Skip to content
2000
image of Curcumin-assisted Preparation of α-Fe2O3@TiO2 Nanocomposites for Antibacterial and Photocatalytic Activity

Abstract

Background

Harmful microorganisms like pathogens significantly impact human health. Meanwhile, industrial growth causes pollution and water contamination by releasing untreated hazardous waste. Effective treatment of these microorganisms and contaminants is essential, and nanocomposites may be a promising solution. The present attempt demonstrates the green synthesis of α-FeO@TiO nanocomposites (FTNCs) for the effective treatment of pathogens and organic contaminants.

Methods

The α-Fe O@TiOnanocomposites (FTNCs) has been synthesized through a green approach utilizing curcumin extract. Curcumin (Turmeric) extract (TEx) was prepared by washing, drying, and crushing 5 g of turmeric, then boiling it in 100 mL distilled water at 70°C for 1 hour. Metal salts (Fe3+/Ti4+, 2:1) were added to 100 mL of TEx under continuous stirring at 70°C for 24 h. The solution was rinsed and dried at 80°C overnight and heated at 300°C for 3 h to remove impurities.

Results

Synthesized FTNCs have been tested for the potent antibacterial activity against both Gram-positive (, ) and Gram-negative bacteria (). Observations discovered noteworthy inhibition of both Gram-positive and Gram-negative bacteria by FTNCs. Furthermore, the FTNCs system shows the energy band gap of ~2.6 eV which may suppress electron recombination, thereby enhancing photocatalysis and examined against Evans blue (EB) and Congo red (CR) dyes under UV and visible light (125 W) irradiation. The remarkable photocatalytic degradation efficiency (DE) for CR reached ~67.4% in 60 min.

Conclusion

A simple green approach has been demonstrated for the synthesis of the FTNCs using curcumin-mediated reduction. As prepared FTNCs have been evaluated for potent antibacterial activity against both Gram-positive (, ) and Gram-negative bacteria (). Observations. The results show that the highest ZID values have been obtained for 5 mg/mL concertation of FTNCs of ~14, 22,18, 21, and 20 and 29 mm for , , and, respectively. Additionally, FTNCs demonstrate remarkable photocatalytic degradation efficiency against EB and CR dyes under UV (125 W) irradiation, achieving 56, 67% degradation within 60 minutes for EB and CR. The findings suggest that the FTNCs hold promise for long-term antimicrobial efficacy against various bacteria and offer the potential for addressing water and wastewater contaminants through photocatalysis.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083332040241011050802
2024-10-18
2024-11-30
Loading full text...

Full text loading...

References

  1. Nasir A.M. Awang N. Jaafar J. Ismail A.F. Othman M.H.D. Rahman M.A. Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. J. Water Process Eng. 2021 40 101878 10.1016/j.jwpe.2020.101878
    [Google Scholar]
  2. Farkas K. Walker D.I. Adriaenssens E.M. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Res. 2020 181 115926 10.1016/j.watres.2020.115926 32417460
    [Google Scholar]
  3. Sharmin S. Rahaman M.M. Sarkar C. Atolani O. Islam M.T. Adeyemi O.S. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021 7 3 e06456 10.1016/j.heliyon.2021.e06456 33763612
    [Google Scholar]
  4. Kumar N. Chamoli P. Misra M. Manoj M.K. Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale 2022 14 11 3987 4017 10.1039/D1NR07643D 35244647
    [Google Scholar]
  5. Twinkle T. Saini K. Shukla R.K. Bezbaruah A.N. Gupta R. Kar K.K. Nanomaterials and purification techniques for water purification and wastewater treatment.Nanomaterials for Advanced Technologies. Cham Springer 2022 10.1007/978‑981‑19‑1384‑6_6
    [Google Scholar]
  6. Naseem T. Durrani T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environ Chem Ecotoxicol 2021 3 59 75 10.1016/j.enceco.2020.12.001
    [Google Scholar]
  7. Chamoli P. Shukla R.K. Bezbaruah A.N. Kar K.K. Raina K.K. Ferrites for water purification and wastewater treatment. Ferrites and Multiferroics 2021 10.1007/978‑981‑16‑7454‑9_7
    [Google Scholar]
  8. Punitha V.N. Vijayakumar S. Sakthivel B. Praseetha P.K. Protection of neuronal cell lines, antimicrobial and photocatalytic behaviours of eco-friendly TiO2 nanoparticles. J. Environ. Chem. Eng. 2020 8 5 104343 10.1016/j.jece.2020.104343
    [Google Scholar]
  9. Lu Z. Zhou H.F. Liao J.J. A facile dopamine-assisted method for the preparation of antibacterial surfaces based on Ag/TiO2 nanoparticles. Appl. Surf. Sci. 2019 481 1270 1276 10.1016/j.apsusc.2019.03.174
    [Google Scholar]
  10. Nithya N. Bhoopathi G. Magesh G. Kumar C.D.N. Neodymium doped TiO2 nanoparticles by sol-gel method for antibacterial and photocatalytic activity. Mater. Sci. Semicond. Process. 2018 83 70 82 10.1016/j.mssp.2018.04.011
    [Google Scholar]
  11. Pratheesya T. Harish S.M.N. Sohila S. Ramesh R. Enhanced antibacterial and photocatalytic activities of silver nanoparticles anchored reduced graphene oxide nanostructure. Mater. Res. Express 2019 6 7 074003 10.1088/2053‑1591/ab1567
    [Google Scholar]
  12. Shao W. Liu X. Min H. Dong G. Feng Q. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015 7 12 6966 6973 10.1021/acsami.5b00937
    [Google Scholar]
  13. Gautam A. Kshirsagar A. Biswas R. Banerjee S. Khanna P.K. Photodegradation of organic dyes based on anatase and rutile TiO 2 nanoparticles. RSC Advances 2016 6 4 2746 2759 10.1039/C5RA20861K
    [Google Scholar]
  14. Tayeb A.M. Hussein D.S. Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue. American J Nanomater 2015 3 2 57 63 10.12691/ajn‑3‑2‑2
    [Google Scholar]
  15. Wang C. Shao C. Zhang X. Liu Y. SnO2 nanostructures-TiO2 nanofibers heterostructures: Controlled fabrication and high photocatalytic properties. Inorg. Chem. 2009 48 15 7261 7268 10.1021/ic9005983 19722695
    [Google Scholar]
  16. Chen J. Xu L. Li W. Gou X. α‐Fe 2 O 3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications. Adv. Mater. 2005 17 5 582 586 10.1002/adma.200401101
    [Google Scholar]
  17. Wang B. Chen J.S. Wu H.B. Wang Z. Lou X.W.D. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 2011 133 43 17146 17148 10.1021/ja208346s 21977903
    [Google Scholar]
  18. Chamoli P. Shukla R.K. Bezbaruah A.N. Kar K.K. Raina K.K. Rapid microwave growth of mesoporous TiO2 nano-tripods for efficient photocatalysis and adsorption. J. Appl. Phys. 2021 130 16 164901 10.1063/5.0062383
    [Google Scholar]
  19. Madrakian T. Afkhami A. Rahimi M. Ahmadi M. Soleimani M. Preconcentration and spectrophotometric determination of oxymetholone in the presence of its main metabolite (mestanolone) using modified maghemite nanoparticles in urine sample. Talanta 2013 115 468 473 10.1016/j.talanta.2013.05.056 24054620
    [Google Scholar]
  20. Jaramillo-Fierro X. González S. Jaramillo H.A. Medina F. Synthesis of the ZnTiO3/TiO2 nanocomposite supported in ecuadorian clays for the adsorption and photocatalytic removal of methylene blue dye. Nanomaterials (Basel) 2020 10 9 1891 10.3390/nano10091891 32967271
    [Google Scholar]
  21. Ying S. Guan Z. Ofoegbu P.C. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov 2022 26 102336 10.1016/j.eti.2022.102336
    [Google Scholar]
  22. Muniyappan N. Pandeeswaran M. Amalraj A. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti- inflammatory activities. Environ Chem Ecotoxicol 2021 3 117 124 10.1016/j.enceco.2021.01.002
    [Google Scholar]
  23. Mamidi N. De Silva F.F. Vacas A.B. Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability. Adv. Healthc. Mater. 2024 2401195 2401195 10.1002/adhm.202401195 38824416
    [Google Scholar]
  24. Mamidi N. Ijadi F. Norahan M.H. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: An assessment of challenges and opportunities. Biomacromolecules 2024 25 4 2075 2113 10.1021/acs.biomac.3c00279 37406611
    [Google Scholar]
  25. Mamidi N. García R.G. Martínez J.D.H. Recent advances in designing fibrous biomaterials for the domain of biomedical, clinical, and environmental applications. ACS Biomater. Sci. Eng. 2022 8 9 3690 3716 10.1021/acsbiomaterials.2c00786 36037103
    [Google Scholar]
  26. Mamidi N. Delgadillo R.M. New zein protein composites with high performance in phosphate removal, intrinsic antibacterial, and drug delivery capabilities. ACS Appl. Mater. Interfaces 2024 16 29 37468 37485 10.1021/acsami.4c04718 38938118
    [Google Scholar]
  27. Mamidi N. Flores Otero J.F. Metallic and carbonaceous nanoparticles for dentistry applications. Curr. Opin. Biomed. Eng. 2023 25 March 100436 10.1016/j.cobme.2022.100436
    [Google Scholar]
  28. Mamidi N. Delgadillo R.M.V. Castrejón J.V. Unconventional and facile production of a stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation. Environ. Sci. Nano 2021 8 7 2081 2097 10.1039/D1EN00354B
    [Google Scholar]
  29. Mamidi N. Delgadillo R.M.V. Squaramide-immobilized carbon nanoparticles for rapid and high-efficiency elimination of anthropogenic mercury ions from aquatic systems. ACS Appl. Mater. Interfaces 2022 14 31 35789 35801 10.1021/acsami.2c09232 35881879
    [Google Scholar]
  30. Vi T. Rajesh Kumar S. Rout B. The preparation of graphene oxide-silver nanocomposites: The effect of silver loads on Gram-positive and Gram-negative antibacterial activities. Nanomaterials (Basel) 2018 8 3 163 10.3390/nano8030163 29538336
    [Google Scholar]
  31. Benjwal P. Kumar M. Chamoli P. Kar K.K. Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(iii) by reduced graphene oxide (rGO)–metal oxide (TiO 2/Fe 3 O 4) based nanocomposites. RSC Advances 2015 5 89 73249 73260 10.1039/C5RA13689J
    [Google Scholar]
  32. Fouad D.E. Zhang C. El-Didamony H. Yingnan L. Mekuria T.D. Shah A.H. Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 2019 12 1253 1261 10.1016/j.rinp.2019.01.005
    [Google Scholar]
  33. Abbasi A. Ghanbari D. Salavati-Niasari M. Hamadanian M. Photo-degradation of methylene blue: Photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 2016 27 5 4800 4809 10.1007/s10854‑016‑4361‑4
    [Google Scholar]
  34. Mai-Prochnow A. Clauson M. Hong J. Murphy A.B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 2016 6 1 38610 10.1038/srep38610 27934958
    [Google Scholar]
  35. Bhavaniramya S. Vishnupriya S. Al-Aboody M.S. Vijayakumar R. Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol 2019 2 2 49 10.1016/j.gaost.2019.03.001
    [Google Scholar]
  36. Bhosale S.V. Ekambe P.S. Bhoraskar S.V. Mathe V.L. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity. Appl. Surf. Sci. 2018 441 724 733 10.1016/j.apsusc.2018.01.220
    [Google Scholar]
  37. Wang X. Li S. Yu H. Yu J. Liu S. Ag2O as a new visible-light photocatalyst: Self-stability and high photocatalytic activity. Chemistry 2011 17 28 7777 7780 10.1002/chem.201101032 21626596
    [Google Scholar]
  38. Pandit R S Gaikwad S C Agarkar G A Gade A K Rai M. Curcumin nanoparticles: Physico-chemical fabrication and its in vitro efficacy against human pathogens. 3 Biotech 2015 5 6 991 997 10.1007/s13205‑015‑0302‑9
    [Google Scholar]
  39. Saranya A. Murad A. Thamer A. Priyadharsan A. Maheshwaran P. Preparation of Reduced ZnO/Ag Nanocomposites by a Green Microwave‐Assisted Method and Their Applications in Photodegradation of Methylene Blue Dye, and as Antimicrobial and Anticancer Agents. ChemistrySelect 2021 6 16 3995 4004 10.1002/slct.202100413
    [Google Scholar]
  40. Bhushan M. Kumar Y. Periyasamy L. Viswanath A.K. Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics. Appl. Nanosci. 2018 8 1-2 137 153 10.1007/s13204‑018‑0656‑5
    [Google Scholar]
  41. Rajan S.A. Khan A. Asrar S. Raza H. Das R.K. Sahu N.K. Synthesis of ZnO/Fe 3 O 4/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus. IET Nanobiotechnol. 2019 13 7 682 687 10.1049/iet‑nbt.2018.5330 31573536
    [Google Scholar]
  42. Asamoah R.B. Annan E. Mensah B. A comparative study of antibacterial activity of CuO/Ag and ZnO/Ag nanocomposites. Adv. Mater. Sci. Eng. 2020 2020 1 7814324 10.1155/2020/7814324
    [Google Scholar]
  43. Pragathiswaran C. Smitha C. Barabadi H. Al-Ansari M.M. Al-Humaid L.A. Saravanan M. TiO2@ZnO nanocomposites decorated with gold nanoparticles: Synthesis, characterization and their antifungal, antibacterial, anti-inflammatory and anticancer activities. Inorg. Chem. Commun. 2020 121 108210 10.1016/j.inoche.2020.108210
    [Google Scholar]
  44. Ajmal A. Majeed I. Malik R.N. Idriss H. Nadeem M.A. Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: A comparative overview. RSC Advances 2014 4 70 37003 37026 10.1039/C4RA06658H
    [Google Scholar]
  45. Chamoli P. Shukla R.K. Bezbaruah A.N. Kar K.K. Raina K.K. Microwave-assisted rapid synthesis of honeycomb core-ZnO tetrapods nanocomposites for excellent photocatalytic activity against different organic dyes. Appl. Surf. Sci. 2021 555 149663 10.1016/j.apsusc.2021.149663
    [Google Scholar]
  46. Fu L. Fu Z. Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int. 2015 41 2 2492 2496 10.1016/j.ceramint.2014.10.069
    [Google Scholar]
  47. Azeez F. Al-Hetlani E. Arafa M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018 8 1 7104 10.1038/s41598‑018‑25673‑5 29740107
    [Google Scholar]
  48. Li R. Jia Y. Bu N. Wu J. Zhen Q. Photocatalytic degradation of methyl blue using Fe 2 O 3/TiO 2 composite ceramics. J. Alloys Compd. 2015 643 88 93 10.1016/j.jallcom.2015.03.266
    [Google Scholar]
  49. Rahmah M.I. Sabry R.S. Aziz W.J. Preparation of superhydrophobic Ag/Fe 2 O 3/ZnO surfaces with photocatalytic activity. Surf. Eng. 2021 37 10 1320 1327 10.1080/02670844.2021.1948156
    [Google Scholar]
  50. Pant B. Ojha G.P. Kuk Y.S. Kwon O.H. Park Y.W. Park M. Synthesis and characterization of ZnO-TiO2/carbon fiber composite with enhanced photocatalytic properties. Nanomaterials (Basel) 2020 10 10 1960 10.3390/nano10101960 33019690
    [Google Scholar]
/content/journals/biot/10.2174/0118722083332040241011050802
Loading
/content/journals/biot/10.2174/0118722083332040241011050802
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Biogenic synthesis ; photodegradation ; α-Fe2O3 ; bactericidal activity ; TiO2 ; Curcumin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test