Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Aims

By using terephthalic acid, 2, 5-furandicarboxylic acid, and terbium nitrate hexahydrate, a Tb-MOF with a core-shell structure was successfully designed and prepared.

Methods

A one-pot method was employed to design and synthesize core-shell Tb-MOF. The morphology, luminescence performance, and stability were well characterized.

Results

Tb-MOF demonstrated good water stability, acid and alkali resistance, and thermal stability. Tb-MOF was found to have high sensitivity to detect Cr3+, Bi3+, and acetone in an aqueous solution, and the LOD of Cr3+, Bi3+, and acetone were calculated to be 0.18 μM, 4.22 μM, and 0.26%, respectively. The sensing mechanism of Cr3+ and acetone was explained as energy-competitive absorption, and the sensing mechanism of Bi3+ was explained as ion replacement.

Conclusion

The prepared Tb-MOF can be developed as a multifunctional light-emitting sensor with high selectivity.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110297005240531055254
2025-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. YuY. WangY. YanH. LuJ. LiuH. LiY. WangS. LiD. DouJ. YangL. ZhouZ. Multiresponsive luminescent sensitivities of a 3D Cd-CP with visual turn-on and ratiometric sensing toward Al3+ and Cr3+ as well as turn-off sensing toward Fe3+.Inorg. Chem.20205963828383710.1021/acs.inorgchem.9b03496 32129611
    [Google Scholar]
  2. GuoH. WuN. XueR. LiuH. WangM. YaoW. WangX. YangW. An Eu(III)-functionalized Sr-based metal-organic framework for fluorometric determination of Cr(III) and Cr(VI) ions.Mikrochim. Acta2020187737410.1007/s00604‑020‑04292‑w 32506282
    [Google Scholar]
  3. Saravana KumarS. Selva KumarR. Ashok KumarS.K. Development of highly selective dual mode chromogenic and fluorogenic chemosensor for Bi3+ ions.J. Mol. Struct.2020121212814310.1016/j.molstruc.2020.128143
    [Google Scholar]
  4. WangG.Q. HuangX.F. WuC.H. ShenY. CaiS.L. FanJ. ZhangW.G. ZhengS.R. A hydrolytically stable hydrogen-bonded inorganic-organic network as a luminescence turn-on sensor for the detection of Bi3+ and Fe3+ cations in water.Polyhedron202120511528410.1016/j.poly.2021.115284
    [Google Scholar]
  5. WangJ. YuM. ChenL. LiZ. LiS. JiangF. HongM. Construction of a stable lanthanide metal-organic framework as a luminescent probe for rapid naked-eye recognition of Fe3+ and acetone.Molecules2021266169510.3390/molecules26061695 33803563
    [Google Scholar]
  6. PanM.Q. HaoX.M. ChenC. ZhangY. XingG.J. WuY.B. GuoW.L. MuhammadY. WangH. Enhanced acetone sensing from Zn(II)-MOFs comprising tetranuclear metal clusters built with EDC and BDC ligands.Inorg. Chem. Commun.202112310833910.1016/j.inoche.2020.108339
    [Google Scholar]
  7. DrinčićA. ZulianiT. ŠčančarJ. MilačičR. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry.Sci. Total Environ.2018637-6381286129410.1016/j.scitotenv.2018.05.112 29801221
    [Google Scholar]
  8. SabarudinA. NoguchiO. OshimaM. HiguchiK. MotomizuS. Application of chitosan functionalized with 3,4-dihydroxy benzoic acid moiety for on-line preconcentration and determination of trace elements in water samples.Mikrochim. Acta20071593-434134810.1007/s00604‑007‑0734‑y
    [Google Scholar]
  9. AntunesG.A. dos SantosH.S. da SilvaY.P. SilvaM.M. PiatnickiC.M.S. SamiosD. Determination of iron, copper, zinc, aluminum, and chromium in biodiesel by flame atomic absorption spectrometry using a microemulsion preparation method.Energy Fuels20173132944295010.1021/acs.energyfuels.6b03360
    [Google Scholar]
  10. LiuY. FanX. ZhangZ. WuH.H. LiuD. DouA. SuM. ZhangQ. ChuD. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating.ACS Sustain. Chem.& Eng.2019722225223510.1021/acssuschemeng.8b04905
    [Google Scholar]
  11. YangM.S. JinJ.H. AnX. CuiF.L. Determination of bismuth in pharmaceutical products by resonance light scattering using quaternary ammonium salts as molecular probe.J. Anal. Chem.2014691094294710.1134/S1061934814100177
    [Google Scholar]
  12. Hussain SharA. Nazim LakhanM. Tawfik AlaliK. LiuJ. AhmedM. Hussain ShahA. WangJ. Facile synthesis of reduced graphene oxide encapsulated selenium nanoparticles prepared by hydrothermal method for acetone gas sensors.Chem. Phys. Lett.202075513779710.1016/j.cplett.2020.137797
    [Google Scholar]
  13. LiuX. ZhangT. LiF. ZhaoH. RenH. Influence of the exposed 0001 and 10 1 - 0 crystal facets on acetone sensing performances of ZnO.Mater. Lett.202027312793110.1016/j.matlet.2020.127931
    [Google Scholar]
  14. FuT. WeiY.L. ZhangC. LiL.K. LiuX.F. LiH.Y. ZangS.Q. A viologen-based multifunctional Eu-MOF: Photo/electro-modulated chromism and luminescence.Chem. Commun.20205686130931309610.1039/D0CC06096H 33034609
    [Google Scholar]
  15. WangM. GuoL. CaoD. Amino-functionalized luminescent metal–organic framework test paper for rapid and selective sensing of SO2 gas and its derivatives by luminescence turn-on effect.Anal. Chem.20189053608361410.1021/acs.analchem.8b00146 29405067
    [Google Scholar]
  16. KongL. ZhuJ. ShuangW. BuX.H. Nitrogen‐doped wrinkled carbon foils derived from mof nanosheets for superior sodium storage.Adv. Energy Mater.2018825180151510.1002/aenm.201801515
    [Google Scholar]
  17. YangL. LiH. YuY. WuY. ZhangL. Assembled 3D MOF on 2D nanosheets for self-boosting catalytic synthesis of N-doped carbon nanotube encapsulated metallic Co electrocatalysts for overall water splitting.Appl. Catal. B202027111893910.1016/j.apcatb.2020.118939
    [Google Scholar]
  18. ZhangL. ChenY. ShiR. KangT. PangG. WangB. ZhaoY. ZengX. ZouC. WuP. LiJ. Synthesis of hollow nanocages MOF-5 as drug delivery vehicle to solve the load-bearing problem of insoluble antitumor drug oleanolic acid (OA).Inorg. Chem. Commun.201896202310.1016/j.inoche.2018.07.029
    [Google Scholar]
  19. LiH. ShiL. LiC. FuX. HuangQ. ZhangB. Metal-organic framework based on α-cyclodextrin gives high ethylene gas adsorption capacity and storage stability.ACS Appl. Mater. Interfaces20201230340953410410.1021/acsami.0c08594 32627528
    [Google Scholar]
  20. DingY. LuY. YuK. WangS. ZhaoD. ChenB. MOF‐nanocomposite mixed‐matrix membrane for dual‐luminescence ratiometric temperature sensing.Adv. Opt. Mater.2021919210094510.1002/adom.202100945
    [Google Scholar]
  21. YakoutA.A. BashaM.T. ShahatA. Robust and ultrasensitive chemosensor based on bifunctionalized MIL‐101 (Al) for fluorescent detection of ferric ions in serum and pharmaceutical tablets.ChemistrySelect2022733e20220211010.1002/slct.202202110
    [Google Scholar]
  22. BashaM.T. ShahatA. YakoutA.A. Innovative covalently modified Al‐MOF as a highly selective fluorescent sensor for Al (III) detection in tap water, human serum, and tea samples.Appl. Organomet. Chem.2024381e730410.1002/aoc.7304
    [Google Scholar]
  23. GaoY. YuG. LiuK. WangB. Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals.Sens. Actuators B Chem.201825793193510.1016/j.snb.2017.10.180
    [Google Scholar]
  24. WangZ. DongL. HuangW. JiaH. ZhaoQ. WangY. FeiB. PanF. Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes.Nano-Micro Lett.20211317310.1007/s40820‑021‑00594‑7 34138302
    [Google Scholar]
  25. HuP.P. LiuN. WuK.Y. ZhaiL.Y. XieB.P. SunB. DuanW.J. ZhangW.H. ChenJ.X. Successive and specific detection of Hg2+ and I- by a DNA@MOF biosensor: Experimental and simulation studies.Inorg. Chem.201857148382838910.1021/acs.inorgchem.8b01051 29943970
    [Google Scholar]
  26. YuZ. WangJ. TaiM. WangQ. WuQ. GuoJ. ChengY. JinD. WangL. A multifunctional Tb-MOF luminescent probe: Synthesis, characterization and mechanism exploration.Inorg. Chem. Commun.202315811167910.1016/j.inoche.2023.111679
    [Google Scholar]
  27. TsaiM.J. LiaoK.S. HsuL.J. WuJ.Y. A luminescent Cd(II) coordination polymer as a fluorescence-responsive sensor for enhancement sensing of Al3+ and Cr3+ ions and quenching detection of chromium(VI) oxyanions.J. Solid State Chem.202130412256410.1016/j.jssc.2021.122564
    [Google Scholar]
  28. FarazM. AbbasiA. NaqviF.K. KhareN. PrasadR. BarmanI. PandeyR. Polyindole/cadmium sulphide nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions.Sens. Actuators B Chem.201826919520210.1016/j.snb.2018.04.110
    [Google Scholar]
  29. TianX.M. YaoS.L. QiuC.Q. ZhengT.F. ChenY.Q. HuangH. ChenJ.L. LiuS.J. WenH.R. Turn-on luminescent sensor toward Fe3+, Cr3+, and Al3+ based on a Co (II) Metal-Organic Framework with open functional sites.Inorg. Chem.20205952803281010.1021/acs.inorgchem.9b03152 32073839
    [Google Scholar]
  30. ZhanZ. LiangX. ZhangX. JiaY. HuM. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe 3+, Cr 3+, Al 3+), PO 43− ions, and nitroaromatic explosives.Dalton Trans.20194851786179410.1039/C8DT04653K 30644483
    [Google Scholar]
  31. LinC. WangM. TangJ. ZhuZ. WuP. HuA. ZhangL. WangJ. A two-fold interpenetrated dual-emitting luminescent metal-organic framework as a ratiometric sensor for chromium (III).Inorg. Chem.20216021168031680910.1021/acs.inorgchem.1c02694 34658234
    [Google Scholar]
  32. MengX. WeiM.J. WangH.N. ZangH.Y. ZhouZ.Y. Multifunctional luminescent Zn(II)-based metal–organic framework for high proton-conductivity and detection of Cr 3+ ions in the presence of mixed metal ions.Dalton Trans.20184751383138710.1039/C7DT03932H 29292431
    [Google Scholar]
  33. El-SewifyI.M. ShenashenM.A. ShahatA. YamaguchiH. SelimM.M. KhalilM.M.H. El-SaftyS.A. Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors.J. Lumin.201819843844810.1016/j.jlumin.2018.02.028
    [Google Scholar]
  34. GaoX. ZhaoH. ZhaoX. LiZ. GaoZ. WangY. HuangH. Aqueous phase sensing of bismuth ion using fluorescent metal-organic framework.Sens. Actuators B Chem.201826632332810.1016/j.snb.2018.03.139
    [Google Scholar]
  35. GuangS. WeiG. YanZ. ZhangY. ZhaoG. WuR. XuH. A novel turn-on fluorescent probe for the multi-channel detection of Zn 2+ and Bi 3+ with different action mechanisms.Analyst2018143244945710.1039/C7AN01591G 29264597
    [Google Scholar]
  36. YangY. ChenL. JiangF. WuM. PangJ. WanX. HongM. A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules.CrystEngComm201921232132810.1039/C8CE01875H
    [Google Scholar]
  37. LiH. ShiW. ZhaoK. NiuZ. LiH. ChengP. Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metal-organic framework containing 1D honeycomb-type channels.Chemistry201319103358336510.1002/chem.201203487 23348797
    [Google Scholar]
  38. ZhangQ. WangJ. KirillovA.M. DouW. XuC. XuC. YangL. FangR. LiuW. Multifunctional Ln-MOF luminescent probe for efficient sensing of Fe3+, Ce3+, and acetone.ACS Appl. Mater. Interfaces20181028239762398610.1021/acsami.8b06103 29920195
    [Google Scholar]
  39. GaoT. DongB.X. SunY. LiuW.L. TengY.L. Fabrication of a water-stable luminescent MOF with an open Lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions.J. Mater. Sci.20195415106441065510.1007/s10853‑019‑03638‑x
    [Google Scholar]
  40. ZeinaliS. HomayoonniaS. HomayoonniaG. Comparative investigation of interdigitated and parallel-plate capacitive gas sensors based on Cu-BTC nanoparticles for selective detection of polar and apolar VOCs indoors.Sens. Actuators B Chem.201927815316410.1016/j.snb.2018.07.006
    [Google Scholar]
/content/journals/cac/10.2174/0115734110297005240531055254
Loading
/content/journals/cac/10.2174/0115734110297005240531055254
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): acetone; Bi3+; core-shell; Cr3+; luminescence quenching; metal-organic frameworks; Tb-MOF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test