Skip to content
2000
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Various natural phenomena (such as solar fluctuations, oceanic patterns, volcanic eruptions, and tectonic movements) alongside human activities (including deforestation, CO and CO emissions, and desertification) contribute to ongoing climate change and subsequent global warming. However, human actions significantly exacerbate global warming, amplifying its adverse impacts worldwide. With rising temperatures, water evaporation from water bodies and soils intensifies, leading to heightened water scarcity, particularly in drought-prone regions. This scarcity compounds rainfall deficits, posing significant challenges. Precipitation, essential for the biosphere's hydrological cycle, replenishes much of the world's freshwater. It occurs when condensed water vapor in the atmosphere falls back to Earth as rain, drizzle, sleet, graupel, hail, or snow due to gravity. Literature highlights the indispensable role of microbial populations in this process, termed bio-precipitation. This phenomenon begins with microbial colonization on plant surfaces, with colonies subsequently dispersed into the atmosphere by winds, triggering ice crystal formation. Through their ice nucleating property, these microbes facilitate the growth of larger ice crystals, which eventually melt and precipitate as rain or snow. This mechanism aids in nutrient transfer from clouds to soil or vegetation. stands out as the most notable microorganism exhibiting this ice-nucleation property, serving as the primary source of ice nucleators driving bio-precipitation. Despite limited literature on “rain and snow-causing microorganisms,” this review comprehensively explores the conceptual background of bio-precipitation, the involved bio-processes, and the critical role of bacteria like , offering insights into future research directions and patent innovations.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083330941240910120542
2024-10-01
2025-04-11
Loading full text...

Full text loading...

References

  1. PrasanthM. RameshN. GothandamK.M. SivamangalaK. ShanthiniT. Pseudomonas syringae: An overview and its future as a” rain making bacteria.IRJBS2015427077
    [Google Scholar]
  2. ConstantinidouH.A. HiranoS.S. BakerL.S. UpperC.D. Atmospheric dispersal of ice nucleation-active bacteria: The role of rain.Phytopathology1990801093493710.1094/Phyto‑80‑934
    [Google Scholar]
  3. HooseC. MöhlerO. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments.Atmos. Chem. Phys.201212209817985410.5194/acp‑12‑9817‑2012
    [Google Scholar]
  4. PrattK.A. DeMottP.J. FrenchJ.R. In situ detection of biological particles in cloud ice-crystals.Nat. Geosci.20092639840110.1038/ngeo521
    [Google Scholar]
  5. CálizJ. Triadó-MargaritX. CamareroL. CasamayorE.O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations.Proc. Natl. Acad. Sci. USA201811548122291223410.1073/pnas.1812826115 30420511
    [Google Scholar]
  6. ElsN. LaroseC. Baumann-StanzerK. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation.Aerobiologia201935467170110.1007/s10453‑019‑09606‑x
    [Google Scholar]
  7. HiraokaS. MiyaharaM. FujiiK. MachiyamaA. IwasakiW. Seasonal analysis of microbial communities in precipitation in the greater Tokyo area, Japan.Front. Microbiol.20178150610.3389/fmicb.2017.01506 28848519
    [Google Scholar]
  8. LuZ. DuP. DuR. The diversity and role of bacterial ice nuclei in rainwater from mountain sites in China.Aerosol Air Qual. Res.201616364065210.4209/aaqr.2015.05.0315
    [Google Scholar]
  9. MortazaviR. AttiyaS. AriyaP.A. Arctic microbial and next-generation sequencing approach for bacteria in snow and frost flowers: Selected identification, abundance and freezing nucleation.Atmos. Chem. Phys.201515116183620410.5194/acp‑15‑6183‑2015
    [Google Scholar]
  10. Triadó-MargaritX. CalizJ. RecheI. CasamayorE.O. High similarity in bacterial bioaerosol compositions between the free troposphere and atmospheric depositions collected at high-elevation mountains.Atmos. Environ.2019203798610.1016/j.atmosenv.2019.01.038
    [Google Scholar]
  11. MorrisC.E. SandsD.C. VinatzerB.A. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle.ISME J.20082332133410.1038/ismej.2007.113 18185595
    [Google Scholar]
  12. HardyJ. The rain making bacteria.California, USAAmerican Society for Clinical Pathology1990
    [Google Scholar]
  13. MurrayB.J. O’SullivanD. AtkinsonJ.D. WebbM.E. Ice nucleation by particles immersed in supercooled cloud droplets.Chem. Soc. Rev.201241196519655410.1039/c2cs35200a 22932664
    [Google Scholar]
  14. FailorK.C. SchmaleD.G.III VinatzerB.A. MonteilC.L. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms.ISME J.201711122740275310.1038/ismej.2017.124 28753208
    [Google Scholar]
  15. PriggM. The secret of the ‘chilled’ bacteria: Scientists discover how bug forms ice and say it could affect global weather patterns. Sci Tech (Paris)2016
    [Google Scholar]
  16. MatusA.V. L’EcuyerT.S. The role of cloud phase in Earth’s radiation budget.J. Geophys. Res. Atmos.201712252559257810.1002/2016JD025951
    [Google Scholar]
  17. TanI. StorelvmoT. ZelinkaM.D. Observational constraints on mixed-phase clouds imply higher climate sensitivity.Science2016352628222422710.1126/science.aad5300 27124459
    [Google Scholar]
  18. Vergara-TempradoJ. MiltenbergerA.K. FurtadoK. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles.Proc. Natl. Acad. Sci. USA2018115112687269210.1073/pnas.1721627115 29490918
    [Google Scholar]
  19. GuoJ. XiongY. ShiC. Characteristics of airborne bacterial communities in indoor and outdoor environments during continuous haze events in Beijing: Implications for health care.Environ. Int.202013910572110.1016/j.envint.2020.105721 32305743
    [Google Scholar]
  20. PouleurS. RichardC. MartinJ.G. AntounH. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum.Appl. Environ. Microbiol.19925892960296410.1128/aem.58.9.2960‑2964.1992 16348770
    [Google Scholar]
  21. WolberP.K. Bacterial ice nucleation.Adv. Microb. Physiol.19933420323710.1016/S0065‑2911(08)60030‑2 8452093
    [Google Scholar]
  22. KhosasihV. PrasetyoN. SudiantoE. WaturangiD.E. Prevalence and characterization of Ice Nucleation Active (INA) bacteria from rainwater in Indonesia.BMC Microbiol.202222111610.1186/s12866‑022‑02521‑1 35477335
    [Google Scholar]
  23. KieftT.L. RuscettiT. Characterization of biological ice nuclei from a lichen.J. Bacteriol.199017263519352310.1128/jb.172.6.3519‑3523.1990 2188965
    [Google Scholar]
  24. DiehlK. QuickC. Matthias-MaserS. MitraS.K. JaenickeR. The ice nucleating ability of pollen – Part I: Laboratory studies in deposition and condensation freezing modes.Atmos. Res.2001582758710.1016/S0169‑8095(01)00091‑6
    [Google Scholar]
  25. DiehlK. Matthias-MaserS. JaenickeR. MitraS.K. The ice nucleating ability of pollen – Part II: Laboratory studies in immersion and contact freezing modes.Atmos. Res.200261212513310.1016/S0169‑8095(01)00132‑6
    [Google Scholar]
  26. von BlohnN. MitraS.K. DiehlK. BorrmannS. The ice nucleating ability of pollen-Part III: New laboratory studies in immersion and contact freezing modes including more pollen types.Atmos. Res.2005783-418218910.1016/j.atmosres.2005.03.008
    [Google Scholar]
  27. GreenR.L. WarrenG.J. Physical and functional repetition in a bacterial ice nucleation gene.Nature1985317603864564810.1038/317645a0
    [Google Scholar]
  28. WarrenG. CorottoL. WolberP. Conserved repeats in diverged ice nucleation structural genes from two species of Pseudomonas.Nucleic Acids Res.198614208047806010.1093/nar/14.20.8047 3774551
    [Google Scholar]
  29. AbeK. WatabeS. EmoriY. WatanabeM. AraiS. An ice nucleation active gene of Erwinia ananas.FEBS Lett.1989258229730010.1016/0014‑5793(89)81678‑3 2599095
    [Google Scholar]
  30. WarrenG. CorottoL. The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae.Gene198985123924210.1016/0378‑1119(89)90488‑5 2515997
    [Google Scholar]
  31. ZhaoJ.I. OrserC.S. Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens.Mol. Gen. Genet.1990223116316610.1007/BF00315811 2259339
    [Google Scholar]
  32. HeL. WangS. LiuM. ChenZ. XuJ. DongY. Transport and transformation of atmospheric metals in ecosystems: A review.J. Hazard. Mater. Adv.20229410021810.1016/j.hazadv.2022.100218
    [Google Scholar]
  33. SchnellR.C. ValiG. Atmospheric ice nuclei from decomposing vegetaton.Nature1972236534316316510.1038/236163a0
    [Google Scholar]
  34. LelliottR.A. BillingE. HaywardA.C. A determinative scheme for the fluorescent plant pathogenic pseudomonads.J. Appl. Bacteriol.196629347048910.1111/j.1365‑2672.1966.tb03499.x 5980915
    [Google Scholar]
  35. MonteilC.L. BardinM. MorrisC.E. Features of air masses associated with the deposition of Pseudomonassyringae and Botrytis cinerea by rain and snowfall.Int Soc Microb Ecol2014822902304
    [Google Scholar]
  36. JoyceR.E. Bioprecipitation: The connection between microbiology and meteorology (Doctoral dissertation, University of Florida)2020
    [Google Scholar]
  37. ShenV.K. DebenedettiP.G. A computational study of homogeneous liquid–vapor nucleation in the Lennard-Jones fluid.J. Chem. Phys.199911183581358910.1063/1.479639
    [Google Scholar]
  38. AndreaeM.O. RosenfeldD. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols.Earth Sci. Rev.2008891-2134110.1016/j.earscirev.2008.03.001
    [Google Scholar]
  39. PruppacherH.R. PruppacherH.R. KlettJ.D. WangP.K. Homogeneous Nucleation. Microphysics of Clouds and Precipitation.DordrechtSpringer1998162182
    [Google Scholar]
  40. ShinY. BrangwynneC.P. Liquid phase condensation in cell physiology and disease.Science20173576357eaaf438210.1126/science.aaf4382 28935776
    [Google Scholar]
  41. ZhangZ. LiuX.Y. Control of ice nucleation: Freezing and antifreeze strategies.Chem. Soc. Rev.201847187116713910.1039/C8CS00626A 30137078
    [Google Scholar]
  42. LiuK. WangC. MaJ. Janus effect of antifreeze proteins on ice nucleation.Proc. Natl. Acad. Sci. USA201611351147391474410.1073/pnas.1614379114 27930318
    [Google Scholar]
  43. WrightT.P. Experimental Studies in Ice Nucleation.North Carolina State University2014
    [Google Scholar]
  44. BurrowsA.D. Crystal Engineering Using Multiple Hydrogen Bonds. Supramolecular Assembly via Hydrogen Bonds I.ChamSpringer2003Vol. 108559610.1007/b14137
    [Google Scholar]
  45. SahyounM. KorsholmU.S. SørensenJ.H. Impact of bacterial ice nucleating particles on weather predicted by a numerical weather prediction model.Atmos. Environ.2017170334410.1016/j.atmosenv.2017.09.029
    [Google Scholar]
  46. CantrellW. HeymsfieldA. Production of Ice in Tropospheric Clouds: A Review.Bull. Am. Meteorol. Soc.200586679580810.1175/BAMS‑86‑6‑795
    [Google Scholar]
  47. MülmenstädtJ. SourdevalO. DelanoëJ. QuaasJ. Frequency of occurrence of rain from liquid‐, mixed‐, and ice‐phase clouds derived from A‐Train satellite retrievals.Geophys. Res. Lett.201542156502650910.1002/2015GL064604
    [Google Scholar]
  48. PummerB.G. BauerH. BernardiJ. BleicherS. GrotheH. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen.Atmos. Chem. Phys.20121252541255010.5194/acp‑12‑2541‑2012
    [Google Scholar]
  49. BiggE.K. SoubeyrandS. MorrisC.E. Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause.Atmos. Chem. Phys.20151552313232610.5194/acp‑15‑2313‑2015
    [Google Scholar]
  50. StopelliE. ConenF. MorrisC.E. HerrmannE. BukowieckiN. AlewellC. Ice nucleation active particles are efficiently removed by precipitating clouds.Sci. Rep.2015511643310.1038/srep16433 26553559
    [Google Scholar]
  51. ChristnerB.C. MorrisC.E. ForemanC.M. CaiR. SandsD.C. Ubiquity of biological ice nucleators in snowfall.Science20083195867121410.1126/science.1149757 18309078
    [Google Scholar]
  52. SandsD.C. LanghansV.E. ScharenA.L. de SmetG. The association between bacteria and rain and possible resultant meteorological implications.J Hungarian Meteorol Serv198286148152
    [Google Scholar]
  53. AttardE. YangH. DelortA.M. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas.Atmos. Chem. Phys.20121222106671067710.5194/acp‑12‑10667‑2012
    [Google Scholar]
  54. JolyM. AttardE. SancelmeM. Ice nucleation activity of bacteria isolated from cloud water.Atmos. Environ.20137039240010.1016/j.atmosenv.2013.01.027
    [Google Scholar]
  55. LindemannJ. ConstantinidouH.A. BarchetW.R. UpperC.D. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.Appl. Environ. Microbiol.19824451059106310.1128/aem.44.5.1059‑1063.1982 16346129
    [Google Scholar]
  56. GarciaE HillTCJ PrenniAJ DeMottPJ FrancGD KreidenweisSM Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions.J Geophys Res.2012117D182012JD01834310.1029/2012JD018343
    [Google Scholar]
  57. HillT.C.J. MoffettB.F. DeMottP.J. GeorgakopoulosD.G. StumpW.L. FrancG.D. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR.Appl. Environ. Microbiol.20148041256126710.1128/AEM.02967‑13 24317082
    [Google Scholar]
  58. Šantl-TemkivT. SahyounM. FinsterK. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments.Atmos. Environ.201510910511710.1016/j.atmosenv.2015.02.060
    [Google Scholar]
  59. LindowS.E. The role of bacterial ice nucleation in frost injury to plants.Annu. Rev. Phytopathol.198321136338410.1146/annurev.py.21.090183.002051
    [Google Scholar]
  60. HiranoS.S. BakerL.S. UpperC.D. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury.Plant Physiol.198577225926510.1104/pp.77.2.259 16664039
    [Google Scholar]
  61. MonteilC.L. GuilbaudC. GlauxC. LafolieF. SoubeyrandS. MorrisC.E. Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack.Environ. Microbiol.20121482099211210.1111/j.1462‑2920.2011.02680.x 22188069
    [Google Scholar]
  62. MakiL.R. GalyanE.L. Chang-ChienM.M. CaldwellD.R. Ice nucleation induced by pseudomonas syringae.Appl. Microbiol.197428345645910.1128/am.28.3.456‑459.1974 4371331
    [Google Scholar]
  63. MonteilC.L. LafolieF. LaurentJ. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters.Environ. Microbiol.20141672038205210.1111/1462‑2920.12296 24118699
    [Google Scholar]
  64. YoungJ.M. Pathogenicity and identification of the lilac pathogen, Pseudomonas syringae pv. syringae van Hall 1902.Ann. Appl. Biol.1991118228329810.1111/j.1744‑7348.1991.tb05629.x
    [Google Scholar]
  65. PrasanthM. NachimuthuR. GothandamK.M. KathikeyanS. ShanthiniT. Pseudomonas Syringae: An overview and its future as a “Rain Making Bacteria”.Int. Res. J. Biol. Sci.201547077
    [Google Scholar]
  66. ZhouZ. JinJ. YueT. LeeT.C. Optimization of covalent immobilization of extracellular ice nucleators from Erwinia herbicola on magnetic Fe3O4/chitosan nanoparticles for potential application in freeze concentration.Food Bioprocess Technol.20147113259326810.1007/s11947‑014‑1318‑6
    [Google Scholar]
  67. GraetherS.P. JiaZ. Modeling Pseudomonas syringae ice-nucleation protein as a β-helical protein.Biophys. J.20018031169117310.1016/S0006‑3495(01)76093‑6 11222281
    [Google Scholar]
  68. von HeijneG. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells.EMBO J.19843102315231810.1002/j.1460‑2075.1984.tb02132.x 6499832
    [Google Scholar]
  69. SarhanM. Ice nucleation protein as a bacterial surface display protein.Arch. Biol. Sci.201163494394810.2298/ABS1104943S
    [Google Scholar]
  70. JungH.C. LebeaultJ.M. PanJ.G. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae.Nat. Biotechnol.199816657658010.1038/nbt0698‑576 9624691
    [Google Scholar]
  71. WoerpelM.D. Snow making. US Patent 4,200,2281980
    [Google Scholar]
  72. JungH.C. ParkJ.H. ParkS.H. LebeaultJ.M. PanJ.G. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein.Enzyme Microb. Technol.199822534835410.1016/S0141‑0229(97)00224‑X 9549104
    [Google Scholar]
  73. MorrisCE SandsD From grains to rain: The link between landscape, airborne microorganisms and climate processes. 2012. Available From: https://bioice.wordpress.com/wp-content/uploads/2012/05/grainsrain_v26apr2012d.pdf
  74. HynesH.P. Biotechnology in agriculture: An analysis of selected technologies and policy in the United States.Reprod. Genet. Eng.1989213949
    [Google Scholar]
  75. GhoseT. Bizarre Ice-Forming Bacteria’s Secrets Revealed.2016Available From: https://www. livescience.com/54517-ice-nucleating-bacteria-explained.html
    [Google Scholar]
  76. PöschlU. MartinS.T. SinhaB. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.Science201032959981513151610.1126/science.1191056 20847268
    [Google Scholar]
  77. DeLeon-RodriguezN. LathemT.L. Rodriguez-RL.M. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications.PNAS2013110725752580
    [Google Scholar]
  78. MuryoiN. SatoM. KanekoS. Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2.J. Bacteriol.2004186175661567110.1128/JB.186.17.5661‑5671.2004 15317770
    [Google Scholar]
  79. JuurakkoC.L. BredowM. diCenzoG.C. WalkerV.K. Cold-inducible promoter-driven knockdown of Brachypodium antifreeze proteins confers freezing and phytopathogen susceptibility.Plant Direct202269e449
    [Google Scholar]
/content/journals/biot/10.2174/0118722083330941240910120542
Loading
/content/journals/biot/10.2174/0118722083330941240910120542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test