Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Heavy metal pollution is one of the most serious environmental problems, because of the non-degradable nature of heavy metals and their accumulation in the food chain, which poses a severe threat to the environment and human health even at low concentrations. Most of these metal ions can coordinate with biological molecules and disturb their function. Exposure to heavy metals can cause different health threats such as endothelial dysfunction, allergy, infant mortality, cancer, neurological diseases, respiratory diseases, oxidative stress, cardiovascular disorders and kidney diseases. Therefore the detection and removal of these toxic species are very important. Deep eutectic solvents (DESs) are green solvents and have excellent applications in many fields. They contain nonsymmetrical ions that have low lattice energy, low vapor pressure, dipolar nature, non-flammability, low volatility, low melting points, excellent thermal and chemical stability and high solubility. DESs are also better in terms of the availability of raw materials, easy synthetic procedure, low cost of their starting materials and their easy storage. DESs have an excellent ability for the detection and removal of heavy metal ions. In this review, we discussed various DES-based spectrophotometric and fluorimetric chemosensors for the detection of heavy metal ions in different matrixes. Additionally, we have also explored the capabilities of different DESs in removing heavy metals.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110294079240424103357
2025-01-01
2025-01-19
Loading full text...

Full text loading...

References

  1. BriffaJ. SinagraE. BlundellR. Heavy metal pollution in the environment and their toxicological effects on humans.Heliyon202069e0469110.1016/j.heliyon.2020.e0469132964150
    [Google Scholar]
  2. NayakA. MattaG. UniyalP.D. KumarA. KumarP. PantG. Assessment of potentially toxic elements in groundwater through interpolation, pollution indices, and chemometric techniques in Dehradun in Uttarakhand State.Environ. Sci. Pollut. Res. Int.2023112310.1007/s11356‑023‑27419‑x37184800
    [Google Scholar]
  3. MattaG. KumarA. NayakA. KumarP. KumarA. NaikP.K. SinghS.K. Assessing heavy metal index referencing health risk in Ganga River System.Int. J. Riv. Bas. Manag.202321475976910.1080/15715124.2022.2098756
    [Google Scholar]
  4. BaiB. XuT. NieQ. LiP. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils.Int. J. Heat Mass Transf.202015311957310.1016/j.ijheatmasstransfer.2020.119573
    [Google Scholar]
  5. CarolinC.F. KumarP.S. SaravananA. JoshibaG.J. NaushadM. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review.J. Environ. Chem. Eng.2017532782279910.1016/j.jece.2017.05.029
    [Google Scholar]
  6. SuresB. Accumulation of heavy metals by intestinal helminths in fish: An overview and perspective.Parasitology2003126S7S53S6010.1017/S003118200300372X14667172
    [Google Scholar]
  7. RehmanK. FatimaF. WaheedI. AkashM.S.H. Prevalence of exposure of heavy metals and their impact on health consequences.J. Cell. Biochem.2018119115718410.1002/jcb.2623428643849
    [Google Scholar]
  8. WolfM.B. BaynesJ.W. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction.BioMetals2006201738110.1007/s10534‑006‑9016‑0
    [Google Scholar]
  9. KukongviriyapanU. ApaijitK. KukongviriyapanV. Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: Beneficial effects of curcumin and tetrahydrocurcumin.Tohoku J. Exp. Med.20162391253810.1620/tjem.239.2527151191
    [Google Scholar]
  10. FuZ. XiS. The effects of heavy metals on human metabolism. Toxicology Mechanisms and MethodsTaylor and Francis Ltd202016717610.1080/15376516.2019.1701594
    [Google Scholar]
  11. LinauskieneK. IsakssonM. MalinauskieneL. Heavy metals and the skin: Sensitization patterns in Lithuanian metalworkers.Contact Dermat.202083645045710.1111/cod.1368132729629
    [Google Scholar]
  12. JaliliC. KazemiM. ChengH. MohammadiH. BabaeiA. TaheriE. MoradiS. Associations between exposure to heavy metals and the risk of chronic kidney disease: A systematic review and meta-analysis.Crit Rev Toxicol.202151216518210.1080/10408444.2021.1891196
    [Google Scholar]
  13. RajuV.C. ChoH.C. RaniM.G. ManjuV. UmapathiR. HuhS.Y. ParkP.J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions.Coord. Chem. Rev.202347621492010.1016/j.ccr.2022.214920
    [Google Scholar]
  14. UmapathiR. RaniG.M. KimE. ParkS.Y. ChoY. HuhY.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods.Food Front.20223466667610.1002/fft2.166
    [Google Scholar]
  15. XuL. Abd El-AtyA.M. EunJ.B. ShimJ.H. ZhaoJ. LeiX. GaoS. SheY. JinF. WangJ. JinM. HammockB.D. Recent advances in rapid detection techniques for pesticide residue: A review.J. Agric. Food Chem.20227041130931311710.1021/acs.jafc.2c0528436210513
    [Google Scholar]
  16. AlhammadiM. AliyaS. UmapathiR. OhM.H. HuhY.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine.Microchem. J.202319510942710.1016/j.microc.2023.109427
    [Google Scholar]
  17. CoelhoN. CoelhoL. LimaE. PastorA. GuardiaM. Determination of arsenic compounds in beverages by high-performance liquid chromatography-inductively coupled plasma mass spectrometry.Talanta200566481882210.1016/j.talanta.2004.11.03718970058
    [Google Scholar]
  18. DresslerV.L. PozebonD. CurtiusA.J. Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration.Spectrochim. Acta B At. Spectrosc.199853111527153910.1016/S0584‑8547(98)00180‑3
    [Google Scholar]
  19. SuS. ChenB. HeM. HuB. Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples.Talanta20141231910.1016/j.talanta.2014.01.06124725857
    [Google Scholar]
  20. BiJ. LiT. RenH. LingR. WuZ. QinW. Capillary electrophoretic determination of heavy-metal ions using 11-mercaptoundecanoic acid and 6-mercapto-1-hexanol co-functionalized gold nanoparticle as colorimetric probe.J. Chromatogr. A2019159420821510.1016/j.chroma.2019.02.01030772060
    [Google Scholar]
  21. SelmiA. KhiariR. SnoussiA. BouzouitaN. Analysis of minerals and heavy metals using ICP-OES and FTIR techniques in two red seaweeds (gymnogongrus griffithsiae and asparagopsis taxiformis) from Tunisia.Biol. Trace Elem. Res.202019962342235010.1007/s12011‑020‑02335‑0
    [Google Scholar]
  22. BorrillA.J. ReilyN.E. MacphersonJ.V. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: A tutorial review.Analyst2019144236834684910.1039/C9AN01437C31657380
    [Google Scholar]
  23. GrantW.A. EllisP.C. Determination of heavy metals in shellfish by flame atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry.J. Anal. At. Spectrom.19883681582010.1039/ja9880300815
    [Google Scholar]
  24. AlhamamiM.A.M. AlgethamiJ.S. KhanS. A review on thiazole based colorimetric and fluorimetric chemosensors for the detection of heavy metal ions.Crit. Rev. Anal. Chem.2023202312510.1080/10408347.2023.219707337029905
    [Google Scholar]
  25. SaidiA.H.M. KhanS. Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: A review.Crit Rev Anal Chem20225419310910.1080/10408347.2022.2063017
    [Google Scholar]
  26. Mohammad Abu-TaweelG. IbrahimM.M. KhanS. Al-SaidiH.M. AlshamraniM. AlhumaydhiF.A. AlharthiS.S. Medicinal importance and chemosensing applications of pyridine derivatives: A review.Crit. Rev. Anal. Chem.2022202211810.1080/10408347.2022.208983935724248
    [Google Scholar]
  27. KhanS. MuhammadM. AlgethamiJ.S. Al-SaidiH.M. AlmahriA. HassanianA.A. Synthesis, characterization and applications of schiff base chemosensor for determination of Cr(III) ions.J. Fluoresc.20223251889189810.1007/s10895‑022‑02990‑735749029
    [Google Scholar]
  28. KhanS. MuhammadM. Al-SaidiH.M. HassanianA.A. AlharbiW. AlharbiK.H. Synthesis, characterization and applications of schiff base chemosensor for determination of Cu2+ ions.J. Saudi Chem. Soc.202226410150310.1016/j.jscs.2022.101503
    [Google Scholar]
  29. KhanS. ChenX. AlmahriA. AllehyaniE.S. AlhumaydhiF.A. IbrahimM.M. AliS. Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review.J. Environ. Chem. Eng.20219610638110.1016/j.jece.2021.106381
    [Google Scholar]
  30. MalikL.A. BashirA. QureashiA. PandithA.H. Detection and removal of heavy metal ions: A review.Environ. Chem. Lett.20191741495152110.1007/s10311‑019‑00891‑z
    [Google Scholar]
  31. MavrovV. ErweT. BlöcherC. ChmielH. Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater.Desalination20031571-39710410.1016/S0011‑9164(03)00388‑6
    [Google Scholar]
  32. BlöcherC. DordaJ. MavrovV. ChmielH. LazaridisN.K. MatisK.A. Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater.Water Res.200337164018402610.1016/S0043‑1354(03)00314‑212909122
    [Google Scholar]
  33. FengD. AldrichC. TanH. Treatment of acid mine water by use of heavy metal precipitation and ion exchange.Miner. Eng.200013662364210.1016/S0892‑6875(00)00045‑5
    [Google Scholar]
  34. JakobA. StuckiS. KuhnP. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash.Environ. Sci. Technol.19952992429243610.1021/es00009a04022280288
    [Google Scholar]
  35. CharerntanyarakL. Heavy metals removal by chemical coagulation and precipitation.Water Sci. Technol.19993910-1113513810.2166/wst.1999.0642
    [Google Scholar]
  36. FuF. WangQ. Removal of heavy metal ions from wastewaters: A review.J. Environ. Manage.201192340741810.1016/j.jenvman.2010.11.01121138785
    [Google Scholar]
  37. VisserA.E. SwatloskiR.P. GriffinS.T. HartmanD.H. RogersR.D. Liquid/liquid extraction of metal ions in room temperature ionic liquids.Sep. Sci. Technol.2007365-678580410.1081/SS‑100103620
    [Google Scholar]
  38. StojanovicA. KepplerB. K. Ionic liquids as extracting agents for heavy metals.Sep. Sci. Technol.201247218920310.1080/01496395.2011.620587
    [Google Scholar]
  39. SinghM.B. KumarV.S. ChaudharyM. SinghP. A mini review on synthesis, properties and applications of deep eutectic solvents.J. Indian Chem. Soc.2021981110021010.1016/j.jics.2021.100210
    [Google Scholar]
  40. HansenB.B. SpittleS. ChenB. PoeD. ZhangY. KleinJ.M. HortonA. AdhikariL. ZelovichT. DohertyB.W. GurkanB. MaginnE.J. RagauskasA. DadmunM. ZawodzinskiT.A. BakerG.A. TuckermanM.E. SavinellR.F. SangoroJ.R. Deep eutectic solvents: A review of fundamentals and applications.Chem. Rev.202112131232128510.1021/acs.chemrev.0c0038533315380
    [Google Scholar]
  41. YangX. ZangY.Y. YangS. ChenZ.G. Green and efficient removal of heavy metals from Porphyra haitanensis using natural deep eutectic solvents.J. Sci. Food Agric.202110172930293910.1002/jsfa.1092533155677
    [Google Scholar]
  42. RamosR.R. MayorS.Á. RodríguezS.B. DelgadoR.M.Á. Recent applications of deep eutectic solvents in environmental analysis.Appl. Sci.20211111477910.3390/app11114779
    [Google Scholar]
  43. MbousY.P. HayyanM. HayyanA. WongW.F. HashimM.A. LooiC.Y. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges.Biotechnol. Adv.201735210513410.1016/j.biotechadv.2016.11.00627923764
    [Google Scholar]
  44. CaiT. QiuH. Application of deep eutectic solvents in chromatography: A review.Trends Analyt. Chem.201912011562310.1016/j.trac.2019.115623
    [Google Scholar]
  45. ChenJ. LiY. WangX. LiuW. Application of deep eutectic solvents in food analysis: A review.Molecules20192424459410.3390/molecules2424459431888138
    [Google Scholar]
  46. NieL. ToufoukiS. YaoS. GuoD. Rethinking the applications of ionic liquids and deep eutectic solvents in innovative nano-sorbents.Front Chem.2021965323810.3389/fchem.2021.65323833898393
    [Google Scholar]
  47. TroterD.Z. TodorovićZ.B. StojanovićD.D.R. StamenkovićO.S. VeljkovićV.B. Application of ionic liquids and deep eutectic solvents in biodiesel production: A review.Renew. Sustain. Energy Rev.20166147350010.1016/j.rser.2016.04.011
    [Google Scholar]
  48. WuJ. LiangQ. YuX. LüQ-F. MaL. QinX. ChenG. LiB. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective.Adv. Funct. Mater.20213122201110210.1002/adfm.202011102
    [Google Scholar]
  49. ÜnlüA.E. ArıkayaA. TakaçS. Use of deep eutectic solvents as catalyst: A mini-review.Green Process. Synth.20198135537210.1515/gps‑2019‑0003
    [Google Scholar]
  50. AtilhanM. AparicioS. Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents.J. Petrol. Sci. Eng.202120510874610.1016/j.petrol.2021.108746
    [Google Scholar]
  51. JablonskýM. ŠkulcováA. ŠimaJ. Use of deep eutectic solvents in polymer chemistry–A review.Mol.20192421397810.3390/molecules24213978
    [Google Scholar]
  52. ZhangY. JiX. LuX. Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis.Renew. Sustain. Energy Rev.20189743645510.1016/j.rser.2018.08.007
    [Google Scholar]
  53. SvigeljR. DossiN. GrazioliC. TonioloR. Deep Eutectic Solvents (DESs) and their application in biosensor development.Sensors20212113426310.3390/s21134263
    [Google Scholar]
  54. ChenY. MuT. Application of deep eutectic solvents in biomass pretreatment and conversion.Green Energ. Environ.2019429511510.1016/j.gee.2019.01.012
    [Google Scholar]
  55. SadeghiS. DavamiA. CdSe quantum dots capped with a deep eutectic solvent as a fluorescent probe for copper(II) determination in various drinks.Microchim. Acta202018721910.1007/s00604‑019‑4085‑2
    [Google Scholar]
  56. RenH. WangX. GongR. LiM. ZhuH. ZhangJ. DuanE. Atomically dispersed Eu(III) sites in natural deep eutectic solvents based fluorescent probe efficient identification of Fe3+ and Cu2+ in wastewater.Spectrochim. Acta A Mol. Biomol. Spectrosc.202022911787410.1016/j.saa.2019.11787431813718
    [Google Scholar]
  57. Effective removal of copper ion from aqueous solution using beads of chitosan-choline chloride/glycerol deep eutectic solvent.Sci. Res. J.2022192233710.24191/srj.v19i2.15643
    [Google Scholar]
  58. SaleemM. RafiqM. HanifM. Organic material based fluorescent sensor for Hg2+: A brief review on recent development.J. Fluoresc.2016271315810.1007/s10895‑016‑1933‑x
    [Google Scholar]
  59. GaoZ. LiX. ShiL. YangY. Deep eutectic solvents-derived carbon dots for detection of mercury (II), photocatalytic antifungal activity and fluorescent labeling for C. albicans.Spectrochim. Acta A Mol. Biomol. Spectrosc.201922011708010.1016/j.saa.2019.04.07231150924
    [Google Scholar]
  60. AlOmarM.K. AlsaadiM.A. JassamT.M. AkibS. HashimA.M. Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water.J. Colloid Interface Sci.201749741342110.1016/j.jcis.2017.03.01428314146
    [Google Scholar]
  61. FiyadhS.S. AlomarM.K. JaafarW.Z.B. AlsaadiM.A. FayaedS.S. KotingS.B. LaiS.H. ChowM.F. AhmedA.N. ShafieE.A. Artificial neural network approach for modelling of mercury ions removal from water using functionalized CNTs with deep eutectic solvent.Int. J. Mol. Sci.20192017420610.3390/ijms20174206
    [Google Scholar]
  62. AltunayN. ElikA. GürkanR. Natural deep eutectic solvent-based ultrasound-assisted-microextraction for extraction, pre-concentration and analysis of methylmercury and total mercury in fish and environmental waters by spectrophotometry.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.20193671079109710.1080/19440049.2019.161993931140933
    [Google Scholar]
  63. WarragS.E.E. FetisovE.O. van OschD.J.G.P. HarwoodD.B. KroonM.C. SiepmannJ.I. PetersC.J. Mercury capture from petroleum using deep eutectic solvents.Ind. Eng. Chem. Res.201857289222923010.1021/acs.iecr.8b00967
    [Google Scholar]
  64. ZhengK. WangX. KangK. baoyouL. JiaX. PengZ. Pb2+ fluorescence probe constructed with acetamide-ethanolic acid deep eutectic solvent wrapped on the surface of biomass carbon quantum dots.SSRN 2018
    [Google Scholar]
  65. AlOmarM.K. AlsaadiM.A. HayyanM. AkibS. IbrahimR.K. HashimM.A. Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes.J. Mol. Liq.201622288389410.1016/j.molliq.2016.07.074
    [Google Scholar]
  66. LaosuwanM. PoonsawatC. BurakhamR. SrijaranaiS. MukdasaiS. A novel liquid colorimetric probe for highly selective and sensitive detection of lead (II).Food Chem.202136313025410.1016/j.foodchem.2021.13025434120039
    [Google Scholar]
  67. AbdolhosseiniM. ShemiraniF. YousefiS.M. Poly (deep eutectic solvents) as a new class of sustainable sorbents for solid phase extraction: Application for preconcentration of Pb (II) from food and water samples.Mikrochim. Acta20201871160210.1007/s00604‑020‑04564‑533034749
    [Google Scholar]
  68. PamA.A. HirZ.A.M. AbdullahA.H. TanY.P. Pb(II) removal in water via adsorption onto deep eutectic solvent fabricated activated carbon.Appl. Water Sci.20211169010.1007/s13201‑021‑01420‑6
    [Google Scholar]
  69. PechovaA. PavlataL. Chromium as an essential nutrient: A review.Vet. Med.200752111810.17221/2010‑VETMED
    [Google Scholar]
  70. den SewradjB.S.P. van BenthemJ. StaalY.C.M. EzendamJ. PiersmaA.H. HesselE.V.S. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects.Regul. Toxicol. Pharmacol.202112610504510.1016/j.yrtph.2021.10504534506880
    [Google Scholar]
  71. PourmohammadM. FarajiM. JafarinejadS. Extraction of chromium (VI) in water samples by dispersive liquid–liquid microextraction based on deep eutectic solvent and determination by UV–vis spectrophotometry.J. Environ. Ana100101146115910.1080/03067319.2019.1650920
    [Google Scholar]
  72. ZhangY. MengY. MaL. JiH. LuX. PangZ. DongC. Production of biochar from lignocellulosic biomass with acidic deep eutectic solvent and its application as efficient adsorbent for Cr (VI).J. Clean. Prod.202132412927010.1016/j.jclepro.2021.129270
    [Google Scholar]
  73. JiangX. HuangJ. ChenT. ZhaoQ. XuF. ZhangX. Synthesis of hemicellulose/deep eutectic solvent based carbon quantum dots for ultrasensitive detection of Ag+ and L-cysteine with “off-on” pattern.Int. J. Biol. Macromol.202015341242010.1016/j.ijbiomac.2020.03.02632156539
    [Google Scholar]
  74. JiangX. ShiY. LiuX. WangM. SongP. XuF. ZhangX. Synthesis of nitrogen-doped lignin/DES carbon quantum dots as a fluorescent probe for the detection of Fe3+ ions.Polym.20181011128210.3390/polym10111282
    [Google Scholar]
  75. SadeghiS. DavamiA. Ternary deep eutectic solvent modified cadmium selenide quantum dots as a selective fluorescent probe for sensing of uranyl ions in water samples.J. Mol. Liq.202031611375310.1016/j.molliq.2020.113753
    [Google Scholar]
  76. RajputM.K. KonwarM. SarmaD. Hydrophobic natural deep eutectic solvent THY-DA as sole extracting agent for arsenic (III) removal from aqueous solutions.Environ. Technol. Innov.20212410201710.1016/j.eti.2021.102017
    [Google Scholar]
  77. Zinov’evaI.V. KozhevnikovaA.V. MilevskiiN.A. ZakhodyaevaY.A. VoshkinA.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol.Theor. Found. Chem. Eng.202256222122910.1134/S0040579522020178
    [Google Scholar]
  78. RahmatiN. RahimnejadM. PouraliM. MuallahS.K. Effective removal of nickel ions from aqueous solution using multi-wall carbon nanotube functionalized by glycerol-based deep eutectic solvent.Colloid Interface Sci. Commun.20214010034710.1016/j.colcom.2020.100347
    [Google Scholar]
/content/journals/cac/10.2174/0115734110294079240424103357
Loading
/content/journals/cac/10.2174/0115734110294079240424103357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test