Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Rodents and many wild and domestic animals, including cattle, donkeys, goats, hares, ostriches, and sheep, spread the Crimean-Congo Hemorrhagic Fever Virus (CCHFV), acting as hosts for infected ticks primarily of the genus, which serve as vectors and reservoirs of the virus. CCHF is a severe, potentially lethal, and widespread disease, making it a serious public health issue. Environmental changes impacting rodent populations affect their global distribution and, therefore, play a role in the spread of CCHFV.

Objective

This study aims togain a deeper understanding of the envelope glycoproteins expressed by the CCHFV.

Methods

Multiple computational algorithms determined the Intrinsic Disorder Predisposition (PIDP), Polarity Index, and genomic profiles of each sequence of the glycoproteins.

Results

When examining the Polarity Index Method Profile, 3.0v profile, and the PIDP profile, the envelope glycoproteins of the CCHFV showed different patterns. With these patterns, it was possible to identify structural and morphological similarities.

Conclusion

With the PIM 3.0v profile, our computer programs were able to identify isolated CCHFV envelope glycoproteins. We believe that this research provides a deeper understanding of this virus.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110298088240515063827
2024-05-22
2025-01-13
Loading full text...

Full text loading...

References

  1. ShanmugamJ. SmirnovaS.E. ChumakovM.P. Presence of antibody to arboviruses of the Crimean Haemorrhagic Fever-Congo (CHF-Congo) group in human beings and domestic animals in India.Indian J. Med. Res.1976641014031413 828146
    [Google Scholar]
  2. ButenkoA.M. ChumakovM.P. RubinV.N. StolbovD.N. Isolation and Investigation of Astrakhan Strain ('Drozdov') of Crimean Hemorrhagic Fever Virus and Data on Serodiagnosis of this Infection. Mater. 15 Nauchn. Sess. Inst. Polio Virus Entsefalitov (Moscow)., 1968, 3, 88–90 (in Russian; in English, NAMRU3- T866). In: Whitehouse CA. Crimean-Congo hemorrhagic fever.Antivir Res.,2004145160
    [Google Scholar]
  3. MishraB. AppannanavarS.B. An update on crimean congo hemorrhagic fever.J. Glob. Infect. Dis.20113328529210.4103/0974‑777X.83537 21887063
    [Google Scholar]
  4. HoogstraalH. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa.J. Med. Entomol.197915430741710.1093/jmedent/15.4.307 113533
    [Google Scholar]
  5. BairochA. ApweilerR. WuC. H. BarkerW. C. BoeckmannB. FerroS. GasteigerE. HuangH. LopezR. MagraneM. MartinM. J. NataleD. A. O'DonovanC. RedaschiN. YehL. S. The universal protein resource (uniprot). Nucl. acid. res., 2005, 33(database issue),2005D154D159
    [Google Scholar]
  6. RomeroP. ObradovicZ. LiX. GarnerE.C. BrownC.J. DunkerA.K. Sequence complexity of disordered protein.Proteins2001421384810.1002/1097‑0134(20010101)42:1<38:AID‑PROT50>3.0.CO;2‑3 11093259
    [Google Scholar]
  7. ObradovicZ. PengK. VuceticS. RadivojacP. DunkerA.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder.Proteins200561S7Suppl. 717618210.1002/prot.20735 16187360
    [Google Scholar]
  8. PengK. RadivojacP. VuceticS. DunkerA.K. ObradovicZ. Length-dependent prediction of protein intrinsic disorder.BMC Bioinformatics20067120810.1186/1471‑2105‑7‑208 16618368
    [Google Scholar]
  9. XueB. DunbrackR.L. WilliamsR.W. DunkerA.K. UverskyV.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids.Biochim. Biophys. Acta. Proteins Proteomics201018044996101010.1016/j.bbapap.2010.01.011 20100603
    [Google Scholar]
  10. MészárosB. ErdősG. DosztányiZ. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding.Nucleic Acids Res.201846W1W329W33710.1093/nar/gky384 29860432
    [Google Scholar]
  11. DayhoffG.W.II UverskyV.N. Rapid prediction and analysis of protein intrinsic disorder.Protein Sci.20223112e449610.1002/pro.4496 36334049
    [Google Scholar]
  12. ZhouJ. OldfieldC.J. YanW. ShenB. DunkerA.K. Identification of intrinsic disorder in complexes from the protein data bank.ACS Omega2020529178831789110.1021/acsomega.9b03927 32743159
    [Google Scholar]
  13. GautamA. SinghH. TyagiA. ChaudharyK. KumarR. KapoorP. RaghavaG.P.S. CPPsite: A curated database of cell penetrating peptides.Database 201220120bas01510.1093/database/bas015 22403286
    [Google Scholar]
  14. PolancoC. Castañón-GonzálezJ.A. UverskyV.N. BuhseT. Samaniego MendozaJ.L. CalvaJ.J. Electronegativity and intrinsic disorder of preeclampsia-related proteins.Acta Biochim. Pol.201764199111 27824362
    [Google Scholar]
  15. PolancoC. HubermanA. Hernández-LemusE. UverskyV.N. Rios CastroM. Martínez-GarciaM. Vargas-AlarcónG. BuhseT. Pimentel HernándezC. ZazuetaC. Roldan GomezF.R. López OlivaE.J. Bioinformatics-based characterization of the variability of MPOX virus proteins.Lett. Drug Des. Discov.2023
    [Google Scholar]
  16. MishraA.K. HellertJ. FreitasN. Guardado-CalvoP. HaouzA. FelsJ.M. MaurerD.P. AbelsonD.M. BornholdtZ.A. WalkerL.M. ChandranK. CossetF.L. McLellanJ.S. ReyF.A. Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies.Science2022375657610410910.1126/science.abl6502 34793197
    [Google Scholar]
  17. SimonM. JohanssonC. MirazimiA. Crimean-Congo hemorrhagic fever virus entry and replication is clathrin, pH- and cholesterol-dependent.J. Gen. Virol.200990121021510.1099/vir.0.006387‑0 19088291
    [Google Scholar]
  18. LiN. RaoG. LiZ. YinJ. ChongT. TianK. FuY. CaoS. Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus.Virol. Sin.202237112713710.1016/j.virs.2022.01.015 35234630
    [Google Scholar]
  19. CarterS.D. SurteesR. WalterC.T. ArizaA. BergeronÉ. NicholS.T. HiscoxJ.A. EdwardsT.A. BarrJ.N. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein.J. Virol.20128620109141092310.1128/JVI.01555‑12 22875964
    [Google Scholar]
  20. CarrollS.A. BirdB.H. RollinP.E. NicholS.T. Ancient common ancestry of Crimean-Congo hemorrhagic fever virus.Mol. Phylogenet. Evol.20105531103111010.1016/j.ympev.2010.01.006 20074652
    [Google Scholar]
  21. SanchezA.J. VincentM.J. NicholS.T. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus.J. Virol.200276147263727510.1128/JVI.76.14.7263‑7275.2002 12072526
    [Google Scholar]
  22. JeevaS. ChengE. GanaieS.S. MirM.A. Crimean-Congo hemorrhagic fever virus nucleocapsid protein augments mRNA translation.J. Virol.20179115e006361710.1128/JVI.00636‑17 28515298
    [Google Scholar]
  23. EricksonB.R. DeydeV. SanchezA.J. VincentM.J. NicholS.T. N-linked glycosylation of Gn (but not Gc) is important for Crimean Congo hemorrhagic fever virus glycoprotein localization and transport.Virology2007361234835510.1016/j.virol.2006.11.023 17197010
    [Google Scholar]
  24. ShalitanatiA. YuH. LiuD. XuW.X. YueX. GuoR. LiY. DengF. YangJ. ZhangY. SunS. Fine mapping epitope on glycoprotein-Gn from Crimean-Congo hemorrhagic fever virus.Comp. Immunol. Microbiol. Infect. Dis.201859243110.1016/j.cimid.2018.09.003 30290884
    [Google Scholar]
  25. ZivcecM. ScholteF. SpiropoulouC. SpenglerJ. BergeronÉ. Molecular insights into Crimean-Congo hemorrhagic fever virus.Viruses20168410610.3390/v8040106 27110812
    [Google Scholar]
  26. RahmanS.U. YaoX. LiX. ChenD. TaoS. Analysis of codon usage bias of Crimean-Congo hemorrhagic fever virus and its adaptation to hosts.Infect. Genet. Evol.20185811610.1016/j.meegid.2017.11.027 29198972
    [Google Scholar]
  27. PolancoC. SamaniegoJ.L. BuhseT. Castañón GonzálezJ.A. Discrete dynamic system oriented on the formation of prebiotic dipeptides from Rode’s experiment.Acta Biochim. Pol.201461471772610.18388/abp.2014_1836 25520962
    [Google Scholar]
  28. PolancoC. BuhseT. UverskyV. VizcainoG. PicciottoJ.L. The polar profile of ancient proteins: A computational extrapolation from prebiotics to paleobiochemistry.Acta Biochim. Pol.201764111712210.18388/abp.2016_1311 28284023
    [Google Scholar]
  29. DaiS. MinY.Q. LiQ. FengK. JiangZ. WangZ. ZhangC. RenF. FangY. ZhangJ. ZhuQ. WangM. WangH. DengF. NingY.J. Interactome profiling of Crimean-Congo hemorrhagic fever virus glycoproteins.Nat. Commun.2023141736510.1038/s41467‑023‑43206‑1 37963884
    [Google Scholar]
  30. RodriguezS.E. HawmanD.W. SorvilloT.E. O’NealT.J. BirdB.H. RodriguezL.L. BergeronÉ. NicholS.T. MontgomeryJ.M. SpiropoulouC.F. SpenglerJ.R. Immunobiology of crimean-congo hemorrhagic fever.Antiviral Res.202219910524410.1016/j.antiviral.2022.105244 35026307
    [Google Scholar]
  31. ZhangJ. SimayiA. WangM. MomingA. XuW. WangC. LiY. DingJ. DengF. ZhangY. SunS. Fine mapping epitope on glycoprotein Gc from crimean-congo hemorrhagic fever virus.Comp. Immunol. Microbiol. Infect. Dis.20196710137110.1016/j.cimid.2019.101371 31627038
    [Google Scholar]
  32. NasirianH. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: A global systematic review and meta-analysis.Comp. Immunol. Microbiol. Infect. Dis.20206910142910.1016/j.cimid.2020.101429 32062190
    [Google Scholar]
  33. GaziU. YaparD. KarasartovaD. GureserA.S. AkdoganO. UnalO. BaykamN. Taylan OzkanA. The role of Treg population in pathogenesis of Crimean Congo hemorrhagic fever.Virus Res.20182501610.1016/j.virusres.2018.04.003 29625147
    [Google Scholar]
  34. HawmanD.W. FeldmannH. Crimean–Congo haemorrhagic fever virus.Nat. Rev. Microbiol.202321746347710.1038/s41579‑023‑00871‑9 36918725
    [Google Scholar]
  35. Lorenzo JuanesH.M. CarbonellC. SendraB.F. López-BernusA. BahamondeA. OrfaoA. ListaC.V. LedesmaM.S. NegredoA.I. Rodríguez-AlonsoB. BuaB.R. Sánchez-SecoM.P. Muñoz BellidoJ.L. MuroA. Belhassen-GarcíaM. Crimean-congo hemorrhagic fever, Spain, 2013–2021.Emerg. Infect. Dis.202329225225910.3201/eid2902.220677 36692301
    [Google Scholar]
  36. ErgonulO. CelikbasA. BaykamN. ErenS. DokuzoguzB. Analysis of risk-factors among patients with Crimean-Congo haemorrhagic fever virus infection: Severity criteria revisited.Clin. Microbiol. Infect.200612655155410.1111/j.1469‑0691.2006.01445.x
    [Google Scholar]
  37. GoedhalsD. PaweskaJ.T. BurtF.J. Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection.PLoS Negl. Trop. Dis.20171112e000614910.1371/journal.pntd.0006149 29261651
    [Google Scholar]
  38. WangQ. CaoR. LiL. LiuJ. YangJ. LiW. YanL. WangY. YanY. LiJ. DengF. ZhouY. WangM. ZhongW. HuZ. in vitro and in vivo efficacy of a novel nucleoside analog H44 against Crimean–Congo hemorrhagic fever virus.Antiviral Res.202219910527310.1016/j.antiviral.2022.105273 35257725
    [Google Scholar]
  39. TuygunN. TanirG. CaglayikD.Y. UyarY. KorukluogluG. CenesizF. Pediatric cases of Crimean‐Congo hemorrhagic fever in Turkey.Pediatr. Int.201254340240610.1111/j.1442‑200X.2011.03549.x 22192531
    [Google Scholar]
  40. DilberE. CakirM. AcarE.A. OrhanF. YarisN. BahatE. OktenA. ErduranE. Crimean–Congo haemorrhagic fever among children in north-eastern Turkey.Ann. Trop. Paediatr.2009291232810.1179/146532809X401999 19222930
    [Google Scholar]
  41. TezerH. SucaklıI.A. SaylıT.R. CelikelE. YakutI. KaraA. TuncB. ErgonulO. Crimean-Congo hemorrhagic fever in children.J. Clin. Virol.201048318418610.1016/j.jcv.2010.04.001 20444644
    [Google Scholar]
  42. OzkurtZ. KikiI. ErolS. ErdemF. YilmazN. ParlakM. GundogduM. TasyaranM. Crimean–Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy.J. Infect.200652320721510.1016/j.jinf.2005.05.003 15953646
    [Google Scholar]
  43. ÇevikM.A. ErbayA. BodurH. GülderenE. BaştuğA. KubarA. AkıncıE. Clinical and laboratory features of Crimean-Congo hemorrhagic fever: Predictors of fatality.Int. J. Infect. Dis.200812437437910.1016/j.ijid.2007.09.010 18063402
    [Google Scholar]
  44. GürbüzE. EkıcıA. ÜnlüA.H. YilmazH. Evaluation of seroprevalence and clinical and laboratory findings of patients admitted to health institutions in Gümüşhane with suspicion of Crimean-Congo hemorrhagic fever.Turk. J. Med. Sci.20215141825183210.3906/sag‑2001‑82 33754650
    [Google Scholar]
  45. YalçinkayaR. PolatM. Gümüşer CinniR. ÖzF.N. TanirG. Uysal YaziciM. Crimean-Congo hemorrhagic fever mimicking multisystem inflammatory syndrome in children associated with COVID-19: A diagnostic challenge.Pediatr. Infect. Dis. J.20214012e524e52510.1097/INF.0000000000003269 34292265
    [Google Scholar]
  46. OygarP.D. GürlevikS.L. SağE. İlbayS. AksuT. DemirO.O. CoşgunY. EyüpoğluS.A. KarakayaJ. CangülŞ.Ü. CengizA.B. ÖzsürekciY. Changing disease course of crimean-congo hemorrhagic fever in children, Turkey.Emerg. Infect. Dis.202329226827710.3201/eid2902.220976 36692327
    [Google Scholar]
  47. PapaA. BinoS. VeloE. HarxhiA. KotaM. AntoniadisA. Cytokine levels in Crimean-Congo hemorrhagic fever.J. Clin. Virol.200636427227610.1016/j.jcv.2006.04.007 16765637
    [Google Scholar]
  48. BenteD.A. AlimontiJ.B. ShiehW.J. CamusG. StröherU. ZakiS. JonesS.M. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model.J. Virol.20108421110891110010.1128/JVI.01383‑10 20739514
    [Google Scholar]
  49. MardaniM. RahnavardiM. Sharifi-MoodB. Current treatment of Crimean–Congo hemorrhagic fever in children.Expert Rev. Anti Infect. Ther.20108891191810.1586/eri.10.67 20695747
    [Google Scholar]
  50. KurnazF. MetanG. CoskunR. KaynarL. EserB. DoğanayM. A case of Crimean-Congo haemorrhagic fever successfully treated with therapeutic plasma exchange and ribavirin.Trop. Doct.201141318118210.1258/td.2011.100470 21565949
    [Google Scholar]
  51. Tahir Ul QamarM. IsmailS. AhmadS. MirzaM.U. AbbasiS.W. AshfaqU.A. ChenL.L. Development of a novel multi-epitope vaccine against crimean-Congo hemorrhagic fever virus: An integrated reverse vaccinology, vaccine informatics and biophysics approach.Front. Immunol.20211266981210.3389/fimmu.2021.669812 34220816
    [Google Scholar]
/content/journals/cac/10.2174/0115734110298088240515063827
Loading
/content/journals/cac/10.2174/0115734110298088240515063827
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test