Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Methane-oxidizing bacteria (MOB) or methanotrophs are a category of bacteria that rely on methane as their primary carbon and energy source. Methane is the second most abundant greenhouse gas after carbon dioxide and is comparatively far more potent in trapping heat in the atmosphere. MOBs are important microorganisms in the global carbon cycle where they play a crucial role in the oxidation of methane. The present review provides a comprehensive patent landscape on technology development using MOB. The first patent in this technology domain was recorded in 1971, with a notable surge in activity observed in 2020. A detailed patent analysis revealed that the early inventions were mainly focused on the production of various metabolites and bioremediation using MOB. In the later years, patents were filed in the area of identification of various species of MOB and their large-scale production. From 2010 onwards, consistent patent filing was observed in the genetic engineering of MOB to enhance their methane oxidizing capacity. The United States and China have emerged as the global leaders in terms of patent filing in this technology space. Precigen Inc. and Exxon Research Engineering Co., US were the top patent assignees followed by the University of Tsinghua and Calysta Inc. The Highest number of patent applications have claimed metabolite production by using MOB followed by their use in bioremediation. has emerged as the predominant microorganism of choice for methane oxidation applications.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083316359240915173125
2024-09-27
2025-07-10
Loading full text...

Full text loading...

References

  1. LidstromM.E. Aerobic methylotrophicpProkaryotes.In: The prokaryotes: Volume 2: Ecophysiology and biochemistry.New York: Springer2006618634
    [Google Scholar]
  2. HoughtonK.M. CarereC.R. StottM.B. McDonaldI.R. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields.Front. Microbiol.202314125377310.3389/fmicb.2023.1253773
    [Google Scholar]
  3. MeiJ. WuY. QianF. ChenC. ShenY. ZhaoY. Methane-oxidizing microorganism properties in landfills.Pol. J. Environ. Stud.201928538093818
    [Google Scholar]
  4. MoY. QiX.E. LiA. ZhangX. JiaZ. Active methanotrophs in suboxic alpine swamp soils of the qinghai-tibetan plateau.Front. Microbiol.202011580866
    [Google Scholar]
  5. HeR. MatthewJ. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments.The ISME J.2012619371948
    [Google Scholar]
  6. WhalenS.C. ReeburghW.S. A methane flux transect along the trans-Alaska pipeline haul road.Tellus B Chem. Phys. Meterol.1990423237249
    [Google Scholar]
  7. EllerG. FrenzelP. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice.Appl. Environ. Microbiol.20016762395240310.1128/AEM.67.6.2395‑2403.2001 11375143
    [Google Scholar]
  8. BodrossyL. MurrellJ.C. DaltonH. KalmanM. PuskasL.G. KovacsK.L. Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field.Appl. Environ. Microbiol.199561103549355510.1128/aem.61.10.3549‑3555.1995 7486989
    [Google Scholar]
  9. DedyshS.N. PanikovN.S. LiesackW. GroßkopfR. ZhouJ. TiedjeJ.M. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.Science1998282538728128410.1126/science.282.5387.281 9765151
    [Google Scholar]
  10. KhmeleninaV.N. RozovaN. ButC.Y. Biosynthesis of secondary metabolites in methanotrophs: Biochemical and genetic aspects (review).Prikl. Biokhim. Mikrobiol.201551214015010.7868/S0555109915020087
    [Google Scholar]
  11. BowmanJ.P. McCammonS.A. SkerratJ.H. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes.Microbiology199714341451145910.1099/00221287‑143‑4‑1451 9141708
    [Google Scholar]
  12. CavanaughC.M. LeveringP.R. MakiJ.S. MitchellR. LidstromM.E. Symbioses of Methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae).Prog. Mol. Subcell. Biol.20064122724910.1007/3‑540‑28221‑1_11
    [Google Scholar]
  13. EttwigK.F. ButlerM.K. Le PaslierD. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.Nature201046454354810.1038/nature08883
    [Google Scholar]
  14. JensenS. NeufeldJ.D. BirkelandN-K. HovlandM. MurrellJ.C. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway.FEMS Microbiol. Ecol.200866232033010.1111/j.1574‑6941.2008.00575.x
    [Google Scholar]
  15. SohngenN.L. About bacteria that use methane as a carbon food and energy source.Central Parasitic Bacteriol Abt I190615513517
    [Google Scholar]
  16. Op den CampH.J.M. IslamT. StottM.B. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia.Environ. Microbiol. Rep.20091529330610.1111/j.1758‑2229.2009.00022.x 23765882
    [Google Scholar]
  17. VigliottaG. NutricatiE. CarataE. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium.Appl. Environ. Microbiol.200773113556356510.1128/AEM.02678‑06 17416684
    [Google Scholar]
  18. WhittenburyR. KriegN.R. Family IV. Methylococcaceae.In: Krieg NR, Holt JG, Eds. Bergey’s manual of systematic bacteriology.BaltimoreThe Williams & Wilkins Co.1984Vol. 1256261
    [Google Scholar]
  19. TsujiK. TsienH.C. HansonR.S. DePalmaS.R. ScholtzR. LaRocheS. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs.J. Gen. Microbiol.1990136111010.1099/00221287‑136‑1‑1 1693657
    [Google Scholar]
  20. KalyuzhnayaM.G. GomezO.A. Colin MurrellJ. The methane-oxidizing bacteria (Methanotrophs).Taxo Genom Ecophysiol Hydrocarbon-degrading Microbes2019245278
    [Google Scholar]
  21. BalasubramanianR. RosenzweigA.C. Copper methanobactin: A molecule whose time has come.Curr. Opin. Chem. Biol.200812224524910.1016/j.cbpa.2008.01.043 18313412
    [Google Scholar]
  22. DunfieldP.F. DedyshS.N. Methylocella: A gourmand among methanotrophs.Trends Microbiol.201422736836910.1016/j.tim.2014.05.004
    [Google Scholar]
  23. OrataF.D. Meier-KolthoffJ.P. SauvageauD. SteinL.Y. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels.Front. Microbiol.20189316210.3389/fmicb.2018.03162 30631317
    [Google Scholar]
  24. Powell Tarika. Methane’s 20- and 100-Year Climate Effect is Like ‘CO2 on Steroids.2019Available from: https://www.sightline.org/2019/02/12/methane-climate-change-co2-on-steroids/
  25. BjorkC.E. DobsonP.D. PandhalJ. Biotechnological conversion of methane to methanol: Evaluation of progress and potential.AIMS Bioeng.20185113810.3934/bioeng.2018.1.1
    [Google Scholar]
  26. PastorJ.M. SalvadorM. ArgandoñaM. Ectoines in cell stress protection: Uses and biotechnological production.Biotechnol. Adv.201028678280110.1016/j.biotechadv.2010.06.005 20600783
    [Google Scholar]
  27. BotheH JensenKM A M, et al. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process.Appl. Microbiol. Biotechnol.2002591333910.1007/s00253‑002‑0964‑1 12073128
    [Google Scholar]
  28. D’MelloJ.P.F. The use of methane‐utilising bacteria as a source of protein for young chicks.Br. Poult. Sci.197314329130110.1080/00071667308416031 4804684
    [Google Scholar]
  29. KoffasM. Genes encoding exopolysaccharide production.U.S. Patent 6537786B22003
    [Google Scholar]
  30. MalashenkoIuP. PirogT.P. RomanovskaiaV.A. SokolovI.G. GringergT.A. Search for methanotrophic producers of exopolysaccharides.Prikl. Biokhim. Mikrobiol.2001376702705 11771325
    [Google Scholar]
  31. IvanovaE.G. FedorovD.N. DoroninaN.V. TrotsenkoY.A. Production of vitamin B12 in aerobic methylotrophic bacteria.Microbiology200675449449610.1134/S0026261706040217
    [Google Scholar]
  32. StrongP.J. XieS. ClarkeW.P. Methane as a resource: Can the methanotrophs add value?Environ. Sci. Technol.20154974001401810.1021/es504242n 25723373
    [Google Scholar]
  33. Methane emissions are driving climate change. Here’s how to reduce them. Available from: https://www.unep.org/news-and stories/story/methane-emissions-are-driving-climate-change-heres-how-reduce-them
  34. SemrauJ.D. DiSpiritoA.A. YoonS. Methanotrophs and copper.FEMS Microbiol. Rev.201034449653110.1111/j.1574‑6976.2010.00212.x
    [Google Scholar]
  35. HenardC. SmithH. DoweN. KalyuzhnayaM. PienkosP. GuarnieriM. Methane biocatalysts to lactate by an obligate methanotrophic bacterium.Sci. Rep.201610.1038/srep21585
    [Google Scholar]
  36. KeltjensJ.T. PolA. ReimannJ. Op den CampH.J. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference.Appl. Microbiol. Biotechnol.201498146163618310.1007/s00253‑014‑5766‑8
    [Google Scholar]
  37. LeeO.K. Metabolic engineering of methanotrophs for production of chemicals and fuels.In: Methanotrophs Microbiology Monographs.Cham: Springer201932163203
    [Google Scholar]
  38. Guerrero-CruzS. VaksmaaA. HornM.A. NiemannH. PijuanM. HoA. Methanotrophs: Discoveries, environmental relevance, and a perspective on current and future applications.Front. Microbiol.20211267805710.3389/fmicb.2021.678057
    [Google Scholar]
  39. JeongJ. KimT.H. JangN. A highly efficient and versatile genetic engineering toolkit for a methanotroph-based biorefinery.Chem. Eng. J.2023453Part 213991110.1016/j.cej.2022.139911
    [Google Scholar]
  40. KleinV.J. IrlaM. Gil LópezM. BrautasetT. Fernandes BritoL. Unravelling formaldehyde metabolism in bacteria: Road towards synthetic methylotrophy.Microorganisms202210222010.3390/microorganisms10020220
    [Google Scholar]
  41. CynoberT. CRISPR: One patent to rule them all.2022Available from: https://www.labiotech.eu/in-depth/crispr-patent-dispute-licensing/
  42. LedfordH. Major CRISPR patent decision won’t end tangled dispute.2022603373374Available from: https://media.nature.com/original/magazine-assets/d41586-022-00629-y/d41586-022-00629-y.pdf
  43. Statements and background on the CRISPR patent process. 2022. Available from: https://www.broadinstitute.org/crispr/journalists-statement-and-background-crispr-patent-process
  44. RumahB.L. Claxton StevensB.H. YeboahJ.E. In vivo genome editing in type I and II methanotrophs using a CRISPR/Cas9 system.ACS Synth. Biol.202312254455410.1021/acssynbio.2c00554
    [Google Scholar]
  45. United States of America before the Securities and Exchange Commission - Litigation and administrative proceedings. 2020. Available from: https://www.sec.gov/files/litigation/admin/2020/34-89997.pdf
  46. Farhan Ul HaqueM. CrombieA.T. EnsmingerS.A. BaciuC. MurrellJ.C. Facultative methanotrophs are abundant at terrestrial natural gas seeps.Microbiome20186111810.1186/s40168‑018‑0500‑x
    [Google Scholar]
  47. MühlemeierI.M. SpeightR. StrongP.J. Biogas, bioreactors and bacterial methane oxidation. In: Methane Biocatalysis: Paving the Way to Sustainability.ChamSpringer2018213235
    [Google Scholar]
  48. SchmiderT. HestnesA.G. BrzykcyJ. Physiological basis for atmospheric methane oxidation and methanotrophic growth on air.Nat. Commun.2024151415110.1038/s41467‑024‑48197‑1
    [Google Scholar]
  49. TveitA.T. HestnesA.G. RobinsonS.L. Widespread soil bacterium that oxidizes atmospheric methane.Proc. Natl. Acad. Sci. USA2019116178515852410.1073/pnas.1817812116
    [Google Scholar]
  50. HeL. GroomJ.D. WilsonE.H. A methanotrophic bacterium to enable methane removal for climate mitigation.Proc. Natl. Acad. Sci. USA202312035e231004612010.1073/pnas.2310046120
    [Google Scholar]
  51. AmabileC. AbateT. MuñozR. ChianeseS. MusmarraD. Techno-economic assessment of biopolymer production from methane and volatile fatty acids: Effect of the reactor size and biomass concentration on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) selling price.Sci. Total Environ.202492917259910.1016/j.scitotenv.2024.172599
    [Google Scholar]
  52. WutkowskaM. TláskalV. BordelS. SteinL.Y. NwezeJ.A. DaebelerA. Leveraging genome-scale metabolic models to understand aerobic methanotrophs.ISME J.2024181wrae10210.1093/ismejo/wrae102
    [Google Scholar]
  53. SauvageauD. Industrializing methanotrophs and other methylotrophic bacteria: From bioengineering to product recovery.Curr. Opin. Biotechnol.202488103167
    [Google Scholar]
/content/journals/biot/10.2174/0118722083316359240915173125
Loading
/content/journals/biot/10.2174/0118722083316359240915173125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test