Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is becoming a powerful tool in the Lithium-Ion Batteries (LIBs) field due to its excellent resolution and sensitivity, as well as its ability to provide spectrally and depth-resolved information. The perspective comprehensively delves into the application of ToF-SIMS in two major areas of LIBs research. Firstly, the article elucidates how ToF-SIMS has been instrumental in deciphering the Solid Electrolyte Interphase (SEI) composition and analyzing electrolyte aging. The insights gleaned from such studies have paved the way for enhancing the longevity and safety of LIBs. Secondly, we explore the role of ToF-SIMS in scrutinizing the distribution of interface reactions, which are critical for understanding charge and discharge mechanisms. The analysis aids in optimizing the interface properties, thereby improving battery performance. Such detections are paramount in ensuring the safety and operational stability of batteries. Overall, the integration of ToF-SIMS in LIBs research offers a promising avenue for the development of advanced and safer energy storage systems.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110299035240422114008
2025-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. LiP. LuoS. ZhangL. LiuQ. WangY. LinY. XuC. GuoJ. ChealiP. XiaX. Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review.Journal of Energy Chemistry20248914417110.1016/j.jechem.2023.10.012
    [Google Scholar]
  2. GengX. HouX. HeX. FanH.J. Challenges and strategies on interphasial regulation for aqueous rechargeable batteries.Adv. Energy Mater.202425230409410.1002/aenm.202304094
    [Google Scholar]
  3. ZhouY. SuM. YuX. ZhangY. WangJ.G. RenX. CaoR. XuW. BaerD.R. DuY. BorodinO. WangY. WangX.L. XuK. XuZ. WangC. ZhuZ. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery.Nat. Nanotechnol.202015322423010.1038/s41565‑019‑0618‑4 31988500
    [Google Scholar]
  4. GardnerW. WinklerD.A. MuirB.W. PigramP.J. Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systems.Biointerphases202217202080210.1116/6.0001590 35345884
    [Google Scholar]
  5. MaS.S. FangT.T. YangL.Q. HuS.W. Application of chromatography-mass spectrometry in study of lithium ion battery.Energy Storage Sci. Technol20221116065
    [Google Scholar]
  6. ShenY. HowardL. YuX.Y. Secondary ion mass spectral imaging of metals and alloys.Materials202417252810.3390/ma17020528 38276468
    [Google Scholar]
  7. DingZ. ChenM. YuanJ. YuA. DaiH. BaiS. Fenton oxidation modification mechanism of pyrite and its response to Cu-S flotation separation: Experiment, DFT, XPS and ToF-SIMS studies.Appl. Surf. Sci.202465215930510.1016/j.apsusc.2024.159305
    [Google Scholar]
  8. GöldnerV. QuachL. AdhitamaE. BehrensA. JunkL. WinterM. PlackeT. GloriusF. KarstU. Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries.iScience202326910751710.1016/j.isci.2023.107517 37636078
    [Google Scholar]
  9. CollinM. GinS. JollivetP. DupuyL. DauvoisV. DuffoursL. ToF-SIMS depth profiling of altered glass.npj Materials Degradation2019311410.1038/s41529‑019‑0076‑3
    [Google Scholar]
  10. LombardoT. WaltherF. KernC. MorysonY. WeintrautT. HenssA. RohnkeM. ToF-SIMS in battery research: Advantages, limitations, and best practices.J. Vac. Sci. Technol. A202341505320710.1116/6.0002850
    [Google Scholar]
  11. PeledE. MenkinS. Review—SEI: Past, present and future.J. Electrochem. Soc.20171647A1703A171910.1149/2.1441707jes
    [Google Scholar]
  12. ZhangZ. HanW.Q. From liquid to solid-state lithium metal batteries: Fundamental issues and recent developments.Nano-Micro Lett.20241612410.1007/s40820‑023‑01234‑y 37985522
    [Google Scholar]
  13. YanC. ChengX.B. TianY. ChenX. ZhangX.Q. LiW.J. HuangJ.Q. ZhangQ. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition.Adv. Mater.20183025170762910.1002/adma.201707629 29676037
    [Google Scholar]
  14. MaC. XuF. SongT. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology.ACS Appl. Mater. Interfaces20221417201972020710.1021/acsami.2c00842 35470659
    [Google Scholar]
  15. XuH. LiZ. LiuT. HanC. GuoC. ZhaoH. LiQ. LuJ. AmineK. QiuX. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode.Angew. Chem. Int. Ed.20226130e20220289410.1002/anie.202202894 35441399
    [Google Scholar]
  16. PriebeA. BarnesJ.P. EdwardsT.E.J. PethöL. BaloghI. MichlerJ. 3D imaging of nanoparticles in an inorganic matrix using TOF-SIMS validated with STEM and EDX.Anal. Chem.20199118118341183910.1021/acs.analchem.9b02545 31429257
    [Google Scholar]
  17. LiuY.K. ZhaoC.Z. DuJ. ZhangX.Q. ChenA.B. ZhangQ. Research progresses of liquid electrolytes in lithium-ion batteries.Small2023198220531510.1002/smll.202205315 36470676
    [Google Scholar]
  18. HellerD. HagenhoffB. EngelhardC. Time-of-flight secondary ion mass spectrometry as a screening method for the identification of degradation products in lithium-ion batteries—A multivariate data analysis approach.J. Vac. Sci. Technol. B20163403H13810.1116/1.4948371
    [Google Scholar]
  19. SchäferD. HankinsK. AllionM. KrewerU. KarcherF. DerrL. SchusterR. MaibachJ. MückS. KramerD. MönigR. JeschullF. DabossS. PhilippT. NeusserG. RomerJ. PalanisamyK. KranzC. BuchnerF. BehmR.J. AhmadianA. KübelC. MohammadI. SamosonA. WitterR. SmarslyB. RohnkeM. Multiscale investigation of sodium-ion battery anodes: analytical techniques and applications.Adv. Energy Mater.202435230283010.1002/aenm.202302830
    [Google Scholar]
  20. WangY. ChenX.B. WangY.X. ZhengJ.Y. LiuX.S. LiH. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries.Energy Storage Sci. Technol2023122079
    [Google Scholar]
  21. PeledE. GolodnitskyD. UlusA. YufitV. Effect of carbon substrate on SEI composition and morphology.Electrochim. Acta2004502-339139510.1016/j.electacta.2004.01.130
    [Google Scholar]
/content/journals/cac/10.2174/0115734110299035240422114008
Loading
/content/journals/cac/10.2174/0115734110299035240422114008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test