Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Essential oils are utilized in various food applications and are a rich source of naturally occurring volatile components. The extraction of essential oils has used conventional techniques for several years, but these methods require a long duration of time, more solvent, and high energy. However, recent advancements have led to novel and eco-friendly techniques that significantly enhance the essential oil yield while minimizing the use of resources.

Methods

This study describes the recent research on the extraction of essential oils and their components, focusing on microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE).

Results

This review explores the instrumentation, mechanism, and applications behind MAE and UAE. It also describes the emerging technologies for the extraction of essential oils, along with their optimized conditions.

Conclusion

These techniques represent a more sustainable and efficient approach for the extraction of essential oil from various plant sources, aligning with the principles of green chemistry.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110296570240422063010
2024-04-29
2025-01-13
Loading full text...

Full text loading...

References

  1. CostaP. MedronhoB. GonçalvesS. RomanoA. Cyclodextrins enhance the antioxidant activity of essential oils from three Lamiaceae species.Ind. Crops Prod.20157034134610.1016/j.indcrop.2015.03.065
    [Google Scholar]
  2. Jackson-DavisA. WhiteS. KassamaL.S. ColemanS. ShawA. MendoncaA. CooperB. Thomas-PopoE. GordonK. LondonL. A review of regulatory standards and advances in essential oils as antimicrobials in foods.J. Food Prot.202386210002510.1016/j.jfp.2022.100025 36916569
    [Google Scholar]
  3. GuptaS. VariyarP.S. Nanoencapsulation of essential oils for sustained release: Application as therapeutics and antimicrobials.Encapsulations2016641672
    [Google Scholar]
  4. SharmaR. RaoR. KumarS. MahantS. KhatkarS. Therapeutic potential of citronella essential oil: a review.Curr. Drug Discov. Technol.201916433033910.2174/1570163815666180718095041 30019646
    [Google Scholar]
  5. AzmirJ. ZaidulI.S.M. RahmanM.M. SharifK.M. MohamedA. SahenaF. JahurulM.H.A. GhafoorK. NorulainiN.A.N. OmarA.K.M. Techniques for extraction of bioactive compounds from plant materials: A review.J. Food Eng.2013117442643610.1016/j.jfoodeng.2013.01.014
    [Google Scholar]
  6. DrinićZ. PljevljakušićD. ŽivkovićJ. BigovićD. ŠavikinK. Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: Comparison with conventional hydro-distillation.Food Bioprod. Process.202012015816510.1016/j.fbp.2020.01.011
    [Google Scholar]
  7. ChakravartyI. ParmarV.M. MandavganeS.A. Current trends in essential oil (EO) production.Biomass Convers. Biorefin.2021712410.1007/s13399‑021‑01963‑3
    [Google Scholar]
  8. BožovićM. NavarraA. GarzoliS. PepiF. RagnoR. Esential oils extraction: A 24-hour steam distillation systematic methodology.Nat. Prod. Res.201731202387239610.1080/14786419.2017.1309534 28361547
    [Google Scholar]
  9. de Elguea-CulebrasG.O. BravoE.M. Sánchez-VioqueR. Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of mediterranean aromatic plants. an approach to the valuation of by-products of the essential oil market: A review.Ind. Crops Prod.202217511426110.1016/j.indcrop.2021.114261
    [Google Scholar]
  10. SoaresK.D. BordignonS.A.L. ApelM.A. Chemical composition and anti-inflammatory activity of the essential oils of Piper gaudichaudianum and Piper mikanianum.J. Ethnopharmacol.202229711553310.1016/j.jep.2022.115533 35840057
    [Google Scholar]
  11. MarcheseA. BarbieriR. CoppoE. OrhanI.E. DagliaM. NabaviS.F. IzadiM. AbdollahiM. NabaviS.M. AjamiM. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.Crit. Rev. Microbiol.201743666868910.1080/1040841X.2017.1295225 28346030
    [Google Scholar]
  12. YaoT. FengC. ChenW. ChenS. Selective separation and simultaneous recoveries of amino acids by temperature-sensitive magnetic ionic liquid aqueous biphasic system.J. Mol. Liq.202337112109910.1016/j.molliq.2022.121099
    [Google Scholar]
  13. PaganoI. CamponeL. CelanoR. PiccinelliA.L. RastrelliL. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review.J. Chromatogr. A2021165146229510.1016/j.chroma.2021.462295 34118529
    [Google Scholar]
  14. YaoT. LiH. RenY. FengM. HuY. YanH. PengL. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system.Separ. Purif. Tech.202228212003410.1016/j.seppur.2021.120034
    [Google Scholar]
  15. MohamadN. RamliN. Abd-AzizS. IbrahimM.F. Comparison of hydro-distillation, hydro-distillation with enzyme-assisted and supercritical fluid for the extraction of essential oil from pineapple peels. 3 Biotech, 20199623410.1007/s13205‑019‑1767‑831139549
    [Google Scholar]
  16. YaoT. LiQ. LiH. PengL. LiuY. DuK. Extractive resolution of racemic phenylalanine and preparation of optically pure product by chiral magnetic ionic liquid aqueous two-phase system.Separ. Purif. Tech.202127411902410.1016/j.seppur.2021.119024
    [Google Scholar]
  17. Picot-AllainM.C.N. RamasawmyB. EmmambuxM.N. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: A review.Food Rev. Int.202238328231210.1080/87559129.2020.1733008
    [Google Scholar]
  18. WeiZ.F. WangX.Q. PengX. WangW. ZhaoC.J. ZuY.G. FuY.J. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae.Ind. Crops Prod.20156317518110.1016/j.indcrop.2014.10.013
    [Google Scholar]
  19. GavahianM. FarahnakyA. FarhooshR. JavidniaK. ShahidiF. Extraction of essential oils from Mentha piperita using advanced techniques: Microwave versus ohmic assisted hydrodistillation.Food Bioprod. Process.201594505810.1016/j.fbp.2015.01.003
    [Google Scholar]
  20. PallM.L. Millimeter (MM) wave and microwave frequency radiation produce deeply penetrating effects: The biology and the physics.Rev. Environ. Health202237224725810.1515/reveh‑2020‑0165 34043892
    [Google Scholar]
  21. FerdoshS. Techniques for the extraction of phytosterols and their benefits in human health: A review.Sep. Sci. Technol.201853142206222310.1080/01496395.2018.1454472
    [Google Scholar]
  22. EkezieF.G.C. SunD.W. ChengJ.H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments.Trends Food Sci. Technol.20176716017210.1016/j.tifs.2017.06.006
    [Google Scholar]
  23. El KhaledD. NovasN. GazquezJ.A. Manzano-AgugliaroF. Microwave dielectric heating: Applications on metals processing.Renew. Sustain. Energy Rev.2018822880289210.1016/j.rser.2017.10.043
    [Google Scholar]
  24. FlórezN. CondeE. DomínguezH. Microwave assisted water extraction of plant compounds.J. Chem. Technol. Biotechnol.201590459060710.1002/jctb.4519
    [Google Scholar]
  25. CastejónN. LunaP. SeñoránsF.J. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.Food Chem.2018244758210.1016/j.foodchem.2017.10.014 29120808
    [Google Scholar]
  26. HalfadjiA. TouabetA. Determination of 26 polychlorinated biphenyls congeners in soil samples using microwave-assisted extraction with open vessel and gas chromatography.Green Chem. Lett. Rev.201811320921610.1080/17518253.2018.1445300
    [Google Scholar]
  27. DeoS. JanghelA. RautP. BhosleD. VermaC. KumarS.S. AgrawalM. AmitN. SharmaM. GiriT. TripathiD.K. Ajazuddin; Alexander, A. Emerging microwave assisted extraction (MAE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals.Res. J. Pharma. Techno.20158565566610.5958/0974‑360X.2015.00104.3
    [Google Scholar]
  28. PedrozaM.A. AmendolaD. MaggiL. ZalacainA. De FaveriD.M. SpignoG. Microwave-assisted extraction of phenolic compounds from dried waste grape skins.Int. J. Food Eng.201511335937010.1515/ijfe‑2015‑0009
    [Google Scholar]
  29. AkhtarI. JavadS. YousafZ. IqbalS. JabeenK. Review: Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals.Pak. J. Pharm. Sci.2019321223230 30772814
    [Google Scholar]
  30. AliN. RampazzoR.C.P. CostaA.D.T. KriegerM.A. Current nucleic acid extraction methods and their implications to point-of-care diagnostics.BioMed Res. Int.2017201711310.1155/2017/9306564 28785592
    [Google Scholar]
  31. YaoT. LiaoY. LiS. QiaoL. DuK. Bisphosphonated-immobilized porous cellulose monolith with tentacle grafting by atom transfer radical polymerization for selective adsorption of lysozyme.J. Chromatogr. A2021165146233710.1016/j.chroma.2021.462337 34157476
    [Google Scholar]
  32. Megawati; Fardhyanti, D.S.; Sediawan, W.B.; Hisyam, A. Kinetics of mace (Myristicae arillus) essential oil extraction using microwave assisted hydrodistillation: Effect of microwave power.Ind. Crops Prod.201913131532210.1016/j.indcrop.2019.01.067
    [Google Scholar]
  33. ZhaoY. WangP. ZhengW. YuG. LiZ. SheY. LeeM. Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents.Ind. Crops Prod.201914011166010.1016/j.indcrop.2019.111660
    [Google Scholar]
  34. GhazanfariN. MortazaviS.A. YazdiF.T. MohammadiM. Microwave-assisted hydrodistillation extraction of essential oil from coriander seeds and evaluation of their composition, antioxidant and antimicrobial activity.Heliyon202069e0489310.1016/j.heliyon.2020.e04893 32984601
    [Google Scholar]
  35. BoumahdiY. MoghraniH. NasrallahN. OuarekS. MaachiR. Microwave‐assisted hydrodistillation of the essential oil from Algerian Pimpinella anisum seeds.Flavour Fragrance J.2021361344610.1002/ffj.3614
    [Google Scholar]
  36. BoudraaH. KadriN. MouniL. MadaniK. Microwave-assisted hydrodistillation of essential oil from fennel seeds: Optimization using Plackett–Burman design and response surface methodology.J. Appl. Res. Med. Aromat. Plants20212310030710.1016/j.jarmap.2021.100307
    [Google Scholar]
  37. Singh ChouhanK.B. TandeyR. SenK.K. MehtaR. MandalV. A unique model of gravity assisted solvent free microwave based extraction of essential oil from mentha leaves ensuring biorefinery of leftover waste biomass for extraction of nutraceuticals: Towards cleaner and greener technology.J. Clean. Prod.201922558759810.1016/j.jclepro.2019.03.325
    [Google Scholar]
  38. FioriniD. ScortichiniS. BonacucinaG. GrecoN.G. MazzaraE. PetrelliR. TorresiJ. MaggiF. CespiM. Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design.Ind. Crops Prod.202015411268810.1016/j.indcrop.2020.112688
    [Google Scholar]
  39. ZhaoC. YangX. TianH. YangL. An improved method to obtain essential oil, flavonols and proanthocyanidins from fresh Cinnamomum japonicum Sieb. leaves using solvent-free microwave-assisted distillation followed by homogenate extraction.Arab. J. Chem.20201312041205210.1016/j.arabjc.2018.03.002
    [Google Scholar]
  40. MemarzadehS.M. GholamiA. PirbaloutiA.G. MasoumS. Bakhtiari savory (Satureja bachtiarica Bunge.) essential oil and its chemical profile, antioxidant activities, and leaf micromorphology under green and conventional extraction techniques.Ind. Crops Prod.202015411271910.1016/j.indcrop.2020.112719
    [Google Scholar]
  41. TranT.H. NgoT.C. DaoT.P. NguyenP.T. PhamT.N. NguyenT.D. LinhH.T. NguyenN.H. CangM.H. Optimizatoin of Microwave-assisted extraction and compositional determination of essential oil from leaves of Eucalyptus globulus.In: InIOP Conference Series: Materials Science and Engineering; IOP Publishing.,202073622204010.1088/1757‑899X/736/2/022040
    [Google Scholar]
  42. TranQ.T. Vu ThiT.L. DoT.L. Pham ThiH.M. Hoang ThiB. ChuQ.T. Lai PhuongP.T. DoH.N. Hoang ThanH.T. Ta ThiT.T. LuuV.H. Mai DuongP.T. Thu PhungH.T. Optimization of microwave-assisted extraction process of Callicarpa candicans (Burm. f.) Hochr essential oil and its inhibitory properties against some bacteria and cancer cell lines.Processes 20208217310.3390/pr8020173
    [Google Scholar]
  43. LiuZ. LiH. CuiG. WeiM. ZouZ. NiH. Efficient extraction of essential oil from Cinnamomum burmannii leaves using enzymolysis pretreatment and followed by microwave-assisted method.Lebensm. Wiss. Technol.202114711149710.1016/j.lwt.2021.111497
    [Google Scholar]
  44. BellikF.Z. Benkaci-AliF. AlsafraZ. EppeG. TataS. SabaouN. ZidaniR. Chemical composition, kinetic study and antimicrobial activity of essential oils from Cymbopogon schoenanthus L. Spreng extracted by conventional and microwave-assisted techniques using cryogenic grinding.Ind. Crops Prod.201913911150510.1016/j.indcrop.2019.111505
    [Google Scholar]
  45. GunnyA.A.N. FangL.P. MisnanN.M. GopinathS.C.B. SallehN.H.M. HashimR.H.R. MatM.H.C. Microwave-assisted solvent-free extraction of essential oil from Coleus aromaticus: anti- phytopathogenic potential for fruit post-harvesting. 3 Biotech,202111416610.1007/s13205‑021‑02701‑233816043
    [Google Scholar]
  46. PengX. YangX. GuH. YangL. GaoH. Essential oil extraction from fresh needles of Pinus pumila (Pall.) Regel using a solvent-free microwave-assisted methodology and an evaluation of acetylcholinesterase inhibition activity in vitro compared to that of its main components.Ind. Crops Prod.202116711354910.1016/j.indcrop.2021.113549
    [Google Scholar]
  47. PengX. FengC. WangX. GuH. LiJ. ZhangX. ZhangX. YangL. Chemical composition and antioxidant activity of essential oils from barks of Pinus pumila using microwave-assisted hydrodistillation after screw extrusion treatment.Ind. Crops Prod.202116611348910.1016/j.indcrop.2021.113489
    [Google Scholar]
  48. MollaeiS. SedighiF. HabibiB. HazratiS. AsgharianP. Extraction of essential oils of Ferulago angulata with microwave-assisted hydrodistillation.Ind. Crops Prod.2019137435110.1016/j.indcrop.2019.05.015
    [Google Scholar]
  49. Gonzalez-RiveraJ. DuceC. CampanellaB. BernazzaniL. FerrariC. TanziniE. OnorM. LongoI. RuizJ.C. TinèM.R. BramantiE. In situ microwave assisted extraction of clove buds to isolate essential oil, polyphenols, and lignocellulosic compounds.Ind. Crops Prod.202116111320310.1016/j.indcrop.2020.113203
    [Google Scholar]
  50. Conde-HernándezL.A. Botello-OjedaA.G. Alonso-CalderónA.A. Osorio-LamaM.A. Bernabé-LorancaM.B. Chavez-BravoE. Optimization of extraction of essential oils using response surface methodology: A review.J. Essent. Oil-Bear. Plants202124593798210.1080/0972060X.2021.1976286
    [Google Scholar]
  51. ChenF. GuoY. KangJ. YangX. ZhaoZ. LiuS. MaY. GaoW. LuoD. Insight into the essential oil isolation from Foeniculum vulgare Mill. fruits using double-condensed microwave-assisted hydrodistillation and evaluation of its antioxidant, antifungal and cytotoxic activity.Ind. Crops Prod.202014411205210.1016/j.indcrop.2019.112052
    [Google Scholar]
  52. GuoY. LiY. LiZ. JiangL. CaoX. GaoW. WangJ. LuoD. ChenF. Deep eutectic solvent-homogenate based microwave-assisted hydrodistillation of essential oil from Litsea cubeba (Lour.) Pers. fruits and its chemical composition and biological activity.J. Chromatogr. A2021164646208910.1016/j.chroma.2021.462089 33848643
    [Google Scholar]
  53. ElyemniM. LouasteB. NechadI. ElkamliT. BouiaA. TalebM. ChaouchM. EloutassiN. Extraction of essential oils of Rosmarinus officinalis L. by two different methods: Hydrodistillation and microwave assisted hydrodistillation.Sci. World J.201920191610.1155/2019/3659432 31057339
    [Google Scholar]
  54. HassaneinH.D. El-GendyA.E.N.G. SalehI.A. HendawyS.F. ElmissiryM.M. OmerE.A. Profiling of essential oil chemical composition of some Lamiaceae species extracted using conventional and microwave‐assisted hydrodistillation extraction methods via chemometrics tools.Flavour Fragrance J.202035332934010.1002/ffj.3566
    [Google Scholar]
  55. HouK. BaoM. WangL. ZhangH. YangL. ZhaoH. WangZ. Aqueous enzymatic pretreatment ionic liquid–lithium salt based microwave–assisted extraction of essential oil and procyanidins from pinecones of Pinus koraiensis.J. Clean. Prod.201923611758110.1016/j.jclepro.2019.07.056
    [Google Scholar]
  56. SalehI. Abd-ElGawadA. El GendyA.E.N. Abd El AtyA. MohamedT. KassemH. AldosriF. ElshamyA. HegazyM.E.F. Phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus essential oils extracted using hydrodistillation and microwave-assisted techniques.Plants20209671610.3390/plants9060716 32512751
    [Google Scholar]
  57. YingngamB. BrantnerA. TreichlerM. BruggerN. NavabhatraA. NakonratP. Optimization of the eco-friendly solvent-free microwave extraction of Limnophila aromatica essential oil.Ind. Crops Prod.202116511344310.1016/j.indcrop.2021.113443
    [Google Scholar]
  58. YaoT. LiH. YangJ. ShiX. YanH. PengL. Determination and correlation of phase equilibria of chiral magnetic ionic liquid aqueous two-phase systems with different inorganic salts at 298.15 K.J. Mol. Liq.202234511698310.1016/j.molliq.2021.116983
    [Google Scholar]
  59. XiaoY. LiuZ. GuH. YangF. ZhangL. YangL. Improved method to obtain essential oil, asarinin and sesamin from Asarum heterotropoides var. mandshuricum using microwave-assisted steam distillation followed by solvent extraction and antifungal activity of essential oil against Fusarium spp.Ind. Crops Prod.202116211329510.1016/j.indcrop.2021.113295
    [Google Scholar]
  60. NisoaM. PlodkaewA. SirisathitkulC. WattanasitK. SomjitB. PacdeepinP. SirisathitkulY. Simulation and experimentation on parameters influencing microwave-assisted extraction of bioactive compounds from Kaempferia parviflora rhizomes.Alex. Eng. J.20236535736610.1016/j.aej.2022.10.012
    [Google Scholar]
  61. RadivojacA. BeraO. MicićD. ĐurovićS. ZekovićZ. BlagojevićS. PavlićB. Conventional versus microwave-assisted hydrodistillation of sage herbal dust: Kinetics modeling and physico-chemical properties of essential oil.Food Bioprod. Process.20201239010110.1016/j.fbp.2020.06.015
    [Google Scholar]
  62. AngoyA. GiniesC. GoupyP. BornardI. GinistyP. SommierA. ValatM. ChematF. Development of a green innovative semi-industrial scale pilot combined microwave heating and centrifugal force to extract essential oils and phenolic compounds from orange peels.Innov. Food Sci. Emerg. Technol.20206110233810.1016/j.ifset.2020.102338
    [Google Scholar]
  63. Martínez-AbadA. RamosM. HamzaouiM. KohnenS. JiménezA. GarrigósM.C. Optimisation of sequential microwave-assisted extraction of essential oil and pigment from lemon peels waste.Foods2020910149310.3390/foods9101493 33086617
    [Google Scholar]
  64. Franco-VegaA. López-MaloA. PalouE. Ramírez-CoronaN. Effect of imidazolium ionic liquids as microwave absorption media for the intensification of microwave-assisted extraction of Citrus sinensis peel essential oils.Chem. Eng. Process.202116010827710.1016/j.cep.2020.108277
    [Google Scholar]
  65. MaliP.S. KumarP. Simulation and experimentation on parameters influencing microwave-assisted extraction of bioactive compounds from Punica granatum waste and its preliminary analysis.Food Chemistry Advances2023310034410.1016/j.focha.2023.100344
    [Google Scholar]
  66. YaoT. SongJ. GanY. FengC. PengL. Liquid-liquid equilibria for (polypropylene glycol 400 based magnetic ionic liquids + inorganic salts) aqueous two-phase systems at 298.15 K.J. Mol. Liq.202234911820310.1016/j.molliq.2021.118203
    [Google Scholar]
  67. MachadoI. FaccioR. PistónM. Characterization of the effects involved in ultrasound-assisted extraction of trace elements from artichoke leaves and soybean seeds.Ultrason. Sonochem.20195910475210.1016/j.ultsonch.2019.104752 31473420
    [Google Scholar]
  68. ChematF. Abert-VianM. Fabiano-TixierA.S. StrubeJ. UhlenbrockL. GunjevicV. CravottoG. Green extraction of natural products. Origins, current status, and future challenges.Trends Analyt. Chem.201911824826310.1016/j.trac.2019.05.037
    [Google Scholar]
  69. CaresM.G. VargasY. GaeteL. SainzJ. AlarcónJ. Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina.Phys. Procedia20103116917810.1016/j.phpro.2010.01.024
    [Google Scholar]
  70. JanerM. PlantàX. RieraD. Ultrasonic moulding: Current state of the technology.Ultrasonics202010210603810.1016/j.ultras.2019.106038 31670235
    [Google Scholar]
  71. ShenL. PangS. ZhongM. SunY. QayumA. LiuY. RashidA. XuB. LiangQ. MaH. RenX. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies.Ultrason. Sonochem.202310110664610.1016/j.ultsonch.2023.106646 37862945
    [Google Scholar]
  72. KumarG. UpadhyayS. YadavD.K. MalakarS. DhurveP. SuriS. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review.J. Food Process Eng.2023466e1423810.1111/jfpe.14238
    [Google Scholar]
  73. AlberoB. TadeoJ.L. PérezR.A. Ultrasound-assisted extraction of organic contaminants.Trends Analyt. Chem.201911873975010.1016/j.trac.2019.07.007
    [Google Scholar]
  74. LavillaI. BendichoC. Fundamentals of ultrasound-assisted extraction. InWater extraction of bioactive compounds.Elsevier201729131610.1016/B978‑0‑12‑809380‑1.00011‑5
    [Google Scholar]
  75. DasP. NayakP.K. KesavanR. Ultrasound assisted extraction of food colorants: Principle, mechanism, extraction technique and applications: A review on recent progress.Food Chemistry Advances,2022110014410.1016/j.focha.2022.100144
    [Google Scholar]
  76. SantosH.M. LodeiroC. Capelo-MartinezJ.L. The power of ultrasound in Ultrasound in chemistry: Analytical applications. TrAC.Trends in Anal. Chem.201571100109
    [Google Scholar]
  77. TiwariB.K. Ultrasound: A clean, green extraction technology.Trends Analyt. Chem.20157110010910.1016/j.trac.2015.04.013
    [Google Scholar]
  78. DzahC.S. DuanY. ZhangH. WenC. ZhangJ. ChenG. MaH. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review.Food Biosci.20203510054710.1016/j.fbio.2020.100547
    [Google Scholar]
  79. RutkowskaM. NamieśnikJ. KonieczkaP. Ultrasound-assisted extraction. In: In The application of green solvents in separation processes.Elsevier201730132410.1016/B978‑0‑12‑805297‑6.00010‑3
    [Google Scholar]
  80. MorsyN.F.S. A comparative study of nutmeg (Myristica fragrans Houtt.) oleoresins obtained by conventional and green extraction techniques.J. Food Sci. Technol.201653103770377710.1007/s13197‑016‑2363‑0 28017992
    [Google Scholar]
  81. MatulyteI. MarksaM. IvanauskasL. KalvėnienėZ. LazauskasR. BernatonieneJ. GC-MS analysis of the composition of the extracts and essential Oil from myristica fragrans seeds using magnesium aluminometasilicate as excipient.Molecules2019246106210.3390/molecules24061062 30889896
    [Google Scholar]
  82. LiuX.Y. OuH. XiangZ.B. GregersenH. Optimization, chemical constituents and bioactivity of essential oil from Iberis amara seeds extracted by ultrasound-assisted hydro-distillation compared to conventional techniques.J. Appl. Res. Med. Aromat. Plants20191310020410.1016/j.jarmap.2019.100204
    [Google Scholar]
  83. ZorgaJ. Kunicka-StyczyńskaA. GruskaR. ŚmigielskiK. Ultrasound-assisted hydrodistillation of essential oil from celery seeds (Apium graveolens L.) and its biological and aroma profiles.Molecules20202522532210.3390/molecules25225322 33202694
    [Google Scholar]
  84. Mirdehghan AshkezariS.M. BahmanyarH. AzizpourH. MohammadiM. NajafipourI. Investigation of operating parameters on ultrasound-assisted extraction of anethole in fennel essential oil.J. Chem. Pet.Eng.2021552339351
    [Google Scholar]
  85. da Silva MouraE. D’Antonino FaroniL.R. Fernandes HelenoF. Aparecida Zinato RodriguesA. Figueiredo PratesL.H. Lopes Ribeiro de QueirozM.E. Optimal extraction of Ocimum basilicum essential oil by association of ultrasound and hydrodistillation and its potential as a biopesticide against a major stored grains pest.Molecules20202512278110.3390/molecules25122781 32560197
    [Google Scholar]
  86. ZahariN.A.A.R. ChongG.H. AbdullahL.C. ChuaB.L. Ultrasonic-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization.Processes 20208332210.3390/pr8030322
    [Google Scholar]
  87. ModiP.I. ParikhJ.K. DesaiM.A. Sonohydrodistillation: Innovative approach for isolation of essential oil from the bark of cinnamon.Ind. Crops Prod.201914211183810.1016/j.indcrop.2019.111838
    [Google Scholar]
  88. ChenG. SunF. WangS. WangW. DongJ. GaoF. Enhanced extraction of essential oil from Cinnamomum cassia bark by ultrasound assisted hydrodistillation.Chin. J. Chem. Eng.202136384610.1016/j.cjche.2020.08.007
    [Google Scholar]
  89. SantosK.A. GonçalvesJ.E. Cardozo-FilhoL. da SilvaE.A. Pressurized liquid and ultrasound-assisted extraction of α-bisabolol from candeia (Eremanthus erythropappus) wood.Ind. Crops Prod.201913042843510.1016/j.indcrop.2019.01.013
    [Google Scholar]
  90. GhuleS.N. DesaiM.A. Intensified extraction of valuable compounds from clove buds using ultrasound assisted hydrotropic extraction.J. Appl. Res. Med. Aromat. Plants20212510032510.1016/j.jarmap.2021.100325
    [Google Scholar]
  91. LiangZ. ShangXB. SuJ. LiGY. FuFH. GuoJJ. ShanY. Alternative extraction methods of essential oil from the flowers of citrus aurantium l. var daidai tanaka: Evaluation of oil quality and sedative-hypnotic activity.Nat. Prod. Commun.20211631934578211004061
    [Google Scholar]
  92. ChenP. LiuB. LiuX. FuJ. Ultrasound-assisted extraction and dispersive liquid–liquid microextraction coupled with gas chromatography-mass spectrometry for the sensitive determination of essential oil components in lavender.Anal. Methods201911111541155010.1039/C8AY02687D
    [Google Scholar]
  93. TurriniF. BerutoM. MelaL. CurirP. TrigliaG. BoggiaR. ZuninP. MonroyF. Ultrasound-assisted extraction of lavender (Lavandula angustifolia miller, cultivar rosa) solid by-products remaining after the distillation of the essential oil.Appl. Sci. 20211112549510.3390/app11125495
    [Google Scholar]
  94. YaoT. SongJ. GanY. QiaoL. DuK. Preparation of cellulose-based chromatographic medium for biological separation: A review.J. Chromatogr. A2022167746329710.1016/j.chroma.2022.463297 35809519
    [Google Scholar]
  95. RasouliS.R. Nejad EbrahimiS. RezadoostH. Simultaneous ultrasound-assisted hydrodistillation of essential oil from aerial parts of the Satureja khuzistanica Jamzad and its antibacterial activity.Faslnamah-i Giyahan-i Daruyi20212080475910.52547/jmp.20.80.47
    [Google Scholar]
  96. XingC. QinC. LiX. ZhangF. LinhardtR.J. SunP. ZhangA. Chemical composition and biological activities of essential oil isolated by HS-SPME and UAHD from fruits of bergamot.Lebensm. Wiss. Technol.2019104384410.1016/j.lwt.2019.01.020
    [Google Scholar]
  97. HeydariM. RostamiO. MohammadiR. BanaviP. FarhoodiM. SarlakZ. RouhiM. Hydrodistillation ultrasound‐assisted green extraction of essential oil from bitter orange peel wastes: Optimization for quantitative, phenolic, and antioxidant properties.J. Food Process. Preserv.2021457e1558510.1111/jfpp.15585
    [Google Scholar]
  98. KhandareR.D. TomkeP.D. RathodV.K. Kinetic modeling and process intensification of ultrasound-assisted extraction of d-limonene using citrus industry waste.Chem. Eng. Process.202115910818110.1016/j.cep.2020.108181
    [Google Scholar]
/content/journals/cac/10.2174/0115734110296570240422063010
Loading
/content/journals/cac/10.2174/0115734110296570240422063010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test