Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Biochar has garnered considerable attention in recent times due to its potential uses in the environmental field. In this study, we comprehensively examine and condense information on biochar production, characteristics, and adsorption mechanisms, with a focus on its economic applications for remediating hazardous contaminants. Our assessment is based on over 200 publications from the past decade. Biochar, a carbon-rich material, can be derived from various organic waste sources, such as food waste and urban sewage sludge. Researchers are particularly interested in biochar due to its high carbon content, cation exchange capacity, substantial specific surface area, and stable structure. We investigate how the physical and chemical properties of biochar may vary based on the feedstock used, providing a comprehensive overview of biochar and its composition for pollution remediation. The review also discusses common techniques such as gasification, hydrothermal carbonization, and pyrolysis used to produce biochar. We analyze current research on the mechanisms involved in pollutant treatment using biochar and its composites while also addressing future directions in biochar research.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110286724240318051113
2025-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. IslamM.S. AhmedM.K. RaknuzzamanM. MamunH.A.M. IslamM.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country.Ecol. Indic.20154828229110.1016/j.ecolind.2014.08.016
    [Google Scholar]
  2. BenderJ. LeeR.F. PhillipsP. Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation.J. Ind. Microbiol.199514211311810.1007/BF01569892
    [Google Scholar]
  3. HoudeM. MuirD.C.G. KiddK.A. GuildfordS. DrouillardK. EvansM.S. WangX. WhittleD.M. HaffnerD. KlingH. Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs.Environ. Toxicol. Chem.200827102169217810.1897/08‑071.118444699
    [Google Scholar]
  4. NaeemK. SyedT.H. AbdusS. NargisJ. KyongS.K. Physicochemical investigation of the drinking water sources from Mardan, Khyber Pakhtunkhwa, Pakistan.Int. J. Phys. Sci.201383316611671
    [Google Scholar]
  5. PawariM. GawandeS. Ground water pollution & its consequence. Int. J. Eng. Res. gen.Sci.201534773776
    [Google Scholar]
  6. KhanM.A. GhouriA.M. Environmental pollution: Its effects on life and its remedies.Res. World J. Arts Sci. Commer.201122276285
    [Google Scholar]
  7. TarunaJ. AlankritaC. Assessment of water quality and its effects on the health of residents of Jhunjhunu district, Rajasthan: A cross sectional study.J. Public Health Epidemiol.201354186191
    [Google Scholar]
  8. KambleS.M. Water pollution and public health issues in Kolhapur city in Maharashtra.Int. J. Scientif. Res. Pub.20144116
    [Google Scholar]
  9. AhmadS. YusafzaiF. BariT. Assessment of heavy metals in surface water of River Panjkora Dir Lower, KPK Pakistan.J. Biol. Environ. Sci.20145144152
    [Google Scholar]
  10. UllahS. JavedM.W. ShafiqueM. KhanS.F. An integrated approach for quality assessment of drinking water using GIS: A case study of Lower Dir.J. Himal. Earth Sci.2014472
    [Google Scholar]
  11. JabeenS. MahmoodQ. TariqS. NawabB. ElahiN. Health impact caused by poor water and sanitation in district Abbottabad.J. Ayub Med. Coll. Abbottabad2011231475022830145
    [Google Scholar]
  12. CurrieJ. Graff ZivinJ. MeckelK. NeidellM. SchlenkerW. Something in the water: Contaminated drinking water and infant health.Can. J. Econ.201346379181010.1111/caje.1203927134285
    [Google Scholar]
  13. AhmedT. ScholzM. Al-FarajF. NiazW. Water-related impacts of climate change on agriculture and subsequently on public health: A review for generalists with particular reference to Pakistan.Int. J. Environ. Res. Public Health20161311105110.3390/ijerph1311105127801802
    [Google Scholar]
  14. Minerals reconnaissance at saint catherine area, Southern Central Sinai, Egypt and their environmental impacts on human health. Salem, H.M.; Fouly, E.A., Eds.;Proceedings of the International Conference for Environmen-tal Hazard Mitigation (ICEHM 2000)200058866559988
    [Google Scholar]
  15. ChowdhuryS. PilatusK.A. ZimmermannK.F. Arsenic contamination of drinking water and mental health. DEF-Discussion Papers on Development Policy2016222
    [Google Scholar]
  16. HugginsT.M. HaegerA. BiffingerJ.C. RenZ.J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.Water Res.20169422523210.1016/j.watres.2016.02.05926954576
    [Google Scholar]
  17. HuB. AiY. JinJ. HayatT. AlsaediA. ZhuangL. WangX. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials.Biochar202021476410.1007/s42773‑020‑00044‑4
    [Google Scholar]
  18. LehmannJ. JosephS. Biochar for environmental management: An introduction. Biochar for Environmental Management–Science and TechnologyLondon, Sterling, VAEarthscan2009
    [Google Scholar]
  19. LiJ. Exploration of Hemudu pottery culture.Jingdezhen’s Ceram.199633640
    [Google Scholar]
  20. ChenX. ChenG. ChenL. ChenY. LehmannJ. McBrideM.B. HayA.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution.Bioresour. Technol.2011102198877888410.1016/j.biortech.2011.06.07821764299
    [Google Scholar]
  21. InyangM. GaoB. DingW. PullammanappallilP. ZimmermanA.R. CaoX. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse.Sep. Sci. Technol.201146121950195610.1080/01496395.2011.584604
    [Google Scholar]
  22. AltenorS. CareneB. EmmanuelE. LambertJ. EhrhardtJ.J. GaspardS. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.J. Hazard. Mater.20091651-31029103910.1016/j.jhazmat.2008.10.13319118948
    [Google Scholar]
  23. SulimanM.A. SajidM. NazalM.K. IslamM.A. Carbon-based materials as promising sorbents for analytical sample preparation: Recent advances and trends in extraction of toxic metal pollutants from various media.Trends Analyt. Chem.202316711726510.1016/j.trac.2023.117265
    [Google Scholar]
  24. AlshakhsF. GijjapuD.R. Aminul IslamM. AkinpeluA.A. NazalM.K. A promising palm leaves waste-derived biochar for efficient removal of tetracycline from wastewater.J. Mol. Struct.2024129613684610.1016/j.molstruc.2023.136846
    [Google Scholar]
  25. OzturkM. SabaN. AltayV. IqbalR. HakeemK.R. JawaidM. IbrahimF.H. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia.Renew. Sustain. Energy Rev.2017791285130210.1016/j.rser.2017.05.111
    [Google Scholar]
  26. KongS.H. LohS.K. BachmannR.T. RahimS.A. SalimonJ. Biochar from oil palm biomass: A review of its potential and challenges.Renew. Sustain. Energy Rev.20143972973910.1016/j.rser.2014.07.107
    [Google Scholar]
  27. NorliI. FazilahA. PazliM.I. Agricultural biomass utilisation as a key driver for Malaysian bioeconomy. Knowledge-Driven Developments in the Bioeconomy.Springer2017141159
    [Google Scholar]
  28. OsayiJ.I. IyukeS. OgbeideS.E. Biocrude production through pyrolysis of used tyres.J. Catal.201420141910.1155/2014/386371
    [Google Scholar]
  29. WeiJ. TuC. YuanG. LiuY. BiD. XiaoL. LuJ. ThengB.K.G. WangH. ZhangL. ZhangX. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar.Environ. Pollut.2019251566510.1016/j.envpol.2019.04.12831071633
    [Google Scholar]
  30. ZhaoB. O’ConnorD. ZhangJ. PengT. ShenZ. TsangD.C.W. HouD. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar.J. Clean. Prod.201817497798710.1016/j.jclepro.2017.11.013
    [Google Scholar]
  31. LengL. HuangH. An overview of the effect of pyrolysis process parameters on biochar stability.Bioresour. Technol.201827062764210.1016/j.biortech.2018.09.03030220436
    [Google Scholar]
  32. CrossA. SohiS.P. A method for screening the relative long‐term stability of biochar.Glob. Change Biol. Bioenergy20135221522010.1111/gcbb.12035
    [Google Scholar]
  33. WangZ. LiuK. XieL. ZhuH. JiS. ShuX. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks.J. Anal. Appl. Pyrolysis201914210465910.1016/j.jaap.2019.104659
    [Google Scholar]
  34. PeiT. ShiF. HouD. YangF. LuY. LiuC. LinX. LuY. ZhengZ. ZhengY. Enhanced adsorption of phenol from aqueous solution by KOH combined Fe-Zn bimetallic oxide co-pyrolysis biochar: Fabrication, performance, and mechanism.Bioresour. Technol.202338812974610.1016/j.biortech.2023.12974637689119
    [Google Scholar]
  35. YinQ. LiuM. RenH. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water.J. Environ. Manage.201924910941010.1016/j.jenvman.2019.10941031446122
    [Google Scholar]
  36. ArbeláezM.J.I. JannaC.F. PérezG.M. Fast pyrolysis of biomass: A review of relevant aspects. Part I: Parametric study.Dyna20158219223924810.15446/dyna.v82n192.44701
    [Google Scholar]
  37. MohanD. PittmanC.U.Jr SteeleP.H. Pyrolysis of wood/biomass for bio-oil: A critical review.Energy Fuels200620384888910.1021/ef0502397
    [Google Scholar]
  38. BridgwaterA. PeacockeG. Fast pyrolysis processes for biomass.Renew. Sustain. Energy Rev.20004117310.1016/S1364‑0321(99)00007‑6
    [Google Scholar]
  39. LiuS. XieQ. ZhangB. ChengY. LiuY. ChenP. RuanR. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.Bioresour. Technol.201620416417010.1016/j.biortech.2015.12.08526773959
    [Google Scholar]
  40. KarunanayakeA.G. ToddO.A. CrowleyM.L. RicchettiL.B. PittmanC.U.Jr AndersonR. MlsnaT.E. Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir.Chem. Eng. J.2017319758810.1016/j.cej.2017.02.116
    [Google Scholar]
  41. LaiW.Y. LaiC.M. KeG.R. ChungR.S. ChenC.T. ChengC.H. PaiC.W. ChenS.Y. ChenC.C. The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet.J. Taiwan Inst. Chem. Eng.20134461039104410.1016/j.jtice.2013.06.028
    [Google Scholar]
  42. DemirbasA. ArinG. An overview of biomass pyrolysis.Energ. Sourc.200224547148210.1080/00908310252889979
    [Google Scholar]
  43. HigashikawaF.S. ConzR.F. ColzatoM. CerriC.E.P. AlleoniL.R.F. Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water.J. Clean. Prod.201613796597210.1016/j.jclepro.2016.07.205
    [Google Scholar]
  44. LiL. RowbothamJ.S. GreenwellC.H. DyerP.W. An introduction to pyrolysis and catalytic pyrolysis: Versatile techniques for biomass conversion. New and future developments in catalysis: Catalytic biomass conversion. SuibS.L. Elsevier2013173208
    [Google Scholar]
  45. TripathiM. SahuJ.N. GanesanP. MonashP. DeyT.K. Effect of microwave frequency on dielectric properties of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS.J. Anal. Appl. Pyrolysis201511230631210.1016/j.jaap.2015.01.007
    [Google Scholar]
  46. HirstE.A. TaylorA. MokayaR. A simple flash carbonization route for conversion of biomass to porous carbons with high CO 2 storage capacity.J. Mater. Chem. A Mater. Energy Sustain.2018626123931240310.1039/C8TA04409K
    [Google Scholar]
  47. CarrierM. HugoT. GorgensJ. KnoetzeH. Comparison of slow and vacuum pyrolysis of sugar cane bagasse.J. Anal. Appl. Pyrolysis2011901182610.1016/j.jaap.2010.10.001
    [Google Scholar]
  48. RoyC. ChaalaA. Vacuum pyrolysis of automobile shredder residues.Resour. Conserv. Recycling200132112710.1016/S0921‑3449(00)00088‑4
    [Google Scholar]
  49. Uras-PostmaÜ. CarrierM. KnoetzeJ.H. Vacuum pyrolysis of agricultural wastes and adsorptive criteria description of biochars governed by the presence of oxides.J. Anal. Appl. Pyrolysis201410712313210.1016/j.jaap.2014.02.012
    [Google Scholar]
  50. GabhaneJ.W. BhangeV.P. PatilP.D. BankarS.T. KumarS. Recent trends in biochar production methods and its application as a soil health conditioner: A review.SN Appl. Sci.202027130710.1007/s42452‑020‑3121‑5
    [Google Scholar]
  51. dos SantosK.J.L. dos SantosG.E.S. de SáÍ.M.G.L. IdeA.H. DuarteJ.L.S. de CarvalhoS.H.V. SolettiJ.I. MeiliL. Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix.Bioresour. Technol.201929312209310.1016/j.biortech.2019.12209331518818
    [Google Scholar]
  52. GabhaneJ. Prince WilliamS.P.M. VaidyaA.N. MahapatraK. ChakrabartiT. Influence of heating source on the efficacy of lignocellulosic pretreatment – A cellulosic ethanol perspective.Biomass Bioenergy20113519610210.1016/j.biombioe.2010.08.026
    [Google Scholar]
  53. HuangY.F. ChiuehP.T. KuanW.H. LoS.L. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics.Energy201610013714410.1016/j.energy.2016.01.088
    [Google Scholar]
  54. Arafat HossainM. GanesanP. JewaratnamJ. ChinnaK. Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production.Energy Convers. Manage.201713334936210.1016/j.enconman.2016.10.046
    [Google Scholar]
  55. HuangY.F. ChiuehP.T. LoS.L. CO2 adsorption on biochar from co-torrefaction of sewage sludge and leucaena wood using microwave heating.Energy Procedia20191584435444010.1016/j.egypro.2019.01.772
    [Google Scholar]
  56. LinQ. ZhangJ. YinL. LiuH. ZuoW. TianY. Relationship between heavy metal consolidation and H2S removal by biochar from microwave pyrolysis of municipal sludge: Effect and mechanism.Environ. Sci. Pollut. Res. Int.20212822276942770210.1007/s11356‑021‑12631‑433515143
    [Google Scholar]
  57. HuB. WangK. WuL. YuS.H. AntoniettiM. TitiriciM.M. Engineering carbon materials from the hydrothermal carbonization process of biomass.Adv. Mater.201022781382810.1002/adma.20090281220217791
    [Google Scholar]
  58. KruseA. FunkeA. TitiriciM.M. Hydrothermal conversion of biomass to fuels and energetic materials.Curr. Opin. Chem. Biol.201317351552110.1016/j.cbpa.2013.05.00423707262
    [Google Scholar]
  59. TitiriciM.M. WhiteR.J. FalcoC. SevillaM. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage.Energy Environ. Sci.2012556796682210.1039/c2ee21166a
    [Google Scholar]
  60. RongX. XieM. KongL. NatarajanV. MaL. ZhanJ. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation.Chem. Eng. J.201937229430310.1016/j.cej.2019.04.135
    [Google Scholar]
  61. MaH. LiJ.B. LiuW.W. MiaoM. ChengB.J. ZhuS.W. Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal.Bioresour. Technol.2015190132010.1016/j.biortech.2015.04.04825919932
    [Google Scholar]
  62. HuffM.D. KumarS. LeeJ.W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.J. Environ. Manage.201414630330810.1016/j.jenvman.2014.07.01625190598
    [Google Scholar]
  63. WuJ. YangJ. HuangG. XuC. LinB. Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B.J. Clean. Prod.202025111971710.1016/j.jclepro.2019.119717
    [Google Scholar]
  64. QianK. KumarA. ZhangH. BellmerD. HuhnkeR. Recent advances in utilization of biochar.Renew. Sustain. Energy Rev.2015421055106410.1016/j.rser.2014.10.074
    [Google Scholar]
  65. Al-RahbiA.S. WilliamsP.T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char.Appl. Energy201719050150910.1016/j.apenergy.2016.12.099
    [Google Scholar]
  66. SattarA. LeekeG.A. HornungA. WoodJ. Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas.Biomass Bioenergy20146927628610.1016/j.biombioe.2014.07.025
    [Google Scholar]
  67. MeyerS. GlaserB. QuickerP. Technical, economical, and climate-related aspects of biochar production technologies: A literature review.Environ. Sci. Technol.201145229473948310.1021/es201792c21961528
    [Google Scholar]
  68. QianK. KumarA. PatilK. BellmerD. WangD. YuanW. HuhnkeR. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char.Energies2013683972398610.3390/en6083972
    [Google Scholar]
  69. KumarA. JonesD. HannaM. Thermochemical biomass gasification: A review of the current status of the technology.Energies20092355658110.3390/en20300556
    [Google Scholar]
  70. ClementeR.A. GutiérrezJ. HenaoH. MeloA. PérezJ. ChicaE. Adsorption capacity of the biochar obtained from Pinus patula wood micro-gasification for the treatment of polluted water containing malachite green dye.J. King Saud Univ. Eng. Sci.2021357431441
    [Google Scholar]
  71. AtinafuD.G. YunB.Y. YangS. KimS. Encapsulation of dodecane in gasification biochar for its prolonged thermal/shape stability, reliability, and ambient enthalpy storage.Chem. Eng. J.202243713540710.1016/j.cej.2022.135407
    [Google Scholar]
  72. YuK.L. LauB.F. ShowP.L. OngH.C. LingT.C. ChenW.H. NgE.P. ChangJ.S. Recent developments on algal biochar production and characterization.Bioresour. Technol.201724621110.1016/j.biortech.2017.08.00928844690
    [Google Scholar]
  73. PrinsM.J. PtasinskiK.J. JanssenF.J.J.G. Torrefaction of wood.J. Anal. Appl. Pyrolysis2006771354010.1016/j.jaap.2006.01.001
    [Google Scholar]
  74. YaashikaaP.R. KumarP.S. VarjaniS. SaravananA. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy.Biotechnol. Rep.2020281e0057010.1016/j.btre.2020.e0057033304842
    [Google Scholar]
  75. WannapeeraJ. WorasuwannarakN. Upgrading of woody biomass by torrefaction under pressure.J. Anal. Appl. Pyrolysis20129617318010.1016/j.jaap.2012.04.002
    [Google Scholar]
  76. RoyM. KunduK. Production of biochar briquettes from torrefaction of pine needles and its quality analysis.Bioresour. Technol. Rep.20232210146710.1016/j.biteb.2023.101467
    [Google Scholar]
  77. ZhengN.Y. LeeM. LinY.L. SamannanB. Microwave-assisted wet co-torrefaction of food sludge and lignocellulose biowaste for biochar production and nutrient recovery.Process Saf. Environ. Prot.202014427328310.1016/j.psep.2020.07.032
    [Google Scholar]
  78. ZhangC. LiF. HoS.H. ChenW.H. GunarathneD.S. ShowP.L. Oxidative torrefaction of microalga Nannochloropsis Oceanica activated by potassium carbonate for solid biofuel production.Environ. Res.2022212Pt C11338910.1016/j.envres.2022.11338935561822
    [Google Scholar]
  79. TripathiM. SahuJ.N. GanesanP. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review.Renew. Sustain. Energy Rev.20165546748110.1016/j.rser.2015.10.122
    [Google Scholar]
  80. JoJ.H. KimS.S. ShimJ.W. LeeY.E. YooY.S. Pyrolysis characteristics and kinetics of food wastes.Energies2017108119110.3390/en10081191
    [Google Scholar]
  81. ElkhalifaS. Al-AnsariT. MackeyH.R. McKayG. Food waste to biochars through pyrolysis: A review.Resour. Conserv. Recycling201914431032010.1016/j.resconrec.2019.01.024
    [Google Scholar]
  82. AmalinaF. RazakA.S.A. KrishnanS. SulaimanH. ZularisamA.W. NasrullahM. Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review.J. Hazard. Mater. Adv.2022710013410.1016/j.hazadv.2022.100134
    [Google Scholar]
  83. RuizJ.A. JuárezM.C. MoralesM.P. MuñozP. MendívilM.A. Biomass gasification for electricity generation: Review of current technology barriers.Renew. Sustain. Energy Rev.20131817418310.1016/j.rser.2012.10.021
    [Google Scholar]
  84. NidheeshP.V. GopinathA. RanjithN. AkreP.A. SreedharanV. Suresh KumarM. Potential role of biochar in advanced oxidation processes: A sustainable approach.Chem. Eng. J.202140512658210.1016/j.cej.2020.126582
    [Google Scholar]
  85. ZhangZ. ZhuZ. ShenB. LiuL. Insights into biochar and hydrochar production and applications: A review.Energy201917158159810.1016/j.energy.2019.01.035
    [Google Scholar]
  86. PatilP.D. YadavG.D. Application of microwave assisted three phase partitioning method for purification of laccase from Trametes hirsuta.Process Biochem.20186522022710.1016/j.procbio.2017.10.006
    [Google Scholar]
  87. TurnerJ. SverdrupG. MannM.K. ManessP.C. KroposkiB. GhirardiM. EvansR.J. BlakeD. Renewable hydrogen production.Int. J. Energy Res.200832537940710.1002/er.1372
    [Google Scholar]
  88. ShaheenS.M. NiaziN.K. HassanN.E.E. BibiI. WangH. TsangD.C.W. OkY.S. BolanN. RinklebeJ. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review.Int. Mater. Rev.201964421624710.1080/09506608.2018.1473096
    [Google Scholar]
  89. ManyàJ.J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs.Environ. Sci. Technol.201246157939795410.1021/es301029g22775244
    [Google Scholar]
  90. ZhaoL. CaoX. MašekO. ZimmermanA. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures.J. Hazard. Mater.2013256-2571910.1016/j.jhazmat.2013.04.01523669784
    [Google Scholar]
  91. LiangC. GascóG. FuS. MéndezA. FerreiroP.J. Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size.Soil Tillage Res.201616431010.1016/j.still.2015.10.002
    [Google Scholar]
  92. QambraniN.A. RahmanM.M. WonS. ShimS. RaC. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review.Renew. Sustain. Energy Rev.20177925527310.1016/j.rser.2017.05.057
    [Google Scholar]
  93. NovakJ.M. LimaI. XingB. GaskinJ.W. SteinerC. DasK. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand.Annu. Rev. Environ. Resour.200933
    [Google Scholar]
  94. GlaserB. LehmannJ. ZechW. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review.Biol. Fertil. Soils200235421923010.1007/s00374‑002‑0466‑4
    [Google Scholar]
  95. AkhtarJ. AminS.N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis.Renew. Sustain. Energy Rev.20121675101510910.1016/j.rser.2012.05.033
    [Google Scholar]
  96. AysuT. KüçükM.M. Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products.Energy2014641002102510.1016/j.energy.2013.11.053
    [Google Scholar]
  97. YorgunS. Fixed-bed pyrolysis of Miscanthus x giganteus: Product yields and bio-oil characterization.Energy Sources200325877979010.1080/00908310390207828
    [Google Scholar]
  98. SeptienS. ValinS. DupontC. PeyrotM. SalvadorS. Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000–1400°C).Fuel20129720221010.1016/j.fuel.2012.01.049
    [Google Scholar]
  99. JafriN. WongW.Y. DoshiV. YoonL.W. CheahK.H. A review on production and characterization of biochars for application in direct carbon fuel cells.Process Saf. Environ. Prot.201811815216610.1016/j.psep.2018.06.036
    [Google Scholar]
  100. JiangA. ChengZ. ShenZ. GuoW. QSAR study on the removal efficiency of organic pollutants in supercritical water based on degradation temperature.Chem. Cent. J.20181211610.1186/s13065‑018‑0380‑y29442196
    [Google Scholar]
  101. MitraS. ChakrabortyA.J. TareqA.M. EmranT.B. NainuF. KhusroA. IdrisA.M. KhandakerM.U. OsmanH. AlhumaydhiF.A. GandaraS.J. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity.J. King Saud Univ. Sci.202234310186510.1016/j.jksus.2022.101865
    [Google Scholar]
  102. HerathH.M.S.K. ArbestainC.M. HedleyM.J. KirschbaumM.U.F. WangT. van HaleR. Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter.Glob. Change Biol. Bioenergy20157351252610.1111/gcbb.12183
    [Google Scholar]
  103. AliI. AsimM. KhanT.A. Low cost adsorbents for the removal of organic pollutants from wastewater.J. Environ. Manage.201211317018310.1016/j.jenvman.2012.08.02823023039
    [Google Scholar]
  104. DaiY. ZhangN. XingC. CuiQ. SunQ. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review.Chemosphere2019223122710.1016/j.chemosphere.2019.01.16130763912
    [Google Scholar]
  105. KołodyńskaD. BąkJ. MajdańskaM. FilaD. Sorption of lanthanide ions on biochar composites.J. Rare Earths201836111212122010.1016/j.jre.2018.03.027
    [Google Scholar]
  106. AbbasZ. AliS. RizwanM. ZaheerI.E. MalikA. RiazM.A. ShahidM.R. RehmanM.Z. Al-WabelM.I. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar.Arab. J. Geosci.2018111644810.1007/s12517‑018‑3790‑1
    [Google Scholar]
  107. YinY. HeX. GaoR. MaH. YangY. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon.J. Integr. Agric.201413349149810.1016/S2095‑3119(13)60704‑2
    [Google Scholar]
  108. OniB.A. OziegbeO. OlawoleO.O. Significance of biochar application to the environment and economy.Ann. Agric. Sci.201964222223610.1016/j.aoas.2019.12.006
    [Google Scholar]
  109. VermaT. AggarwalA. SinghS. SharmaS. SarmaS.J. Current challenges and advancements towards discovery and resistance of antibiotics.J. Mol. Struct.2022124813138010.1016/j.molstruc.2021.131380
    [Google Scholar]
  110. BenY. FuC. HuM. LiuL. WongM.H. ZhengC. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review.Environ. Res.201916948349310.1016/j.envres.2018.11.04030530088
    [Google Scholar]
  111. CarvalhoI.T. SantosL. Antibiotics in the aquatic environments: A review of the European scenario.Environ. Int.20169473675710.1016/j.envint.2016.06.02527425630
    [Google Scholar]
  112. LiuS. XuW. LiuY. TanX. ZengG. LiX. LiangJ. ZhouZ. YanZ. CaiX. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water.Sci. Total Environ.201759254655310.1016/j.scitotenv.2017.03.08728318694
    [Google Scholar]
  113. ZhouY. LiuX. XiangY. WangP. ZhangJ. ZhangF. WeiJ. LuoL. LeiM. TangL. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour.Technol.2017245Pt A26627310.1016/j.biortech.2017.08.17828892700
    [Google Scholar]
  114. ZhongJ. LiL. ZhongZ. YangQ. ZhangJ. WangL. Advances on the research of the effect of biochar on the environmental behavior of antibiotics.J. Saf. Environ.2018182657663
    [Google Scholar]
  115. SiloriR. ZangJ. RavalN.P. GiriB.S. MahlknechtJ. MoraA. MorenoD.J. TauseefS.M. KumarM. Adsorptive removal of ciprofloxacin and sulfamethoxazole from aqueous matrices using sawdust and plastic waste-derived biochar: A sustainable fight against antibiotic resistance.Bioresour. Technol.202338712953710.1016/j.biortech.2023.12953737488012
    [Google Scholar]
  116. AhmedM.B. ZhouJ.L. NgoH.H. GuoW. JohirM.A.H. SornalingamK. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water.Chem. Eng. J.201731134835810.1016/j.cej.2016.11.106
    [Google Scholar]
  117. ChenT. LuoL. DengS. ShiG. ZhangS. ZhangY. DengO. WangL. ZhangJ. WeiL. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure.Bioresour. Technol.201826743143710.1016/j.biortech.2018.07.07430032057
    [Google Scholar]
  118. AfzalM.Z. SunX.F. LiuJ. SongC. WangS.G. JavedA. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads.Sci. Total Environ.201863956056910.1016/j.scitotenv.2018.05.12929800849
    [Google Scholar]
  119. AshiqA. AdassooriyaN.M. SarkarB. RajapakshaA.U. OkY.S. VithanageM. Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media.J. Environ. Manage.201923642843510.1016/j.jenvman.2019.02.00630769252
    [Google Scholar]
  120. ZhangX. ZhangY. NgoH.H. GuoW. WenH. ZhangD. LiC. QiL. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar.Sci. Total Environ.202071613701510.1016/j.scitotenv.2020.13701532036134
    [Google Scholar]
  121. ZhouY. CaoS. XiC. LiX. ZhangL. WangG. ChenZ. A novel Fe3O4/graphene oxide/citrus peel-derived bio-char based nanocomposite with enhanced adsorption affinity and sensitivity of ciprofloxacin and sparfloxacin.Bioresour. Technol.201929212195110.1016/j.biortech.2019.12195131400654
    [Google Scholar]
  122. EldinM.S.M. SolimanE.A. ElzatahryA.A.F. ElaassarM.R. EweidaB.Y. ElkadyM.F. Abdel RahmanA.M. YossefM.E. Carboxylated alginate hydrogel beads for methylene blue removal: Formulation, kinetic and isothermal studies.Desalination Water Treat.201916830832310.5004/dwt.2019.24628
    [Google Scholar]
  123. TangJ. LiY. WangX. DarochM. Effective adsorption of aqueous Pb2+ by dried biomass of Landoltia punctata and Spirodela polyrhiza.J. Clean. Prod.2017145253410.1016/j.jclepro.2017.01.038
    [Google Scholar]
  124. ChaukuraN. MurimbaE.C. GwenziW. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge.Appl. Water Sci.2017752175218610.1007/s13201‑016‑0392‑5
    [Google Scholar]
  125. LonappanL. RouissiT. DasR.K. BrarS.K. RamirezA.A. VermaM. SurampalliR.Y. ValeroJ.R. Adsorption of methylene blue on biochar microparticles derived from different waste materials.Waste Manag.20164953754410.1016/j.wasman.2016.01.01526818183
    [Google Scholar]
  126. XiangpingL. ChuanbinW. JianguangZ. BinL. JupingL. GuanyiC. Application of biochar in removal of organics and heavy metals from water.Acta Petrol. Sin.20183451047
    [Google Scholar]
  127. dos ReisG.S. ThivetJ. LaisnéE. SrivastavaV. GrimmA. LimaE.C. BergnaD. HuT. NaushadM. LassiU. Synthesis of novel mesoporous selenium-doped biochar with high-performance sodium diclofenac and reactive orange 16 dye removals.Chem. Eng. Sci.202328111912910.1016/j.ces.2023.119129
    [Google Scholar]
  128. ZazyckiM.A. GodinhoM. PerondiD. FolettoE.L. CollazzoG.C. DottoG.L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions.J. Clean. Prod.2018171576510.1016/j.jclepro.2017.10.007
    [Google Scholar]
  129. JiX. LüL. ChenF. YangC. Sorption properties and mechanisms of organic dyes by straw biochar.Acta Sci Circumst.20163651648165410.1016/j.scitotenv.2016.01.11726845186
    [Google Scholar]
  130. WuJ. YangJ. FengP. HuangG. XuC. LinB. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar.Chemosphere202024612573410.1016/j.chemosphere.2019.12573431918084
    [Google Scholar]
  131. YuY. WanY. ShangH. WangB. ZhangP. FengY. Corncob‐to‐xylose residue (CCXR) derived porous biochar as an excellent adsorbent to remove organic dyes from wastewater.Surf. Interface Anal.201951223424510.1002/sia.6575
    [Google Scholar]
  132. KarlapudiA.P. VenkateswaruluT.C. TammineediJ. KanumuriL. RavuruB.K. DirisalaV. KodaliV.P. Role of biosurfactants in bioremediation of oil pollution-A review.Petroleum20184324124910.1016/j.petlm.2018.03.007
    [Google Scholar]
  133. AbedR.M.M. Al-KindiS. Effect of disturbance by oil pollution on the diversity and activity of bacterial communities in biological soil crusts from the Sultanate of Oman.Appl. Soil Ecol.2017110889610.1016/j.apsoil.2016.10.009
    [Google Scholar]
  134. JiangY.F. SunH. YvesU.J. LiH. HuX.F. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil.Environ. Geochem. Health201638124325310.1007/s10653‑015‑9712‑125980560
    [Google Scholar]
  135. YangE. YaoC. LiuY. ZhangC. JiaL. LiD. FuZ. SunD. KirkR.S. YinD. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel.Fuel201821112112910.1016/j.fuel.2017.07.099
    [Google Scholar]
  136. KandanelliR. MeesalaL. KumarJ. RajuC.S.K. PeddyV.C.R. GandhamS. KumarP. Cost effective and practically viable oil spillage mitigation: Comprehensive study with biochar.Mar. Pollut. Bull.2018128324010.1016/j.marpolbul.2018.01.01029571379
    [Google Scholar]
  137. NguyenH.N. PignatelloJ.J. Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills.Environ. Eng. Sci.201330737438010.1089/ees.2012.0411
    [Google Scholar]
  138. BanatF.A. Al-BashirB. Al-AshehS. HayajnehO. Adsorption of phenol by bentonite.Environ. Pollut.2000107339139810.1016/S0269‑7491(99)00173‑615092985
    [Google Scholar]
  139. GanQ. HouH. LiangS. QiuJ. TaoS. YangL. YuW. XiaoK. LiuB. HuJ. WangY. YangJ. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol.Sci. Total Environ.202072513829910.1016/j.scitotenv.2020.13829932278183
    [Google Scholar]
  140. MohammedN.A.S. Abu-ZuraykR.A. HamadnehI. Al-DujailiA.H. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies.J. Environ. Manage.201822637738510.1016/j.jenvman.2018.08.03330138837
    [Google Scholar]
  141. ThangP.Q. JitaeK. GiangB.L. VietN.M. HuongP.T. Potential application of chicken manure biochar towards toxic phenol and 2,4-dinitrophenol in wastewaters.J. Environ. Manage.201925110955610.1016/j.jenvman.2019.10955631541848
    [Google Scholar]
  142. ZhengW. GuoM. ChowT. BennettD.N. RajagopalanN. Sorption properties of greenwaste biochar for two triazine pesticides.J. Hazard. Mater.20101811-312112610.1016/j.jhazmat.2010.04.10320510513
    [Google Scholar]
  143. SunY. QiS. ZhengF. HuangL. PanJ. JiangY. HouW. XiaoL. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge.Bioresour. Technol.2018249576110.1016/j.biortech.2017.10.00429040860
    [Google Scholar]
  144. ZhangP. SunH. MinL. RenC. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms.Environ. Pollut.201823615816710.1016/j.envpol.2018.01.03029414336
    [Google Scholar]
  145. ZhangM. GaoB. VarnoosfaderaniS. HebardA. YaoY. InyangM. Preparation and characterization of a novel magnetic biochar for arsenic removal.Bioresour. Technol.201313045746210.1016/j.biortech.2012.11.13223313693
    [Google Scholar]
  146. InyangM. DickensonE. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review.Chemosphere201513423224010.1016/j.chemosphere.2015.03.07225958252
    [Google Scholar]
  147. UchimiyaM. ChangS. KlassonK.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups.J. Hazard. Mater.20111901-343244110.1016/j.jhazmat.2011.03.06321489689
    [Google Scholar]
  148. UchimiyaM. KlassonK.T. WartelleL.H. LimaI.M. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations.Chemosphere201182101431143710.1016/j.chemosphere.2010.11.05021147495
    [Google Scholar]
  149. KaramiN. ClementeR. JiménezM.E. LeppN.W. BeesleyL. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass.J. Hazard. Mater.20111911-3414810.1016/j.jhazmat.2011.04.02521565444
    [Google Scholar]
  150. GaoR. HuH. FuQ. LiZ. XingZ. AliU. ZhuJ. LiuY. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry.Sci. Total Environ.202073013911910.1016/j.scitotenv.2020.13911932402973
    [Google Scholar]
  151. LiR. WenY. LiuM. SuL. WangY. LiS. ZhongM. ZhouZ. ZhouN. Simultaneous removal of organic inorganic composite contaminants by in situ double modified biochar: Performance and mechanisms.J. Taiwan Inst. Chem. Eng.202213910452310.1016/j.jtice.2022.104523
    [Google Scholar]
  152. DinhV.C. HouC.H. DaoT.N. O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups.Chemosphere202229313362210.1016/j.chemosphere.2022.13362235033519
    [Google Scholar]
  153. GertenD. HeckV. JägermeyrJ. BodirskyB.L. FetzerI. JalavaM. KummuM. LuchtW. RockströmJ. SchaphoffS. SchellnhuberH.J. Feeding ten billion people is possible within four terrestrial planetary boundaries.Nat. Sustain.20203320020810.1038/s41893‑019‑0465‑1
    [Google Scholar]
  154. GodfrayHCJ BeddingtonJR CruteIR HaddadL LawrenceD Food security: The challenge of feeding 9 billion people.science20103275967812818
    [Google Scholar]
  155. HouD. BolanN.S. TsangD.C.W. KirkhamM.B. O’ConnorD. Sustainable soil use and management: An interdisciplinary and systematic approach.Sci. Total Environ.202072913896110.1016/j.scitotenv.2020.13896132353725
    [Google Scholar]
  156. WangL. LiZ. WangY. BrookesP.C. WangF. ZhangQ. XuJ. LiuX. Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects.Sci. Total Environ.202175014167210.1016/j.scitotenv.2020.14167232862003
    [Google Scholar]
  157. AtinafuD.G. WiS. YunB.Y. KimS. Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage.Energy202121611929410.1016/j.energy.2020.119294
    [Google Scholar]
  158. GuptaS. KuaH.W. PangS.D. Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability.Constr. Build. Mater.201816787488910.1016/j.conbuildmat.2018.02.104
    [Google Scholar]
  159. LiR. WangJ.J. GastonL.A. ZhouB. LiM. XiaoR. WangQ. ZhangZ. HuangH. LiangW. HuangH. ZhangX. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution.Carbon201812967468710.1016/j.carbon.2017.12.070
    [Google Scholar]
  160. LiuC. ChenL. DingD. CaiT. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor.Appl. Catal. B201925431232010.1016/j.apcatb.2019.05.014
    [Google Scholar]
  161. LiJ. LiB. HuangH. ZhaoN. ZhangM. CaoL. Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption.Sci. Total Environ.202071413683910.1016/j.scitotenv.2020.13683932018980
    [Google Scholar]
  162. LyuH. TangJ. CuiM. GaoB. ShenB. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis, applications, and mechanisms.Chemosphere202024612560910.1016/j.chemosphere.2019.12560931911329
    [Google Scholar]
  163. YiY. HuangZ. LuB. XianJ. TsangE.P. ChengW. FangJ. FangZ. Magnetic biochar for environmental remediation: A review.Bioresour. Technol.202029812246810.1016/j.biortech.2019.12246831839494
    [Google Scholar]
  164. AlamM.S. BishopB. ChenN. SafariS. WarterV. ByrneJ.M. WarcholaT. KapplerA. KonhauserK.O. AlessiD.S. Reusable magnetite nanoparticles–biochar composites for the efficient removal of chromate from water.Sci. Rep.20201011900710.1038/s41598‑020‑75924‑733149170
    [Google Scholar]
  165. HeR. PengZ. LyuH. HuangH. NanQ. TangJ. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal.Sci. Total Environ.20186121177118610.1016/j.scitotenv.2017.09.01628892862
    [Google Scholar]
  166. ZhangP. O’ConnorD. WangY. JiangL. XiaT. WangL. TsangD.C.W. OkY.S. HouD. A green biochar/iron oxide composite for methylene blue removal.J. Hazard. Mater.202038412128610.1016/j.jhazmat.2019.12128631586920
    [Google Scholar]
  167. ChenX. DaiY. FanJ. XuX. CaoX. Application of iron-biochar composite in topsoil for simultaneous remediation of chromium-contaminated soil and groundwater: Immobilization mechanism and long-term stability.J. Hazard. Mater.202140512422610.1016/j.jhazmat.2020.12422633087289
    [Google Scholar]
  168. LiuX. YangL. ZhaoH. WangW. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils.Sci. Total Environ.202070813447910.1016/j.scitotenv.2019.13447931796288
    [Google Scholar]
  169. LyuH. ZhaoH. TangJ. GongY. HuangY. WuQ. GaoB. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.Chemosphere201819436036910.1016/j.chemosphere.2017.11.18229223115
    [Google Scholar]
  170. DiaoZ.H. ZhangW.X. LiangJ.Y. HuangS.T. DongF.X. YanL. QianW. ChuW. Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: Synergistic effect and mechanism.Chem. Eng. J.202140912768410.1016/j.cej.2020.127684
    [Google Scholar]
  171. ShenZ. ZhangJ. HouD. TsangD.C.W. OkY.S. AlessiD.S. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue.Environ. Int.201912235736210.1016/j.envint.2018.11.04530501914
    [Google Scholar]
  172. BrigattiM.F. GalanE. ThengB.K.G. Structures and mineralogy of clay minerals. Develop.Developm. Clay Sci.20061198610.1016/S1572‑4352(05)01002‑0
    [Google Scholar]
  173. LideD.R. CRC handbook of chemistry and physics.CRC press2005
    [Google Scholar]
  174. ArabyarmohammadiH. DarbanA.K. AbdollahyM. YongR. AyatiB. ZirakjouA. van der ZeeS.E.A.T.M. Utilization of a novel chitosan/clay/biochar nanobiocomposite for immobilization of heavy metals in acid soil environment.J. Polym. Environ.20182652107211910.1007/s10924‑017‑1102‑6
    [Google Scholar]
  175. ChenL. ChenX.L. ZhouC.H. YangH.M. JiS.F. TongD.S. ZhongZ.K. YuW.H. ChuM.Q. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate.J. Clean. Prod.201715664865910.1016/j.jclepro.2017.04.050
    [Google Scholar]
  176. HerathI. ZhaoF.J. BundschuhJ. WangP. WangJ. OkY.S. PalansooriyaK.N. VithanageM. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites.J. Hazard. Mater.202039812309610.1016/j.jhazmat.2020.12309632768840
    [Google Scholar]
  177. HuP. ZhangY. LiuL. WangX. LuanX. MaX. ChuP.K. ZhouJ. ZhaoP. Biochar/struvite composite as a novel potential material for slow release of N and P.Environ. Sci. Pollut. Res. Int.20192617171521716210.1007/s11356‑019‑04458‑x31001775
    [Google Scholar]
  178. LiY. WangX. WangY. WangF. XiaS. ZhaoJ. Struvite-supported biochar composite effectively lowers Cu bio-availability and the abundance of antibiotic-resistance genes in soil.Sci. Total Environ.202072413829410.1016/j.scitotenv.2020.13829432247985
    [Google Scholar]
  179. MummeJ. GetzJ. PrasadM. LüderU. KernJ. MašekO. BussW. Toxicity screening of biochar-mineral composites using germination tests.Chemosphere20182079110010.1016/j.chemosphere.2018.05.04229778049
    [Google Scholar]
  180. MaL. WangQ. IslamS.M. LiuY. MaS. KanatzidisM.G. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42–ion.J. Am. Chem. Soc.201613882858286610.1021/jacs.6b0011026829617
    [Google Scholar]
  181. BolbolH. FekriM. Hejazi-MehriziM. Layered double hydroxide–loaded biochar as a sorbent for the removal of aquatic phosphorus: Behavior and mechanism insights.Arab. J. Geosci.2019121650310.1007/s12517‑019‑4694‑4
    [Google Scholar]
  182. ZhangL. TangS. JiangC. JiangX. GuanY. Simultaneous and efficient capture of inorganic nitrogen and heavy metals by polyporous layered double hydroxide and biochar composite for agricultural nonpoint pollution control.ACS Appl. Mater. Interfaces20181049430134303010.1021/acsami.8b1504930431258
    [Google Scholar]
  183. WanS. WangS. LiY. GaoB. Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions.J. Ind. Eng. Chem.20174724625310.1016/j.jiec.2016.11.039
    [Google Scholar]
  184. YangF. ZhangS. SunY. TsangD.C.W. ChengK. OkY.S. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery.J. Hazard. Mater.201936566567310.1016/j.jhazmat.2018.11.04730472452
    [Google Scholar]
  185. XueL. GaoB. WanY. FangJ. WangS. LiY. CarpenaM.R. YangL. High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions.J. Taiwan Inst. Chem. Eng.20166331231710.1016/j.jtice.2016.03.021
    [Google Scholar]
  186. WangS. GaoB. LiY. ZimmermanA.R. CaoX. Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites.RSC Adv.2016622177921779910.1039/C5RA17490B
    [Google Scholar]
  187. MeiliL. LinsP.V. ZantaC.L.P.S. SolettiJ.I. RibeiroL.M.O. DornelasC.B. SilvaT.L. VieiraM.G.A. MgAl-LDH/Biochar composites for methylene blue removal by adsorption.Appl. Clay Sci.2019168112010.1016/j.clay.2018.10.012
    [Google Scholar]
  188. ZubairM. ManzarM.S. Mu’azuN.D. AnilI. BlaisiN.I. Al-HarthiM.A. Functionalized MgAl-layered hydroxide intercalated date-palm biochar for Enhanced Uptake of Cationic dye: Kinetics, isotherm and thermodynamic studies.Appl. Clay Sci.202019010558710.1016/j.clay.2020.105587
    [Google Scholar]
  189. AbdulG. ZhuX. ChenB. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters.Chem. Eng. J.201731992010.1016/j.cej.2017.02.074
    [Google Scholar]
  190. ZhangM. GaoB. YaoY. XueY. InyangM. Synthesis, characterization, and environmental implications of graphene-coated biochar.Sci. Total Environ.2012435-43656757210.1016/j.scitotenv.2012.07.03822906501
    [Google Scholar]
  191. HuangD. WangX. ZhangC. ZengG. PengZ. ZhouJ. ChengM. WangR. HuZ. QinX. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism.Chemosphere201718641442110.1016/j.chemosphere.2017.07.15428802133
    [Google Scholar]
  192. InyangM. GaoB. ZimmermanA. ZhangM. ChenH. Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites.Chem. Eng. J.2014236394610.1016/j.cej.2013.09.074
    [Google Scholar]
  193. InyangM. GaoB. ZimmermanA. ZhouY. CaoX. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars.Environ. Sci. Pollut. Res. Int.20152231868187610.1007/s11356‑014‑2740‑z25212810
    [Google Scholar]
  194. FengF. ChenX. WangQ. XuW. LongL. MasryN.E.G. WanQ. YanH. ChengJ. YuX. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables.J. Environ. Manage.202025310963610.1016/j.jenvman.2019.10963631678688
    [Google Scholar]
  195. XiongB. ZhangY. HouY. ArpH.P.H. ReidB.J. CaiC. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar.Chemosphere201718231632410.1016/j.chemosphere.2017.05.02028501571
    [Google Scholar]
  196. MaH. WeiM. WangZ. HouS. LiX. XuH. Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar.J. Hazard. Mater.202038812206510.1016/j.jhazmat.2020.12206531954306
    [Google Scholar]
  197. TuC. WeiJ. GuanF. LiuY. SunY. LuoY. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil.Environ. Int.202013710557610.1016/j.envint.2020.10557632070805
    [Google Scholar]
  198. WeiM. LiuX. HeY. XuX. WuZ. YuK. ZhengX. Biochar inoculated with Pseudomonas putida improves grape (Vitis vinifera L.) fruit quality and alters bacterial diversity.Rhizosphere20201610026110.1016/j.rhisph.2020.100261
    [Google Scholar]
  199. LiuX. LiaoJ. SongH. YangY. GuanC. ZhangZ. A biochar-based route for environmentally friendly controlled release of nitrogen: Urea-loaded biochar and bentonite composite.Sci. Rep.201991954810.1038/s41598‑019‑46065‑331266988
    [Google Scholar]
  200. WangB. GaoB. ZimmermanA.R. ZhengY. LyuH. Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties.J. Environ. Manage.201820910511110.1016/j.jenvman.2017.12.04129287175
    [Google Scholar]
  201. ZhaoL. CaoX. ZhengW. ScottJ.W. SharmaB.K. ChenX. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil.ACS Sustain. Chem.& Eng.2016431630163610.1021/acssuschemeng.5b01570
    [Google Scholar]
  202. MahmoudE. El BaroudyA. AliN. SleemM. Soil amendment with nanoresidues from water treatment increases P adsorption in saline soils.Environ. Chem. Lett.202018117117910.1007/s10311‑019‑00917‑6
    [Google Scholar]
  203. GopinathK.P. VoD.V.N. PrakashG.D. JosephA.A. ViswanathanS. ArunJ. Environmental applications of carbon-based materials: A review.Environ. Chem. Lett.202119155758210.1007/s10311‑020‑01084‑9
    [Google Scholar]
  204. PurakayasthaT.J. BeraT. BhaduriD. SarkarB. MandalS. WadeP. KumariS. BiswasS. MenonM. PathakH. TsangD.C.W. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security.Chemosphere201922734536510.1016/j.chemosphere.2019.03.17030999175
    [Google Scholar]
  205. El-NaggarA. LeeS.S. RinklebeJ. FarooqM. SongH. SarmahA.K. ZimmermanA.R. AhmadM. ShaheenS.M. OkY.S. Biochar application to low fertility soils: A review of current status, and future prospects.Geoderma201933753655410.1016/j.geoderma.2018.09.034
    [Google Scholar]
  206. NarvaezR.O.M. HernandezP.J.M. GoonetillekeA. BandalaE.R. Biochar-supported nanomaterials for environmental applications.J. Ind. Eng. Chem.201978213310.1016/j.jiec.2019.06.008
    [Google Scholar]
  207. FischerB.M.C. ManzoniS. MorillasL. GarciaM. JohnsonM.S. LyonS.W. Improving agricultural water use efficiency with biochar – A synthesis of biochar effects on water storage and fluxes across scales.Sci. Total Environ.201965785386210.1016/j.scitotenv.2018.11.31230677950
    [Google Scholar]
  208. GhoshD. MastoR.E. MaitiS.K. Ameliorative effect of Lantana camara biochar on coal mine spoil and growth of maize (Zea mays).Soil Use Manage.202036472673910.1111/sum.12626
    [Google Scholar]
  209. QuJ. ZhangL. ZhangX. GaoL. TianY. Biochar combined with gypsum reduces both nitrogen and carbon losses during agricultural waste composting and enhances overall compost quality by regulating microbial activities and functions.Bioresour. Technol.202031412378110.1016/j.biortech.2020.12378132652451
    [Google Scholar]
  210. WangJ. WangS. Preparation, modification and environmental application of biochar: A review.J. Clean. Prod.20192271002102210.1016/j.jclepro.2019.04.282
    [Google Scholar]
  211. ZhouY. QinS. VermaS. SarT. SarsaiyaS. RavindranB. LiuT. SindhuR. PatelA.K. BinodP. VarjaniS. SinghniaR.R. ZhangZ. AwasthiM.K. Production and beneficial impact of biochar for environmental application: A comprehensive review.Bioresour. Technol.202133712545110.1016/j.biortech.2021.12545134186328
    [Google Scholar]
  212. WangD. JiangP. ZhangH. YuanW. Biochar production and applications in agro and forestry systems: A review.Sci. Total Environ.202072313777510.1016/j.scitotenv.2020.13777532213399
    [Google Scholar]
  213. CreamerA.E. GaoB. WangS. Carbon dioxide capture using various metal oxyhydroxide–biochar composites.Chem. Eng. J.201628382683210.1016/j.cej.2015.08.037
    [Google Scholar]
  214. CreamerA.E. GaoB. ZimmermanA. HarrisW. Biomass-facilitated production of activated magnesium oxide nanoparticles with extraordinary CO2 capture capacity.Chem. Eng. J.2018334818810.1016/j.cej.2017.10.035
    [Google Scholar]
  215. WardleD.A. NilssonM.C. ZackrissonO. Fire-derived charcoal causes loss of forest humus.Science2008320587662910.1126/science.115496018451294
    [Google Scholar]
  216. YousafB. LiuG. WangR. AbbasQ. ImtiazM. LiuR. Investigating the biochar effects on C‐mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13 C) approach.Glob. Change Biol. Bioenergy2017961085109910.1111/gcbb.12401
    [Google Scholar]
  217. ChengH. HillP.W. BastamiM.S. JonesD.L. Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil.Glob. Change Biol. Bioenergy2017961110112110.1111/gcbb.12402
    [Google Scholar]
  218. ZhangQ. DuanP. GuninaA. ZhangX. YanX. KuzyakovY. XiongZ. Mitigation of carbon dioxide by accelerated sequestration from long-term biochar amended paddy soil.Soil Tillage Res.202120910495510.1016/j.still.2021.104955
    [Google Scholar]
  219. XuL. FangH. DengX. YingJ. LvW. ShiY. ZhouG. ZhouY. Biochar application increased ecosystem carbon sequestration capacity in a Moso bamboo forest.For. Ecol. Manage.202047511844710.1016/j.foreco.2020.118447
    [Google Scholar]
  220. LiuY. LonappanL. BrarS.K. YangS. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review.Sci. Total Environ.2018645607010.1016/j.scitotenv.2018.07.09930015119
    [Google Scholar]
  221. RosalesE. MeijideJ. PazosM. SanrománM.A. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems.Bioresour. Technol.201724617619210.1016/j.biortech.2017.06.08428688738
    [Google Scholar]
  222. ZhangW. MaoS. ChenH. HuangL. QiuR. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions.Bioresour. Technol.201314754555210.1016/j.biortech.2013.08.08224013292
    [Google Scholar]
  223. SunK. KeiluweitM. KleberM. PanZ. XingB. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure.Bioresour. Technol.2011102219897990310.1016/j.biortech.2011.08.03621907572
    [Google Scholar]
  224. JiangB. LinY. MbogJ.C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics.Bioresour. Technol.201827060361110.1016/j.biortech.2018.08.02230292167
    [Google Scholar]
  225. AmbayeT.G. VaccariM. van HullebuschE.D. AmraneA. RtimiS. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater.Int. J. Environ. Sci. Technol.202118103273329410.1007/s13762‑020‑03060‑w
    [Google Scholar]
  226. KasoziG.N. ZimmermanA.R. KizzaN.P. GaoB. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars).Environ. Sci. Technol.201044166189619510.1021/es101442320669904
    [Google Scholar]
  227. PremarathnaK.S.D. RajapakshaA.U. SarkarB. KwonE.E. BhatnagarA. OkY.S. VithanageM. Biochar-based engineered composites for sorptive decontamination of water: A review.Chem. Eng. J.201937253655010.1016/j.cej.2019.04.097
    [Google Scholar]
  228. LiuB.L. FuM.M. XiangL. FengN.X. ZhaoH.M. LiY.W. CaiQ.Y. LiH. MoC.H. WongM.H. Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms.Sci. Total Environ.202176314302810.1016/j.scitotenv.2020.14302833129529
    [Google Scholar]
  229. ChengL. JiY. LiuX. MuL. ZhuJ. Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: Coupling DFT calculations with experiments.Chem. Eng. Sci.202124211673910.1016/j.ces.2021.116739
    [Google Scholar]
  230. HassanM. LiuY. NaiduR. ParikhS.J. DuJ. QiF. WillettI.R. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis.Sci. Total Environ.202074414071410.1016/j.scitotenv.2020.14071432717463
    [Google Scholar]
  231. RegkouzasP. DiamadopoulosE. Adsorption of selected organic micro-pollutants on sewage sludge biochar.Chemosphere201922484085110.1016/j.chemosphere.2019.02.16530852464
    [Google Scholar]
  232. MukherjeeA. ZimmermanA.R. HarrisW. Surface chemistry variations among a series of laboratory-produced biochars.Geoderma20111633-424725510.1016/j.geoderma.2011.04.021
    [Google Scholar]
  233. FangQ. YeS. YangH. YangK. ZhouJ. GaoY. LinQ. TanX. YangZ. Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook.J. Hazard. Mater.202142012656910.1016/j.jhazmat.2021.12656934280719
    [Google Scholar]
  234. ChenJ. ZhangD. ZhangH. GhoshS. PanB. Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition.Sci. Total Environ.201757959860510.1016/j.scitotenv.2016.11.05227863870
    [Google Scholar]
  235. ZhengH. WangZ. ZhaoJ. HerbertS. XingB. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures.Environ. Pollut.2013181606710.1016/j.envpol.2013.05.05623811180
    [Google Scholar]
  236. SunY. GaoB. YaoY. FangJ. ZhangM. ZhouY. ChenH. YangL. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties.Chem. Eng. J.201424057457810.1016/j.cej.2013.10.081
    [Google Scholar]
  237. ZhengY. WangJ. LiD. LiuC. LuY. LinX. ZhengZ. Insight into the KOH/KMnO4 activation mechanism of oxygen-enriched hierarchical porous biochar derived from biomass waste by in-situ pyrolysis for methylene blue enhanced adsorption.J. Anal. Appl. Pyrolysis202115810526910.1016/j.jaap.2021.105269
    [Google Scholar]
  238. GuptaS. SireeshaS. SreedharI. PatelC.M. AnithaK.L. Latest trends in heavy metal removal from wastewater by biochar based sorbents.J. Water Process Eng.20203810156110.1016/j.jwpe.2020.101561
    [Google Scholar]
  239. TanX. LiuY. ZengG. WangX. HuX. GuY. YangZ. Application of biochar for the removal of pollutants from aqueous solutions.Chemosphere2015125708510.1016/j.chemosphere.2014.12.05825618190
    [Google Scholar]
  240. ShanR. ShiY. GuJ. WangY. YuanH. Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems.Chin. J. Chem. Eng.20202851375138310.1016/j.cjche.2020.02.012
    [Google Scholar]
  241. ParkS.H. ChoH.J. RyuC. ParkY.K. Removal of copper(II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera.J. Ind. Eng. Chem.20163631431910.1016/j.jiec.2016.02.021
    [Google Scholar]
  242. LiuZ. ZhangF.S. WuJ. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment.Fuel201089251051410.1016/j.fuel.2009.08.042
    [Google Scholar]
  243. HarveyO.R. HerbertB.E. RhueR.D. KuoL.J. Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry.Environ. Sci. Technol.201145135550555610.1021/es104401h21630654
    [Google Scholar]
  244. DongX. MaL.Q. LiY. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing.J. Hazard. Mater.20111901-390991510.1016/j.jhazmat.2011.04.00821550718
    [Google Scholar]
  245. SunL. WangJ. WuJ. WangT. DuY. LiY. LiH. Constructing nanostructured silicates on diatomite for Pb(II) and Cd(II) removal.J. Mater. Sci.20195496882689410.1007/s10853‑019‑03388‑w
    [Google Scholar]
  246. XuY. ChenB. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis.Bioresour. Technol.201314648549310.1016/j.biortech.2013.07.08623958681
    [Google Scholar]
  247. LuH. ZhangW. YangY. HuangX. WangS. QiuR. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar.Water Res.201246385486210.1016/j.watres.2011.11.05822189294
    [Google Scholar]
  248. Sakin OmerO. HusseinM.A. HusseinB.H.M. MgaidiA. Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K.Arab. J. Chem.201811561562310.1016/j.arabjc.2017.10.007
    [Google Scholar]
  249. PatraB.R. MukherjeeA. NandaS. DalaiA.K. Biochar production, activation and adsorptive applications: A review.Environ. Chem. Lett.20211932237225910.1007/s10311‑020‑01165‑9
    [Google Scholar]
  250. PatraB.R. NandaS. DalaiA.K. MedaV. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products.Chemosphere202128513143110.1016/j.chemosphere.2021.13143134329143
    [Google Scholar]
  251. KatheresanV. KansedoJ. LauS.Y. Efficiency of various recent wastewater dye removal methods: A review.J. Environ. Chem. Eng.2018644676469710.1016/j.jece.2018.06.060
    [Google Scholar]
  252. CriniG. LichtfouseE. Advantages and disadvantages of techniques used for wastewater treatment.Environ. Chem. Lett.201917114515510.1007/s10311‑018‑0785‑9
    [Google Scholar]
  253. WangX. JiangC. HouB. WangY. HaoC. WuJ. Carbon composite lignin-based adsorbents for the adsorption of dyes.Chemosphere201820658759610.1016/j.chemosphere.2018.04.18329778084
    [Google Scholar]
  254. BaysalM. BilgeK. YılmazB. PapilaM. YürümY. Preparation of high surface area activated carbon from waste-biomass of sunflower piths: Kinetics and equilibrium studies on the dye removal.J. Environ. Chem. Eng.2018621702171310.1016/j.jece.2018.02.020
    [Google Scholar]
  255. SinghA. NandaS. SosaG.J.F. BerrutiF. Pyrolysis of-MISCANTHUS and characterization of value‐added bio‐oil and biochar products.Can. J. Chem. Eng.202199S1S55S6810.1002/cjce.23978
    [Google Scholar]
  256. HaoD. ChenY. ZhangY. YouN. Nanocomposites of zero-valent iron@biochar derived from agricultural wastes for adsorptive removal of tetracyclines.Chemosphere202128413134210.1016/j.chemosphere.2021.13134234225129
    [Google Scholar]
  257. YuK.L. LeeX.J. OngH.C. ChenW.H. ChangJ.S. LinC.S. ShowP.L. LingT.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling.Environ. Pollut.202127211598610.1016/j.envpol.2020.11598633187841
    [Google Scholar]
  258. SinghR. DuttaR.K. NaikD.V. RayA. KanaujiaP.K. High surface area Eucalyptus wood biochar for the removal of phenol from petroleum refinery wastewater.Environmental Challenges2021510035310.1016/j.envc.2021.100353
    [Google Scholar]
  259. VigneshwaranS. SirajudheenP. NikithaM. RamkumarK. MeenakshiS. Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the removal of organic dyes: Isotherm, kinetics and mechanisms.J. Mol. Liq.202132611530310.1016/j.molliq.2021.115303
    [Google Scholar]
  260. JacobM.M. PonnuchamyM. KapoorA. SivaramanP. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water.J. Environ. Chem. Eng.20208410390410.1016/j.jece.2020.103904
    [Google Scholar]
  261. DuC. SongY. ShiS. JiangB. YangJ. XiaoS. Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption.Sci. Total Environ.202071113466210.1016/j.scitotenv.2019.13466231831251
    [Google Scholar]
  262. EltaweilA.S. Ali MohamedH. MonaemE.M. SubruitiE.G.M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms.Adv. Powder Technol.20203131253126310.1016/j.apt.2020.01.005
    [Google Scholar]
  263. ShenY. GuoJ.Z. BaiL.Q. ChenX.Q. LiB. High effective adsorption of Pb(II) from solution by biochar derived from torrefaction of ammonium persulphate pretreated bamboo.Bioresour. Technol.202132312461610.1016/j.biortech.2020.12461633387711
    [Google Scholar]
  264. ShenT. WangP. HuL. HuQ. WangX. ZhangG. Adsorption of 4-chlorophenol by wheat straw biochar and its regeneration with persulfate under microwave irradiation.J. Environ. Chem. Eng.20219410535310.1016/j.jece.2021.105353
    [Google Scholar]
  265. ChenY. XuF. LiH. LiY. LiuY. ChenY. LiM. LiL. JiangH. ChenL. Simple hydrothermal synthesis of magnetic MnFe2O4-sludge biochar composites for removal of aqueous Pb2+.J. Anal. Appl. Pyrolysis202115610517310.1016/j.jaap.2021.105173
    [Google Scholar]
  266. PalansooriyaK.N. KimS. IgalavithanaA.D. HashimotoY. ChoiY.E. MukhopadhyayR. SarkarB. OkY.S. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water.J. Hazard. Mater.202141512546410.1016/j.jhazmat.2021.12546433730647
    [Google Scholar]
  267. SalimiM. SalehiZ. HeidariH. VahabzadehF. Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-Nitrophenol.J. Environ. Chem. Eng.20219410540310.1016/j.jece.2021.105403
    [Google Scholar]
  268. WangH. LouX. HuQ. SunT. Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies.J. Mol. Liq.202132511496710.1016/j.molliq.2020.114967
    [Google Scholar]
  269. LiuJ. RenS. CaoJ. TsangD.C.W. BeiyuanJ. PengY. FangF. SheJ. YinM. ShenN. WangJ. Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite.J. Hazard. Mater.202140112331110.1016/j.jhazmat.2020.12331132652417
    [Google Scholar]
  270. Abd-ElhamidA.I. EmranM. SadekE.M.H. ShanshoryE.A.A. SolimanH.M.A. AklM.A. RashadM. Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw.Appl. Water Sci.20201014510.1007/s13201‑019‑1128‑0
    [Google Scholar]
  271. SaravananP. ThillainayagamB.P. RavindiranG. JosephrajJ. Evaluation of the adsorption capacity of Cocos Nucifera shell derived biochar for basic dyes sequestration from aqueous solution.Energ. Sourc. A: Recovery Util. Environ. Eff.202011710.1080/15567036.2020.1800142
    [Google Scholar]
  272. SumalinogD.A.G. CaparedaS.C. de LunaM.D.G. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes.J. Environ. Manage.201821025526210.1016/j.jenvman.2018.01.01029367138
    [Google Scholar]
  273. XieJ. LinR. LiangZ. ZhaoZ. YangC. CuiF. Effect of cations on the enhanced adsorption of cationic dye in Fe3O4-loaded biochar and mechanism.J. Environ. Chem. Eng.20219410574410.1016/j.jece.2021.105744
    [Google Scholar]
  274. LengL. YuanX. ZengG. ShaoJ. ChenX. WuZ. WangH. PengX. Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption.Fuel2015155778510.1016/j.fuel.2015.04.019
    [Google Scholar]
  275. Morais da SilvaP.M. CamparottoN.G. Grego LiraK.T. PiconeF.C.S. PredigerP. Adsorptive removal of basic dye onto sustainable chitosan beads: Equilibrium, kinetics, stability, continuous-mode adsorption and mechanism.Sustain. Chem. Pharm.20201810031810.1016/j.scp.2020.100318
    [Google Scholar]
  276. PalP. PalA. Dye removal using waste beads: Efficient utilization of surface-modified chitosan beads generated after lead adsorption process.J. Water Process Eng.20193110088210.1016/j.jwpe.2019.100882
    [Google Scholar]
  277. DaiL. ZhuW. HeL. TanF. ZhuN. ZhouQ. HeM. HuG. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal.Bioresour. Technol.201826751051610.1016/j.biortech.2018.07.09030048926
    [Google Scholar]
  278. AygünA. KarakaşY.S. DumanI. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties.Microporous Mesoporous Mater.2003662-318919510.1016/j.micromeso.2003.08.028
    [Google Scholar]
  279. HanX. ChuL. LiuS. ChenT. DingC. YanJ. CuiL. QuanG. Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar.BioResources20151022836284910.15376/biores.10.2.2836‑2849
    [Google Scholar]
  280. ZouW. LiK. BaiH. ShiX. HanR. Enhanced cationic dyes removal from aqueous solution by oxalic acid modified rice husk.J. Chem. Eng. Data20115651882189110.1021/je100893h
    [Google Scholar]
  281. SunL. ChenD. WanS. YuZ. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.Bioresour. Technol.201519830030810.1016/j.biortech.2015.09.02626402873
    [Google Scholar]
  282. NunesA.A. FrancaA.S. OliveiraL.S. Activated carbons from waste biomass: An alternative use for biodiesel production solid residues.Bioresour. Technol.200910051786179210.1016/j.biortech.2008.09.03218996006
    [Google Scholar]
  283. FrancaA.S. OliveiraL.S. NunesA.A. AlvesC.C.O. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents.Bioresour. Technol.201010131068107410.1016/j.biortech.2009.08.10219767204
    [Google Scholar]
  284. KaragözS. TayT. UcarS. ErdemM. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption.Bioresour. Technol.200899146214622210.1016/j.biortech.2007.12.01918207735
    [Google Scholar]
  285. ZhongZ.Y. YangQ. LiX.M. LuoK. LiuY. ZengG.M. Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption.Ind. Crops Prod.201237117818510.1016/j.indcrop.2011.12.015
    [Google Scholar]
  286. YangG. WuL. XianQ. ShenF. WuJ. ZhangY. Removal of congo red and methylene blue from aqueous solutions by vermicompost-derived biochars.PLoS One2016115e015456210.1371/journal.pone.015456227144922
    [Google Scholar]
  287. ChengZ. ZhangL. GuoX. JiangX. LiT. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium.Spectrochim. Acta A Mol. Biomol. Spectrosc.20151371126114310.1016/j.saa.2014.08.13825305604
    [Google Scholar]
  288. TianP. HanX. NingG. FangH. YeJ. GongW. LinY. Synthesis of porous hierarchical MgO and its superb adsorption properties.ACS Appl. Mater. Interfaces2013523124111241810.1021/am403352y24224803
    [Google Scholar]
  289. ChatterjeeS. LeeM.W. WooS.H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes.Bioresour. Technol.201010161800180610.1016/j.biortech.2009.10.05119962883
    [Google Scholar]
  290. PandaG.C. DasS.K. GuhaA.K. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution.J. Hazard. Mater.2009164137437910.1016/j.jhazmat.2008.08.01518804326
    [Google Scholar]
  291. MondalN.K. KarS. Potentiality of banana peel for removal of Congo red dye from aqueous solution: Isotherm, kinetics and thermodynamics studies.Appl. Water Sci.20188615710.1007/s13201‑018‑0811‑x
    [Google Scholar]
  292. SartapeA.S. MandhareA.M. JadhavV.V. RautP.D. AnuseM.A. KolekarS.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent.Arab. J. Chem.201710S3229S323810.1016/j.arabjc.2013.12.019
    [Google Scholar]
  293. LiuY. ZhaoX. LiJ. MaD. HanR. Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption.Desalination Water Treat.2012461-311512310.1080/19443994.2012.677408
    [Google Scholar]
  294. MubarakN.M. FoY.T. Al-SalimH.S. SahuJ.N. AbdullahE.C. NizamuddinS. JayakumarN.S. GanesanP. Removal of methylene blue and orange-G from waste water using magnetic biochar.Int. J. Nanosci.2015144155000910.1142/S0219581X1550009X
    [Google Scholar]
  295. NautiyalP. SubramanianK.A. DastidarM.G. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.J. Environ. Manage.201618218719710.1016/j.jenvman.2016.07.06327474901
    [Google Scholar]
  296. ThinesK.R. AbdullahE.C. MubarakN.M. Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass.Microporous Mesoporous Mater.2017253293910.1016/j.micromeso.2017.06.031
    [Google Scholar]
  297. KongS.H. LamS.S. YekP.N.Y. LiewR.K. MaN.L. OsmanM.S. WongC.C. Self‐purging microwave pyrolysis: An innovative approach to convert oil palm shell into carbon‐rich biochar for methylene blue adsorption.J. Chem. Technol. Biotechnol.20199451397140510.1002/jctb.5884
    [Google Scholar]
  298. YekP.N.Y. PengW. WongC.C. LiewR.K. HoY.L. Wan MahariW.A. AzwarE. YuanT.Q. TabatabaeiM. AghbashloM. SonneC. LamS.S. Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye.J. Hazard. Mater.202039512263610.1016/j.jhazmat.2020.12263632298946
    [Google Scholar]
  299. LiewR.K. NamW.L. ChongM.Y. PhangX.Y. SuM.H. YekP.N.Y. MaN.L. ChengC.K. ChongC.T. LamS.S. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications.Process Saf. Environ. Prot.2018115576910.1016/j.psep.2017.10.005
    [Google Scholar]
  300. AusavasukhiA. KampoosaenC. KengnokO. Adsorption characteristics of Congo red on carbonized leonardite.J. Clean. Prod.201613450651410.1016/j.jclepro.2015.10.034
    [Google Scholar]
  301. HuangW. ChenJ. ZhangJ. Adsorption characteristics of methylene blue by biochar prepared using sheep, rabbit and pig manure.Environ. Sci. Pollut. Res. Int.20182529292562926610.1007/s11356‑018‑2906‑130120728
    [Google Scholar]
  302. SewuD.D. BoakyeP. WooS.H. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste.Bioresour. Technol.201722420621310.1016/j.biortech.2016.11.00927839858
    [Google Scholar]
  303. SewuD.D. BoakyeP. JungH. WooS.H. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica.Bioresour. Technol.2017244Pt 11142114910.1016/j.biortech.2017.08.10328869124
    [Google Scholar]
  304. HameedB.H. El-KhaiaryM.I. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char.J. Hazard. Mater.20081531-270170810.1016/j.jhazmat.2007.09.01917942219
    [Google Scholar]
  305. RawatA.P. SinghD.P. Decolourization of malachite green dye by mentha plant biochar (MPB): A combined action of adsorption and electrochemical reduction processes.Water Sci. Technol.20187761734174310.2166/wst.2018.05929595176
    [Google Scholar]
  306. BeakouB.H. El HassaniK. HoussainiM.A. BelbahloulM. OukaniE. AnouarA. A novel biochar from Manihot esculenta Crantz waste: Application for the removal of Malachite Green from wastewater and optimization of the adsorption process.Water Sci. Technol.20177661447145610.2166/wst.2017.33228953471
    [Google Scholar]
  307. ZhangX. LinQ. LuoS. RuanK. PengK. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion.Appl. Surf. Sci.201844232233110.1016/j.apsusc.2018.02.148
    [Google Scholar]
  308. ChowdhuryS. DasP. Mechanistic, kinetic, and thermodynamic evaluation of adsorption of hazardous malachite green onto conch shell powder.Sep. Sci. Technol.201146121966197610.1080/01496395.2011.584930
    [Google Scholar]
  309. HameedB.H. El-KhaiaryM.I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies.J. Hazard. Mater.20081541-323724410.1016/j.jhazmat.2007.10.01718022316
    [Google Scholar]
  310. FanS. TangJ. WangY. LiH. ZhangH. TangJ. WangZ. LiX. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism.J. Mol. Liq.201622043244110.1016/j.molliq.2016.04.107
    [Google Scholar]
  311. MahmoudD.K. SallehM.A.M. KarimW.A.W.A. IdrisA. AbidinZ.Z. Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies.Chem. Eng. J.2012181-18244945710.1016/j.cej.2011.11.116
    [Google Scholar]
  312. VieiraS.S. MagriotisZ.M. SantosN.A.V. CardosoM.G. SaczkA.A. Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes.Chem. Eng. J.201218315216110.1016/j.cej.2011.12.047
    [Google Scholar]
  313. HanX. NiuX. MaX. Adsorption characteristics of methylene blue on poplar leaf in batch mode: Equilibrium, kinetics and thermodynamics.Korean J. Chem. Eng.201229449450210.1007/s11814‑011‑0211‑5
    [Google Scholar]
  314. ChenS. QinC. WangT. ChenF. LiX. HouH. ZhouM. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism.J. Mol. Liq.2019285627410.1016/j.molliq.2019.04.035
    [Google Scholar]
  315. AbbasM. Factors influencing the adsorption and photocatalysis of direct red 80 in the presence of a TiO 2 : Equilibrium and kinetics modeling.J. Chem. Res.2021457-869470110.1177/1747519821989969
    [Google Scholar]
  316. SilvaP.J. SousaS. RodriguesJ. AntunesH. PorterJ.J. GonçalvesI. DiasF.S. Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains.Separ. Purif. Tech.200440330931510.1016/j.seppur.2004.03.010
    [Google Scholar]
  317. DalvandA. NabizadehR. GanjaliR.M. KhoobiM. NazmaraS. MahviH.A. Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies.J. Magn. Magn. Mater.201640417918910.1016/j.jmmm.2015.12.040
    [Google Scholar]
  318. DingG. WangB. ChenL. ZhaoS. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.Chemosphere201616328328910.1016/j.chemosphere.2016.08.03727543677
    [Google Scholar]
  319. FanS. WangY. WangZ. TangJ. TangJ. LiX. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism.J. Environ. Chem. Eng.20175160161110.1016/j.jece.2016.12.019
    [Google Scholar]
  320. DawoodS. SenT.K. PhanC. Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic.Bioresour. Technol.2017246768110.1016/j.biortech.2017.07.01928711298
    [Google Scholar]
  321. SewuD.D. JungH. KimS.S. LeeD.S. WooS.H. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate.Bioresour. Technol.2019277778610.1016/j.biortech.2019.01.03430660064
    [Google Scholar]
  322. Ben ArfiR. KarouiS. MouginK. GhorbalA. Adsorptive removal of cationic and anionic dyes from aqueous solution by utilizing almond shell as bioadsorbent.EMJE2017212010.1007/s41207‑017‑0032‑y
    [Google Scholar]
  323. KelmM.A.P. da JúniorS.M.J. de HolandaB.S.H. de AraujoC.M.B. de FilhoA.R.B. FreitasE.J. dos SantosD.R. da SobrinhoM.M.A. Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes.Environ. Sci. Pollut. Res. Int.20192628285582857310.1007/s11356‑018‑3833‑x30607856
    [Google Scholar]
  324. ManeerungT. LiewJ. DaiY. KawiS. ChongC. WangC.H. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.Bioresour. Technol.201620035035910.1016/j.biortech.2015.10.04726512858
    [Google Scholar]
  325. SongY. XuH. RenJ. Adsorption study for removal of sunset yellow by ethylenediamine-modified peanut husk.Desalination Water Treat.20165737175851759210.1080/19443994.2015.1086897
    [Google Scholar]
  326. HeibatiB. CoutoR.S. GhoutiA.M.A. AsifM. TyagiI. AgarwalS. GuptaV.K. Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods.J. Mol. Liq.20152089910510.1016/j.molliq.2015.03.057
    [Google Scholar]
  327. PavanF.A. LimaE.C. DiasS.L.P. MazzocatoA.C. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste.J. Hazard. Mater.2008150370371210.1016/j.jhazmat.2007.05.02317597293
    [Google Scholar]
  328. VadivelanV. KumarK.V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk.J. Colloid Interface Sci.200528619010010.1016/j.jcis.2005.01.00715848406
    [Google Scholar]
  329. AnnaduraiG. JuangR. LeeD. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.J. Hazard. Mater.200292326327410.1016/S0304‑3894(02)00017‑112031611
    [Google Scholar]
  330. HanR. WangY. HanP. ShiJ. YangJ. LuY. Removal of methylene blue from aqueous solution by chaff in batch mode.J. Hazard. Mater.2006137155055710.1016/j.jhazmat.2006.02.02916600482
    [Google Scholar]
  331. BulutY. AydınH. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells.Desalination20061941-325926710.1016/j.desal.2005.10.032
    [Google Scholar]
  332. NcibiM.C. MahjoubB. SeffenM. Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres.J. Hazard. Mater.2007139228028510.1016/j.jhazmat.2006.06.02916860936
    [Google Scholar]
  333. PorkodiK. Vasanth KumarK. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems.J. Hazard. Mater.20071431-231132710.1016/j.jhazmat.2006.09.02917069970
    [Google Scholar]
  334. AhmadR. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP).J. Hazard. Mater.20091711-376777310.1016/j.jhazmat.2009.06.06019604639
    [Google Scholar]
  335. MiyahY. LahrichiA. IdrissiM. AnisK. KachkoulR. IdrissiN. Removal of cationic dye “crystal violet” in aqueous solution by the local clay.JMES201781035703582
    [Google Scholar]
  336. MushtaqM. BhattiH.N. IqbalM. NoreenS. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.J. Environ. Manage.2016176213310.1016/j.jenvman.2016.03.01327039361
    [Google Scholar]
  337. ParabH. SudersananM. ShenoyN. PathareT. VazeB. Use of agro‐industrial wastes for removal of basic dyes from aqueous solutions.Clean2009371296396910.1002/clen.200900158
    [Google Scholar]
  338. LianF. CuiG. LiuZ. DuoL. ZhangG. XingB. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity.J. Environ. Manage.2016176616810.1016/j.jenvman.2016.03.04327039365
    [Google Scholar]
  339. MashkoorF. NasarA. Magnetized Tectona grandis sawdust as a novel adsorbent: Preparation, characterization, and utilization for the removal of methylene blue from aqueous solution.Cellulose20202752613263510.1007/s10570‑019‑02918‑8
    [Google Scholar]
  340. SpagnoliA.A. GiannakoudakisD.A. BashkovaS. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters.J. Mol. Liq.201722946547110.1016/j.molliq.2016.12.106
    [Google Scholar]
  341. ShiL. ZhangG. WeiD. YanT. XueX. ShiS. WeiQ. Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions.J. Mol. Liq.201419833434010.1016/j.molliq.2014.07.023
    [Google Scholar]
  342. MiyahY. LahrichiA. IdrissiM. KhalilA. ZerrouqF. Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies.Surf. Interfaces201811748110.1016/j.surfin.2018.03.006
    [Google Scholar]
  343. GüzelF. SayğılıH. SayğılıA.G. KoyuncuF. YılmazC. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution.J. Clean. Prod.201714426026510.1016/j.jclepro.2017.01.029
    [Google Scholar]
  344. VeereshG.S. KumarP. MehrotraI. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review.Water Res.200539115417010.1016/j.watres.2004.07.02815607175
    [Google Scholar]
  345. TianX. SongY. ShenZ. ZhouY. WangK. JinX. HanZ. LiuT. A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment.J. Clean. Prod.202024511869210.1016/j.jclepro.2019.118692
    [Google Scholar]
  346. SchobertH.H. SongC. Chemicals and materials from coal in the 21st century.Fuel2002811153210.1016/S0016‑2361(00)00203‑9
    [Google Scholar]
  347. LochabB. ShuklaS. VarmaI.K. Naturally occurring phenolic sources: Monomers and polymers.RSC Advances2014442217122175210.1039/C4RA00181H
    [Google Scholar]
  348. ChenA.C. PakdelH. RoyC. Production of monomeric phenols by thermochemical conversion of biomass: A review.Bioresour. Technol.200179327729910.1016/S0960‑8524(00)00180‑211499582
    [Google Scholar]
  349. KimJ.S. Production, separation and applications of phenolic-rich bio-oil – A review.Bioresour. Technol.2015178909810.1016/j.biortech.2014.08.12125239785
    [Google Scholar]
  350. NaronD.R. CollardF.X. TyhodaL. GörgensJ.F. Production of phenols from pyrolysis of sugarcane bagasse lignin: Catalyst screening using thermogravimetric analysis – Thermal desorption – Gas chromatography – Mass spectroscopy.J. Anal. Appl. Pyrolysis201913812013110.1016/j.jaap.2018.12.015
    [Google Scholar]
  351. PodkościelnyP. LászlóK. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions.Appl. Surf. Sci.2007253218762877110.1016/j.apsusc.2007.04.057
    [Google Scholar]
  352. VillegasL.G.C. MashhadiN. ChenM. MukherjeeD. TaylorK.E. BiswasN. A short review of techniques for phenol removal from wastewater.Curr. Pollut. Rep.20162315716710.1007/s40726‑016‑0035‑3
    [Google Scholar]
  353. AlkaramU.F. MukhlisA.A. DujailiA.A.H. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite.J. Hazard. Mater.20091691-332433210.1016/j.jhazmat.2009.03.15319464105
    [Google Scholar]
  354. HanY. BoatengA.A. QiP.X. LimaI.M. ChangJ. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties.J. Environ. Manage.201311819620410.1016/j.jenvman.2013.01.00123454371
    [Google Scholar]
  355. ChenW. FangY. LiK. ChenZ. XiaM. GongM. ChenY. YangH. TuX. ChenH. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products.Appl. Energy202026011424210.1016/j.apenergy.2019.114242
    [Google Scholar]
  356. LuQ. ZhangZ. YangX. DongC. ZhuX. Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: Analytical Py-GC/MS study.J. Anal. Appl. Pyrolysis201310413914510.1016/j.jaap.2013.08.011
    [Google Scholar]
  357. WangW. LiX. YeD. CaiL. ShiS.Q. Catalytic pyrolysis of larch sawdust for phenol-rich bio-oil using different catalysts.Renew. Energy201812114615210.1016/j.renene.2018.01.018
    [Google Scholar]
  358. OmoriyekomwanJ.E. TahmasebiA. YuJ. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.Bioresour. Technol.201620718819610.1016/j.biortech.2016.02.00226890793
    [Google Scholar]
  359. ChangG. MiaoP. YanX. WangG. GuoQ. Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures.Bioresour. Technol.201825321421910.1016/j.biortech.2017.12.08429351874
    [Google Scholar]
  360. HairuddinM.N. MubarakN.M. KhalidM. AbdullahE.C. WalvekarR. KarriR.R. Magnetic palm kernel biochar potential route for phenol removal from wastewater.Environ. Sci. Pollut. Res. Int.20192634351833519710.1007/s11356‑019‑06524‑w31691169
    [Google Scholar]
  361. LiZ. XingB. DingY. LiY. WangS. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue.Chin. J. Chem. Eng.202028112872288010.1016/j.cjche.2020.03.031
    [Google Scholar]
  362. HaoZ. WangC. YanZ. JiangH. XuH. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water.Chemosphere201821196296910.1016/j.chemosphere.2018.08.03830119027
    [Google Scholar]
  363. VázquezG. ÁlvarezG.J. GarcíaA.I. FreireM.S. AntorrenaG. Adsorption of phenol on formaldehyde-pretreated pinus pinaster bark: Equilibrium and kinetics.Bioresour. Technol.20079881535154010.1016/j.biortech.2006.06.02416935496
    [Google Scholar]
  364. AbdelwahabO. AminN.K. Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies.Egypt. J. Aquat. Res.201339421522310.1016/j.ejar.2013.12.011
    [Google Scholar]
  365. XuB. ChenL. XingB. LiZ. ZhangL. YiG. HuangG. MohantyM.K. Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol.Process Saf. Environ. Prot.201710714715210.1016/j.psep.2017.02.007
    [Google Scholar]
  366. YakoutS.M. Physicochemical characteristics of biochar produced from rice straw at different pyrolysis temperature for soil amendment and removal of organics.Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.201787220721410.1007/s40010‑017‑0343‑z
    [Google Scholar]
  367. ChengW.P. GaoW. CuiX. MaJ.H. LiR.F. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite.J. Taiwan Inst. Chem. Eng.20166219219810.1016/j.jtice.2016.02.004
    [Google Scholar]
  368. MallekM. ChtourouM. PortilloM. MonclúsH. WalhaK. SalahA. SalvadóV. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants.J. Environ. Manage.201822357658510.1016/j.jenvman.2018.06.06929975884
    [Google Scholar]
  369. TranV.S. NgoH.H. GuoW. ZhangJ. LiangS. Ton-ThatC. ZhangX. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water.Bioresour. Technol.201518235336310.1016/j.biortech.2015.02.00325690682
    [Google Scholar]
  370. MishraS. YadavS.S. RawatS. SinghJ. KoduruJ.R. Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties.J. Environ. Manage.2019246236237310.1016/j.jenvman.2019.06.01331195256
    [Google Scholar]
  371. SunJ. LiuX. ZhangF. ZhouJ. WuJ. AlsaediA. HayatT. LiJ. Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees.Colloids Surf. A Physicochem. Eng. Asp.2019563223010.1016/j.colsurfa.2018.11.042
    [Google Scholar]
  372. JinD.F. XuY.Y. ZhangM. JungY.S. OkY.S. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol.Chem. Spec. Bioavail.2016281-4182510.1080/09542299.2015.1136570
    [Google Scholar]
  373. Mu’azuN.D. ZubairM. JarrahN. AlaghaO. HarthiA.M.A. EssaM.H. Sewage sludge ZnCl2-activated carbon intercalated MgFe–LDH nanocomposites: Insight of the sorption mechanism of improved removal of phenol from water.Int. J. Mol. Sci.2020215156310.3390/ijms2105156332106562
    [Google Scholar]
  374. Rincón-SilvaN.G. Moreno-PirajánJ.C. GiraldoL. Equilibrium, kinetics and thermodynamics study of phenols adsorption onto activated carbon obtained from lignocellulosic material (Eucalyptus Globulus labill seed).Adsorption2016221334810.1007/s10450‑015‑9724‑2
    [Google Scholar]
  375. GümüşD. AkbalF. Photocatalytic degradation of textile dye and wastewater.Water Air Soil Pollut.20112161-411712410.1007/s11270‑010‑0520‑z
    [Google Scholar]
  376. IzumiY. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond.Coord. Chem. Rev.2013257117118610.1016/j.ccr.2012.04.018
    [Google Scholar]
  377. ColmenaresJ.C. VarmaR.S. LisowskiP. Sustainable hybrid photocatalysts: Titania immobilized on carbon materials derived from renewable and biodegradable resources.Green Chem.201618215736575010.1039/C6GC02477G32665764
    [Google Scholar]
  378. UddinM.T. BabotO. ThomasL. OlivierC. RedaelliM. D’ArienzoM. MorazzoniF. JaegermannW. RockstrohN. JungeH. ToupanceT. New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition.J. Phys. Chem. C2015119137006701510.1021/jp512769u
    [Google Scholar]
  379. MohanD. SarswatA. OkY.S. PittmanC.U.Jr Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review.Bioresour. Technol.2014160219120210.1016/j.biortech.2014.01.12024636918
    [Google Scholar]
  380. LuY. CaiY. ZhangS. ZhuangL. HuB. WangS. ChenJ. WangX. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: Mechanism, challenges and perspective.Biochar2022414510.1007/s42773‑022‑00173‑y
    [Google Scholar]
  381. ZhuQ. WuJ. WangL. YangG. ZhangX. Adsorption characteristics of Pb 2+ onto wine lees-derived biochar.Bull. Environ. Contam. Toxicol.201697229429910.1007/s00128‑016‑1760‑426920696
    [Google Scholar]
  382. AhmaruzzamanM. Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater.Mater. Res. Bull.202114011126210.1016/j.materresbull.2021.111262
    [Google Scholar]
  383. ZhangH. XueG. ChenH. LiX. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment.Chemosphere2018191647110.1016/j.chemosphere.2017.10.02629031054
    [Google Scholar]
  384. ChenM. BaoC. HuD. JinX. HuangQ. Facile and low-cost fabrication of ZnO/biochar nanocomposites from jute fibers for efficient and stable photodegradation of methylene blue dye.J. Anal. Appl. Pyrolysis201913931933210.1016/j.jaap.2019.03.009
    [Google Scholar]
  385. LuL. ShanR. ShiY. WangS. YuanH. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange.Chemosphere201922239139810.1016/j.chemosphere.2019.01.13230711728
    [Google Scholar]
  386. SharmaG. BhogalS. GuptaV.K. AgarwalS. KumarA. PathaniaD. MolaG.T. StadlerF.J. Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium.J. Mol. Liq.2019275249950910.1016/j.molliq.2018.11.070
    [Google Scholar]
  387. SilvestriS. GonçalvesM.G. da Silva VeigaP.A. MatosT.T.S. ZamoraP.P. MangrichA.S. TiO2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye.J. Environ. Chem. Eng.20197110287910.1016/j.jece.2019.102879
    [Google Scholar]
  388. WangZ. CaiX. XieX. LiS. ZhangX. WangZ. Visible-LED-light-driven photocatalytic degradation of ofloxacin and ciprofloxacin by magnetic biochar modified flower-like Bi2WO6: The synergistic effects, mechanism insights and degradation pathways.Sci. Total Environ.202176414287910.1016/j.scitotenv.2020.14287933129540
    [Google Scholar]
  389. GonçalvesM.G. da VeigaS.P.A. FornariM.R. ZamoraP.P. MangrichA.S. SilvestriS. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange.Sci. Total Environ.2020748114138110.1016/j.scitotenv.2020.14138132798874
    [Google Scholar]
  390. KimJ.R. KanE. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst.J. Environ. Manage.20161809410110.1016/j.jenvman.2016.05.01627213862
    [Google Scholar]
  391. AsgharzadehF. GholamiM. JafariJ.A. KermaniM. AsgharniaH. KalantaryR.R. Heterogeneous photocatalytic degradation of metronidazole from aqueous solutions using Fe3O4/TiO2 supported on biochar.Desalination Water Treat.202017530431510.5004/dwt.2020.24789
    [Google Scholar]
  392. ThiruppathiM. LeeladeviK. RamalinganC. ChenK.C. NagarajanE.R. Construction of novel biochar supported copper tungstate nanocomposites: A fruitful divergent catalyst for photocatalysis and electrocatalysis.Mater. Sci. Semicond. Process.2020106210476610.1016/j.mssp.2019.104766
    [Google Scholar]
  393. ZhuN. LiC. BuL. TangC. WangS. DuanP. YaoL. TangJ. DionysiouD.D. WuY. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi2O3 for a high photocatalytic performance.J. Hazard. Mater.202038412125810.1016/j.jhazmat.2019.12125832028547
    [Google Scholar]
  394. ZhaiY. DaiY. GuoJ. ZhouL. ChenM. YangH. PengL. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation.J. Colloid Interface Sci.202056011112110.1016/j.jcis.2019.08.06531655401
    [Google Scholar]
  395. TalukdarK. JunB.M. YoonY. KimY. FayyazA. ParkC.M. Novel Z-scheme Ag3PO4/Fe3O4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A.J. Hazard. Mater.2020398112302510.1016/j.jhazmat.2020.12302532768835
    [Google Scholar]
  396. KumarA. SainiK. BhaskarT. Hydochar and biochar: Production, physicochemical properties and techno-economic analysis.Bioresour. Technol.202031012344210.1016/j.biortech.2020.12344232362429
    [Google Scholar]
  397. KhanN. ChowdharyP. GnansounouE. ChaturvediP. Biochar and environmental sustainability: Emerging trends and techno-economic perspectives.Bioresour. Technol.202133212510210.1016/j.biortech.2021.12510233853722
    [Google Scholar]
  398. ClearyJ. WolfD.P. CaspersenJ.P. Comparing the life cycle costs of using harvest residue as feedstock for small- and large-scale bioenergy systems (part II).Energy20158653954710.1016/j.energy.2015.04.057
    [Google Scholar]
  399. KuppusamyS. ThavamaniP. MegharajM. VenkateswarluK. NaiduR. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions.Environ. Int.20168711210.1016/j.envint.2015.10.01826638014
    [Google Scholar]
  400. MohammadiA. KhoshnevisanB. VenkateshG. EskandariS. A critical review on advancement and challenges of biochar application in paddy fields: Environmental and life cycle cost analysis.Processes2020810127510.3390/pr8101275
    [Google Scholar]
  401. SahooK. BilekE. BergmanR. ManiS. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems.Appl. Energy201923557859010.1016/j.apenergy.2018.10.076
    [Google Scholar]
  402. CampbellR.M. AndersonN.M. DaugaardD.E. NaughtonH.T. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty.Appl. Energy201823033034310.1016/j.apenergy.2018.08.085
    [Google Scholar]
  403. HarsonoS.S. GrundmanP. LauL.H. HansenA. SallehM.A.M. Meyer-AurichA. IdrisA. GhaziT.I.M. Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches.Resour. Conserv. Recycling20137710811510.1016/j.resconrec.2013.04.005
    [Google Scholar]
  404. BiY. CaiS. WangY. XiaY. ZhaoX. WangS. XingG. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration and net ecosystem economic benefits.J. Environ. Manage.201924517318610.1016/j.jenvman.2019.03.05131152961
    [Google Scholar]
  405. FytiliD. ZabaniotouA. Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: A review. Curr. Sustain./Renew. Energy Rep.20185150155
    [Google Scholar]
  406. PanditN.R. SchmidtH.P. MulderJ. HaleS.E. HussonO. CornelissenG. Nutrient effect of various composting methods with and without biochar on soil fertility and maize growth.Arch. Agron. Soil Sci.2019662250265
    [Google Scholar]
  407. IjazM. TahirM. ShahidM. Ul-AllahS. SattarA. SherA. MahmoodK. HussainM. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer.Braz. J. Microbiol.201950244945810.1007/s42770‑019‑00043‑z30671922
    [Google Scholar]
/content/journals/cac/10.2174/0115734110286724240318051113
Loading
/content/journals/cac/10.2174/0115734110286724240318051113
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adsorption; Biochar; composites; interactions; pollutants; pyrolysis; removal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test