.Chemosphere202228913322310.1016/j.chemosphere.2021.133223 34896170
    [Google Scholar]
  16. ArarÖ. YükselÜ. KabayN. YükselM. Various applications of electrodeionization (EDI) method for water treatment: A short review.Desalination2014342162210.1016/j.desal.2014.01.028
    [Google Scholar]
  17. KhoiruddinK. HakimA.N. WentenI.G. Advances in electrodeionization technology for ionic separation: A review.Membr. Water Treatment2014528710810.12989/mwt.2014.5.2.087
    [Google Scholar]
  18. MistryG. PopatK. PatelJ. PanchalK. NgoH.H. BilalM. VarjaniS. New outlook on hazardous pollutants in the wastewater environment: Occurrence, risk assessment and elimination by electrodeionization technologies.Environ. Res.202321911511210.1016/j.envres.2022.115112 36574803
    [Google Scholar]
  19. KhanZ.U. MoronshingM. ShestakovaM. Al-OthmanA. SillanpääM. ZhanZ. SongB. LeiY. Electro-deionization (EDI) technology for enhanced water treatment and desalination: A review.Desalination202354811625410.1016/j.desal.2022.116254
    [Google Scholar]
  20. ZengG. YeJ. YanM. Application of electrodeionization process for bioproduct recovery and CO2 capture and storage.Curr. Org. Chem.201620262790279810.2174/1385272820666160513153326
    [Google Scholar]
  21. JordanM.L. ValentinoL. NazyrynbekovaN. PalakkalV.M. KoleS. BhattacharyaD. LinY.J. ArgesC.G. Promoting water splitting in Janus bipolar ion-exchange resin wafers for electrodeionization.Mol. Syst. Des. Eng.20205592293510.1039/C9ME00179D
    [Google Scholar]
  22. KumarS. BhushanM. ManoharM. MakwanaB.S. ShahiV.K. In-sight studies on concentration polarization and water splitting during electro-deionization for rapid production of ultrapure water (@18.2 MΩ cm) with improved efficiency.J. Membr. Sci.201958911724810.1016/j.memsci.2019.117248
    [Google Scholar]
  23. ParkS. KwakR. Microscale electrodeionization: In situ concentration profiling and flow visualization.Water Res.202017011531010.1016/j.watres.2019.115310 31770648
    [Google Scholar]
  24. ArarÖ. YükselÜ. KabayN. YükselM. Application of electrodeionization (EDI) for removal of boron and silica from reverse osmosis (RO) permeate of geothermal water.Desalination2013310253310.1016/j.desal.2012.10.001
    [Google Scholar]
  25. WenR. DengS. ZhangY. The removal of silicon and boron from ultra-pure water by electrodeionization.Desalination20051811-315315910.1016/j.desal.2005.02.018
    [Google Scholar]
  26. WoodJ. GiffordJ. ArbaJ. ShawM. Production of ultrapure water by continuous electrodeionization.Desalination2010250397397610.1016/j.desal.2009.09.084
    [Google Scholar]
  27. SantosA.B. GiacobboA. RodriguesM.A.S. BernardesA.M. Integrated membrane process (UF/RO/EDI) for treating a petrochemical wastewater to obtain ultrapure water for industrial reuse.Process Saf. Environ. Prot.202317722323110.1016/j.psep.2023.07.001
    [Google Scholar]
  28. WardaniA.K. HakimA.N. Khoiruddin; Wenten, I.G. Combined ultrafiltration-electrodeionization technique for production of high purity water.Water Sci. Technol.201775122891289910.2166/wst.2017.173 28659529
    [Google Scholar]
  29. López GarcíaM. LehtinenM. Dow™ EDI Modules perform well at bioenergy combines in Scandinavia.Desalination Water Treat.2010141-312713410.5004/dwt.2010.1111
    [Google Scholar]
  30. MarekJ. ŠimunkovaM. ParschovaH. Clogging of the electrodeionization chamber.Desalination Water Treat.2014561510.1080/19443994.2014.980973
    [Google Scholar]
  31. GrabowskiA. ZhangG. StrathmannH. EigenbergerG. Production of high-purity water by continuous electrodeionization with bipolar membranes: Influence of concentrate and protection compartment.Separ. Purif. Tech.2008601869510.1016/j.seppur.2007.07.052
    [Google Scholar]
  32. MehenktaşC. ArarÖ. Removal of zinc (Zn2+) through biopolymer-enhanced ultrafiltration.J. Polym. Environ.20233141373138210.1007/s10924‑022‑02686‑w
    [Google Scholar]
  33. DündarO.A. MehenktaşC. ArarÖ. Removal of Antimony(III) and Antimony(V) from water samples through water-soluble polymer-enhanced ultrafiltration.Environ. Res.2022215Pt 211432410.1016/j.envres.2022.114324 36100104
    [Google Scholar]
  34. SánchezJ. RivasB.L. Arsenic extraction from aqueous solution: Electrochemical oxidation combined with ultrafiltration membranes and water-soluble polymers.Chem. Eng. J.2010165262563210.1016/j.cej.2010.10.012
    [Google Scholar]
  35. EmirG. EngindenizD. ArarÖ. Feasibility of electrodeionization for phosphate removal.Water Environ. Res.20239511e1095010.1002/wer.10950 38009820
    [Google Scholar]
  36. SoysürenG. İpekİ.Y. ArdaM. ArarÖ. Polymer enhanced ultrafiltration electrodeionization hybrid system for the removal of boron.Environ. Sci. Water Res. Technol.2023951426143510.1039/D3EW00041A
    [Google Scholar]
  37. DündarO.A. ArarÖ. ArdaM. Removal of bromate ions from aqueous solutions via electrodeionization.Environ. Pollut.202333912272610.1016/j.envpol.2023.122726 37844860
    [Google Scholar]
  38. GrasshoffK. KremlingK. EhrhardtM. Methods of Seawater Analysis 3rd ed; Grasshoff, K.; Kremling, K.; Ehrhardt, M., Eds.; Wiley: New York,1999223610.1002/9783527613984
    [Google Scholar]
  39. SánchezJ. EspinosaC. TapieroY. Santiago-GarcíaJ.L. OyarzúnD.P. PizarroG.C. Modification of regenerated cellulose membranes with cationic polymer and its Cr(VI) retention capacity.J. Water Process Eng.20193010061910.1016/j.jwpe.2018.04.016
    [Google Scholar]
  40. RivasB.L. del Carmen AguirreM. PereiraE. Cationic water‐soluble polymers with the ability to remove arsenate through an ultrafiltration technique.J. Appl. Polym. Sci.20071061899410.1002/app.26499
    [Google Scholar]
  41. HadjiioannouT.P. ChristianG.D. EfstathiouC.E. NikolelisD.P. Problem Solving in Analytical Chemistry.OxfordPergamon Press1988216
    [Google Scholar]
  42. RivasB.L. UrbanoB.F. SánchezJ. Water-soluble and insoluble polymers, nanoparticles, nanocomposites and hybrids with ability to remove hazardous inorganic pollutants in water.Front Chem.2018632010.3389/fchem.2018.00320 30109224
    [Google Scholar]
  43. ÖzdemirV.T. TuğaçH.M. ArarÖ. Two-pot oxidative preparation of dicarboxylic acid containing cellulose for the removal of beryllium (Be2+) from aqueous solution.Curr. Anal. Chem.202118336036910.2174/1573411016999200719232310
    [Google Scholar]
  44. HuangY. FengX. Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments.J. Membr. Sci.2019586538310.1016/j.memsci.2019.05.037
    [Google Scholar]
  45. BarakatM.A. SchmidtE. Polymer enhanced ultrafiltration process for heavy metals removal from industrial wastewater.Desalination20102561-3909310.1016/j.desal.2010.02.008
    [Google Scholar]
  46. LuH. WangY. WangJ. Removal and recovery of Ni2+ from electroplating rinse water using electrodeionization reversal.Desalination2014348748110.1016/j.desal.2014.06.014
    [Google Scholar]
  47. DemirG. MertA.N. ArarÖ. Utilization of electrodeionization for lithium removal.ACS Omega2023820175831759010.1021/acsomega.2c08095 37251165
    [Google Scholar]
  48. ZahakifarF. KeshtkarA.R. SouderjaniE.Z. MoosavianM.A. Use of response surface methodology for optimization of thorium(IV) removal from aqueous solutions by electrodeionization (EDI).Prog. Nucl. Energy202012410333510.1016/j.pnucene.2020.103335
    [Google Scholar]
  49. KhoiruddinK. HakimA.N. AlkhadraM.A. BazantM.Z. WentenI. Development and long-term field test of electrodeionization for decentralized desalination facility.Chem. Eng. Process.202319210950210.1016/j.cep.2023.109502
    [Google Scholar]
  50. SunX. LuH. WangJ. Brackish water desalination using electrodeionization reversal.Chem. Eng. Process.201610426227010.1016/j.cep.2016.03.014
    [Google Scholar]
  51. GanziG.C. WilkinsF. GiuffridaA.J. GriffinC. Electrodeionization apparatus. patent US513166371994
    [Google Scholar]
  52. SarıçiçekE.N. TuğaçM.M. ÖzdemirV.T. İpekİ.Y. ArarÖ. Removal of boron by boron selective resin-filled electrodeionization.Environ. Technol. Innov.20212310174210.1016/j.eti.2021.101742
    [Google Scholar]
  53. LeeH.J. HongM.K. MoonS.H. A feasibility study on water softening by electrodeionization with the periodic polarity change.Desalination201228422122710.1016/j.desal.2011.09.001
    [Google Scholar]
  54. KresnowatiM.T.A.P. ReginaD. BellaC. WardaniA.K. WentenI.G. Combined ultrafiltration and electrodeionization techniques for microbial xylitol purification.Food Bioprod. Process.201911424525210.1016/j.fbp.2019.01.005
    [Google Scholar]
  55. StrathmannH. Chapter 4 Operating Principle of Electrodialysis and Related Processes. In: Ion-Exchange Membrane Separation Processes. StrathmannH. AmsterdamElsevier Science B. V2004147225
    [Google Scholar]
/content/journals/cac/10.2174/0115734110301699240514052704
Loading
/content/journals/cac/10.2174/0115734110301699240514052704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test