Skip to content
2000
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Background

Harmful microorganisms like pathogens significantly impact human health. Meanwhile, industrial growth causes pollution and water contamination by releasing untreated hazardous waste. Effective treatment of these microorganisms and contaminants is essential, and nanocomposites may be a promising solution. The present attempt demonstrates the green synthesis of α-FeO@TiO nanocomposites (FTNCs) for the effective treatment of pathogens and organic contaminants.

Methods

The FTNCs have been synthesized through a green approach utilizing curcumin extract. Curcumin (Turmeric) extract (TEx) was prepared by washing, drying, and crushing 5 g of turmeric, then boiling it in 100 mL distilled water at 70°C for 1 hour. Metal salts (Fe3+/Ti4+, 2:1) were added to 100 mL of TEx under continuous stirring at 70°C for 24 h. The solution was rinsed and dried at 80°C overnight and heated at 300°C for 3 h to remove impurities.

Results

Synthesized FTNCs have been tested for the potent antibacterial activity against both Gram-positive (, ) and Gram-negative bacteria (). Observations discovered noteworthy inhibition of both Gram-positive and Gram-negative bacteria by FTNCs. Furthermore, the FTNCs system shows the energy band gap of ~2.6 eV which may suppress electron recombination, thereby enhancing photo-catalysis. The photo-degradation is examined against Evans blue (EB) and Congo red (CR) dyes under UV and visible light (125 W) irradiation. The remarkable photocatalytic degradation efficiency (DE) for CR reached ~67.4% in 60 min.

Conclusion

A simple green approach has been demonstrated for the synthesis of the FTNCs using curcumin-mediated reduction. As prepared FTNCs have been evaluated for potent antibacterial activity against both Gram-positive (, ) and Gram-negative bacteria (). The results show that the highest zone of inhibition diameter values have been obtained for 5 mg/mL concertation of FTNCs of ~14, 22, 18, 21, and 20 and 29 mm for , , and , respectively. Additionally, FTNCs demonstrate remarkable photocatalytic degradation efficiency against EB and CR dyes under UV (125 W) irradiation, achieving 56, 67% degradation within 60 min, respectively. The findings indicate that FTNCs show long-term antimicrobial effectiveness and potential for water treatment through photocatalysis. This examination highlights recent advancements in intellectual property rights (IPR) and patent strategies, shedding light on how patents influence eco-friendly synthesis and the development of multifunctional, high-performance nanocomposites.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083332040241011050802
2024-10-18
2025-04-06
Loading full text...

Full text loading...

References

  1. NasirA.M. AwangN. JaafarJ. IsmailA.F. OthmanM.H.D. RahmanM.A. Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review.J. Water Process Eng.20214010187810.1016/j.jwpe.2020.101878
    [Google Scholar]
  2. SachdevD. TanejaN. K. Antibacterial layered nanocomposite. WO2017168352A12017
    [Google Scholar]
  3. SharminS. RahamanM.M. SarkarC. AtolaniO. IslamM.T. AdeyemiO.S. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study.Heliyon202173e0645610.1016/j.heliyon.2021.e06456 33763612
    [Google Scholar]
  4. KumarN. ChamoliP. MisraM. ManojM.K. SharmaA. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications.Nanoscale202214113987401710.1039/D1NR07643D 35244647
    [Google Scholar]
  5. TwinkleT. SainiK. ShuklaR.K. BezbaruahA.N. GuptaR. KarK.K. ChamoliP. Nanomaterials and purification techniques for water purification and wastewater treatment. Nanomaterials for Advanced Technologies.Cham: Springer202210312510.1007/978‑981‑19‑1384‑6_6
    [Google Scholar]
  6. NaseemT. DurraniT. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review.Environ Chem Ecotoxicol20213597510.1016/j.enceco.2020.12.001
    [Google Scholar]
  7. ChamoliP. ShuklaR.K. BezbaruahA.N. KarK.K. RainaK.K. Ferrites for water purification and wastewater treatment.Ferrites and Multiferroics202111712710.1007/978‑981‑16‑7454‑9_7
    [Google Scholar]
  8. PunithaV.N. VijayakumarS. SakthivelB. PraseethaP.K. Protection of neuronal cell lines, antimicrobial and photocatalytic behaviours of eco-friendly TiO2 nanoparticles.J. Environ. Chem. Eng.20208510434310.1016/j.jece.2020.104343
    [Google Scholar]
  9. LuZ. ZhouH.F. LiaoJ.J. A facile dopamine-assisted method for the preparation of antibacterial surfaces based on Ag/TiO2 nanoparticles.Appl. Surf. Sci.20194811270127610.1016/j.apsusc.2019.03.174
    [Google Scholar]
  10. NithyaN. BhoopathiG. MageshG. KumarC.D.N. Neodymium doped TiO2 nanoparticles by sol-gel method for antibacterial and photocatalytic activity.Mater. Sci. Semicond. Process.201883708210.1016/j.mssp.2018.04.011
    [Google Scholar]
  11. PratheesyaT. Harish S.M.N. SohilaS. RameshR. Enhanced antibacterial and photocatalytic activities of silver nanoparticles anchored reduced graphene oxide nanostructure.Mater. Res. Express20196707400310.1088/2053‑1591/ab1567
    [Google Scholar]
  12. ShaoW. LiuX. MinH. DongG. FengQ. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.ACS Appl. Mater. Interfaces20157126966697310.1021/acsami.5b00937
    [Google Scholar]
  13. GautamA. KshirsagarA. BiswasR. BanerjeeS. KhannaP.K. Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles.RSC Advances2016642746275910.1039/C5RA20861K
    [Google Scholar]
  14. TayebA.M. HusseinD.S. Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue.Am J Nanomater201532576310.12691/ajn‑3‑2‑2
    [Google Scholar]
  15. WangC. ShaoC. ZhangX. LiuY. SnO2 nanostructures-TiO2 nanofibers heterostructures: Controlled fabrication and high photocatalytic properties.Inorg. Chem.200948157261726810.1021/ic9005983 19722695
    [Google Scholar]
  16. ChenJ. XuL. LiW. GouX. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications.Adv. Mater.200517558258610.1002/adma.200401101
    [Google Scholar]
  17. WangB. ChenJ.S. WuH.B. WangZ. LouX.W.D. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties.J. Am. Chem. Soc.201113343171461714810.1021/ja208346s 21977903
    [Google Scholar]
  18. ChamoliP. ShuklaR.K. BezbaruahA.N. KarK.K. RainaK.K. Rapid microwave growth of mesoporous TiO2 nano-tripods for efficient photocatalysis and adsorption.J. Appl. Phys.20211301616490110.1063/5.0062383
    [Google Scholar]
  19. MadrakianT. AfkhamiA. RahimiM. AhmadiM. SoleimaniM. Preconcentration and spectrophotometric determination of oxymetholone in the presence of its main metabolite (mestanolone) using modified maghemite nanoparticles in urine sample.Talanta201311546847310.1016/j.talanta.2013.05.056 24054620
    [Google Scholar]
  20. Jaramillo-FierroX. GonzálezS. JaramilloH.A. MedinaF. Synthesis of the ZnTiO3/TiO2 nanocomposite supported in ecuadorian clays for the adsorption and photocatalytic removal of methylene blue dye.Nanomaterials (Basel)2020109189110.3390/nano10091891 32967271
    [Google Scholar]
  21. YingS. GuanZ. OfoegbuP.C. Green synthesis of nanoparticles: Current developments and limitations.Environ. Technol. Innov.20222610233610.1016/j.eti.2022.102336
    [Google Scholar]
  22. MuniyappanN. PandeeswaranM. AmalrajA. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti-inflammatory activities.Environ Chem Ecotoxicol2021311712410.1016/j.enceco.2021.01.002
    [Google Scholar]
  23. MamidiN. De SilvaF.F. VacasA.B. Multifaceted hydrogel scaffolds: Bridging the gap between biomedical needs and environmental sustainability.Adv. Healthc. Mater.2024240119510.1002/adhm.202401195 38824416
    [Google Scholar]
  24. MamidiN. IjadiF. NorahanM.H. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: An assessment of challenges and opportunities.Biomacromolecules20242542075211310.1021/acs.biomac.3c00279 37406611
    [Google Scholar]
  25. MamidiN. GarcíaR.G. MartínezJ.D.H. Recent advances in designing fibrous biomaterials for the domain of biomedical, clinical, and environmental applications.ACS Biomater. Sci. Eng.2022893690371610.1021/acsbiomaterials.2c00786 36037103
    [Google Scholar]
  26. MamidiN. DelgadilloR.M. New zein protein composites with high performance in phosphate removal, intrinsic antibacterial, and drug delivery capabilities.ACS Appl. Mater. Interfaces20241629374683748510.1021/acsami.4c04718 38938118
    [Google Scholar]
  27. MamidiN. Flores OteroJ.F. Metallic and carbonaceous nanoparticles for dentistry applications.Curr. Opin. Biomed. Eng.20232510043610.1016/j.cobme.2022.100436
    [Google Scholar]
  28. MamidiN. DelgadilloR.M.V. CastrejónJ.V. Unconventional and facile production of a stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation.Environ. Sci. Nano2021872081209710.1039/D1EN00354B
    [Google Scholar]
  29. MamidiN. DelgadilloR.M.V. Squaramide-immobilized carbon nanoparticles for rapid and high-efficiency elimination of anthropogenic mercury ions from aquatic systems.ACS Appl. Mater. Interfaces20221431357893580110.1021/acsami.2c09232 35881879
    [Google Scholar]
  30. ViT. KumarR.S. RoutB. The preparation of graphene oxide-silver nanocomposites: The effect of silver loads on Gram-positive and Gram-negative antibacterial activities.Nanomaterials (Basel)20188316310.3390/nano8030163 29538336
    [Google Scholar]
  31. BenjwalP. KumarM. ChamoliP. KarK.K. Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(iii) by reduced graphene oxide (rGO)–metal oxide (TiO2/Fe3O4) based nanocomposites.RSC Advances2015589732497326010.1039/C5RA13689J
    [Google Scholar]
  32. FouadD.E. ZhangC. El-DidamonyH. YingnanL. MekuriaT.D. ShahA.H. Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor.Results Phys.2019121253126110.1016/j.rinp.2019.01.005
    [Google Scholar]
  33. AbbasiA. GhanbariD. Salavati-NiasariM. HamadanianM. Photo-degradation of methylene blue: Photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites.J. Mater. Sci. Mater. Electron.20162754800480910.1007/s10854‑016‑4361‑4
    [Google Scholar]
  34. Mai-ProchnowA. ClausonM. HongJ. MurphyA.B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma.Sci. Rep.2016613861010.1038/srep38610 27934958
    [Google Scholar]
  35. BhavaniramyaS. VishnupriyaS. Al-AboodyM.S. VijayakumarR. BaskaranD. Role of essential oils in food safety: Antimicrobial and antioxidant applications.Grain Oil Sci Technol2019224910.1016/j.gaost.2019.03.001
    [Google Scholar]
  36. BhosaleS.V. EkambeP.S. BhoraskarS.V. MatheV.L. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity.Appl. Surf. Sci.201844172473310.1016/j.apsusc.2018.01.220
    [Google Scholar]
  37. WangX. LiS. YuH. YuJ. LiuS. Ag2O as a new visible-light photocatalyst: Self-stability and high photocatalytic activity.Chemistry201117287777778010.1002/chem.201101032 21626596
    [Google Scholar]
  38. PanditR S GaikwadS C AgarkarG A GadeA K RaiM. Curcumin nanoparticles: Physico-chemical fabrication and its in vitro efficacy against human pathogens.3 Biotech20155699199710.1007/s13205‑015‑0302‑9
    [Google Scholar]
  39. SaranyaA. MuradA. ThamerA. PriyadharsanA. MaheshwaranP. Preparation of reduced ZnO/Ag nanocomposites by a green microwave-assisted method and their applications in photodegradation of methylene blue dye, and as antimicrobial and anticancer agents.ChemistrySelect20216163995400410.1002/slct.202100413
    [Google Scholar]
  40. BhushanM. KumarY. PeriyasamyL. ViswanathA.K. Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics.Appl. Nanosci.201881-213715310.1007/s13204‑018‑0656‑5
    [Google Scholar]
  41. RajanS.A. KhanA. AsrarS. RazaH. DasR.K. SahuN.K. Synthesis of ZnO/Fe3O4/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus.IET Nanobiotechnol.201913768268710.1049/iet‑nbt.2018.5330 31573536
    [Google Scholar]
  42. AsamoahR.B. AnnanE. MensahB. A comparative study of antibacterial activity of CuO/Ag and ZnO/Ag nanocomposites.Adv. Mater. Sci. Eng.202020201781432410.1155/2020/7814324
    [Google Scholar]
  43. PragathiswaranC. SmithaC. BarabadiH. Al-AnsariM.M. Al-HumaidL.A. SaravananM. TiO2@ZnO nanocomposites decorated with gold nanoparticles: Synthesis, characterization and their antifungal, antibacterial, anti-inflammatory and anticancer activities.Inorg. Chem. Commun.202012110821010.1016/j.inoche.2020.108210
    [Google Scholar]
  44. AjmalA. MajeedI. MalikR.N. IdrissH. NadeemM.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview.RSC Advances2014470370033702610.1039/C4RA06658H
    [Google Scholar]
  45. ChamoliP. ShuklaR.K. BezbaruahA.N. KarK.K. RainaK.K. Microwave-assisted rapid synthesis of honeycomb core-ZnO tetrapods nanocomposites for excellent photocatalytic activity against different organic dyes.Appl. Surf. Sci.202155514966310.1016/j.apsusc.2021.149663
    [Google Scholar]
  46. FuL. FuZ. Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity.Ceram. Int.20154122492249610.1016/j.ceramint.2014.10.069
    [Google Scholar]
  47. AzeezF. Al-HetlaniE. ArafaM. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles.Sci. Rep.201881710410.1038/s41598‑018‑25673‑5 29740107
    [Google Scholar]
  48. LiR. JiaY. BuN. WuJ. ZhenQ. Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics.J. Alloys Compd.2015643889310.1016/j.jallcom.2015.03.266
    [Google Scholar]
  49. RahmahM.I. SabryR.S. AzizW.J. Preparation of superhydrophobic Ag/Fe2O3/ZnO surfaces with photocatalytic activity.Surf. Eng.202137101320132710.1080/02670844.2021.1948156
    [Google Scholar]
  50. PantB. OjhaG.P. KukY.S. KwonO.H. ParkY.W. ParkM. Synthesis and characterization of ZnO-TiO2/carbon fiber composite with enhanced photocatalytic properties.Nanomaterials (Basel)20201010196010.3390/nano10101960 33019690
    [Google Scholar]
/content/journals/biot/10.2174/0118722083332040241011050802
Loading
/content/journals/biot/10.2174/0118722083332040241011050802
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bactericidal activity; Biogenic synthesis; curcumin; photodegradation; TiO2; α-Fe2O3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test