Skip to content
2000
image of Current Scenario and Global Perspective of Sustainable Algal Biofuel Production

Abstract

Industrialization and globalization have increased the demand for petroleum products that has increased a load on natural energy resources. The escalating fossil fuel utilization has resulted in surpassing the Earth's capacity to absorb greenhouse gases, necessitating the exploration of sustainable bioenergy alternatives to mitigate emissions. Biofuels, derived from algae, offer promising solutions to alleviate fossil fuel dependency. Algae, often regarded as third-generation biofuels, present numerous advantages owing to their high biomass production rates. While algae have been utilized for their bioactive compounds, their capability as biomass for the production of biofuel has gained traction among researchers. Various biofuels such as bio-hydrogen, bio-methane, bio-ethanol, bio-oil, and bio-butanol can be derived from algae through diverse processes like fermentation, photolysis, pyrolysis, and transesterification. Despite the enormous commercial potential of algae-derived biofuels, challenges such as high cultivation costs persist. However, leveraging the utilization of algae byproducts could improve economic viability of biofuel production. Moreover, algae derived biofuels offer environmental sustainability, cost-effectiveness, and waste reduction benefits, promising novel opportunities for a more sustainable energy future.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083322399240927051315
2024-10-14
2024-11-30
Loading full text...

Full text loading...

References

  1. Kosmela P. Kazimierski P. Formela K. Haponiuk J. Piszczyk Ł. Liquefaction of macroalgae Enteromorpha biomass for the preparation of biopolyols by using crude glycerol. J. Ind. Eng. Chem. 2017 56 399 406 10.1016/j.jiec.2017.07.037
    [Google Scholar]
  2. Malode SJ. Prabhu KK. Mascarenhas RJ. Shetti NP. Aminabhavi TM. Recent advances and viability in biofuel production. Energy Convers. Manag. X 2021 10 100070 10.1016/j.ecmx.2020.100070
    [Google Scholar]
  3. El-Sayed WM. Ibrahim HA. Abdrabo MA. Abdul-Raouf UM. Algal-based biofuel: challenges and future perspectives. Biofuel from Microbes and Plants CRC Press 2021 10.1201/9780429262975‑2
    [Google Scholar]
  4. Rocha-Meneses L. Raud M. Orupold K. Kikas T. Second-generation bioethanol production: A review of strategies for waste valorisation. Agron. Res. (Tartu) 2017 15 3 830 847
    [Google Scholar]
  5. Srivastava R.K. Shetti N.P. Reddy K.R. Aminabhavi T.M. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ. Chem. Lett. 2020 18 4 1049 1072 10.1007/s10311‑020‑00999‑7
    [Google Scholar]
  6. Khan M.I. Shin J.H. Kim J.D. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018 17 1 36 10.1186/s12934‑018‑0879‑x 29506528
    [Google Scholar]
  7. Ho D.P. Ngo H.H. Guo W. A mini review on renewable sources for biofuel. Bioresour. Technol. 2014 169 742 749 10.1016/j.biortech.2014.07.022 25115598
    [Google Scholar]
  8. Datta A. Hossain A. Roy S. An overview on biofuels and their advantages and disadvantages. Asian J Chem 2019 31 8 10.14233/ajchem.2019.22098
    [Google Scholar]
  9. Sudhakar M.P. Kumar B.R. Mathimani T. Arunkumar K. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. 2019 228 1320 1333 10.1016/j.jclepro.2019.04.287
    [Google Scholar]
  10. Kumari S. Kumari S. Singh A. Pandit P.P. Sankhla M.S. Singh T. Singh G.P. Lodha P. Awasthi G. Awasthi K.K. Employing algal biomass for fabrication of biofuels subsequent to phytoremediation. Int. J. Phytoremediation 2023 25 8 941 955 10.1080/15226514.2022.2122927 36222270
    [Google Scholar]
  11. Ozkurt I. Qualifying of safflower and algae for energy. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2009 23 1-2 145 151
    [Google Scholar]
  12. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007 25 3 294 306 10.1016/j.biotechadv.2007.02.001 17350212
    [Google Scholar]
  13. Kumar A. Bera S. Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresour. Technol. Rep. 2020 12 100584 10.1016/j.biteb.2020.100584
    [Google Scholar]
  14. Richmond A. Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Publishing 2003
    [Google Scholar]
  15. Singh G. Patidar S.K. Microalgae harvesting techniques: A review. J. Environ. Manage. 2018 217 499 508 10.1016/j.jenvman.2018.04.010 29631239
    [Google Scholar]
  16. Ranjith Kumar R. Hanumantha Rao P. Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front. Energy Res. 2015 2 61 10.3389/fenrg.2014.00061
    [Google Scholar]
  17. Shi Z. Zhao B. Tang S. Yang X. Hydrotreating lipids for aviation biofuels derived from extraction of wet and dry algae. J. Clean. Prod. 2018 204 906 915 10.1016/j.jclepro.2018.08.351
    [Google Scholar]
  18. Sharma A.K. Ghodke P. Sharma P.K. Manna S. Pugazhendhi A. Matsakas L. Patel A. Holistic utilization of Chlorella pyrenoidosa microalgae for extraction of renewable fuels and value-added biochar through in situ transesterification and pyrolysis reaction process. Biomass Convers. Biorefin. 2024 14 4 5261 5274 10.1007/s13399‑022‑02713‑9
    [Google Scholar]
  19. Adeniyi O.M. Azimov U. Burluka A. Algae biofuel: Current status and future applications. Renew. Sustain. Energy Rev. 2018 90 316 335 10.1016/j.rser.2018.03.067
    [Google Scholar]
  20. Bošnjaković M. Sinaga N. The perspective of large-scale production of algae biodiesel. Appl. Sci. (Basel) 2020 10 22 8181 10.3390/app10228181
    [Google Scholar]
  21. Yaşar F. Evaluation and advantages of algae as an energy source. Journal of the Turkish Chemical Society Section A: Chemistry 2018 5 3 1309 1318 10.18596/jotcsa.425907
    [Google Scholar]
  22. Simas-Rodrigues C. Villela H.D.M. Martins A.P. Marques L.G. Colepicolo P. Tonon A.P. Microalgae for economic applications: advantages and perspectives for bioethanol. J. Exp. Bot. 2015 66 14 4097 4108 10.1093/jxb/erv130 25873683
    [Google Scholar]
  23. Ma J. Li L. Zhao Q. Yu L. Frear C. Biomethane production from whole and extracted algae biomass: Long-term performance evaluation and microbial community dynamics. Renew. Energy 2021 170 38 48 10.1016/j.renene.2021.01.113
    [Google Scholar]
  24. Sajjadi B. Chen W.Y. Raman A.A.A. Ibrahim S. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sustain. Energy Rev. 2018 97 200 232 10.1016/j.rser.2018.07.050
    [Google Scholar]
  25. Shokravi H. Shokravi Z. Aziz MA. Shokravi H. Algal biofuel: A promising alternative for fossil fuel. Fossil Free Fuels 2019 187 211 10.1201/9780429327773‑11.
    [Google Scholar]
  26. Shin Y.S. Choi H.I. Choi J.W. Lee J.S. Sung Y.J. Sim S.J. Multilateral approach on enhancing economic viability of lipid production from microalgae: A review. Bioresour. Technol. 2018 258 335 344 10.1016/j.biortech.2018.03.002 29555159
    [Google Scholar]
  27. Gao Y. Yang M. Wang C. Nutrient deprivation enhances lipid content in marine microalgae. Bioresour. Technol. 2013 147 484 491 10.1016/j.biortech.2013.08.066 24012737
    [Google Scholar]
  28. Singh P. Kumari S. Guldhe A. Misra R. Rawat I. Bux F. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew. Sustain. Energy Rev. 2016 55 1 16 10.1016/j.rser.2015.11.001
    [Google Scholar]
  29. Li T. Wan L. Li A. Zhang C. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations. Chin. J. Oceanology Limnol. 2013 31 6 1306 1314 10.1007/s00343‑013‑2316‑7
    [Google Scholar]
  30. Yu N. Dieu L.T.J. Harvey S. Lee D.Y. Optimization of process configuration and strain selection for microalgae-based biodiesel production. Bioresour. Technol. 2015 193 25 34 10.1016/j.biortech.2015.05.101 26115529
    [Google Scholar]
  31. Andersen T. Andersen F.Ø. Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquat. Bot. 2006 84 3 267 271 10.1016/j.aquabot.2005.09.009
    [Google Scholar]
  32. Tang D. Han W. Li P. Miao X. Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 2011 102 3 3071 3076 10.1016/j.biortech.2010.10.047 21041075
    [Google Scholar]
  33. Kaewkannetra P. Enmak P. Chiu T. The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol. Bioprocess Eng.; BBE 2012 17 3 591 597 10.1007/s12257‑011‑0533‑5
    [Google Scholar]
  34. Zou D. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 2005 250 3-4 726 735 10.1016/j.aquaculture.2005.05.014
    [Google Scholar]
  35. de Castro Araújo S. Garcia V.M.T. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 2005 246 1-4 405 412 10.1016/j.aquaculture.2005.02.051
    [Google Scholar]
  36. Gordillo F.J.L. Jiménez C. Goutx M. Niell X. Effects of CO2 and nitrogen supply on the biochemical composition of Ulva rigida with especial emphasis on lipid class analysis. J. Plant Physiol. 2001 158 3 367 373 10.1078/0176‑1617‑00209
    [Google Scholar]
  37. Ravelonandro P.H. Ratianarivo D.H. Joannis-Cassan C. Isambert A. Raherimandimby M. Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food Bioprod. Process. 2011 89 3 209 216 10.1016/j.fbp.2010.04.009
    [Google Scholar]
  38. de Morais M.G. Costa J.A.V. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers. Manage. 2007 48 7 2169 2173 10.1016/j.enconman.2006.12.011
    [Google Scholar]
  39. Salama E.S. Kim H.C. Abou-Shanab R.A.I. Ji M.K. Oh Y.K. Kim S.H. Jeon B.H. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst. Eng. 2013 36 6 827 833 10.1007/s00449‑013‑0919‑1 23411874
    [Google Scholar]
  40. Goncalves E.C. Wilkie A.C. Kirst M. Rathinasabapathi B. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol. J. 2016 14 8 1649 1660 10.1111/pbi.12523 26801206
    [Google Scholar]
  41. Ho S.H. Nakanishi A. Ye X. Chang J.S. Hara K. Hasunuma T. Kondo A. Optimizing biodiesel production in marine Chlamydomonassp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnol. Biofuels 2014 7 1 97 10.1186/1754‑6834‑7‑97 24387051
    [Google Scholar]
  42. Ho S.H. Nakanishi A. Kato Y. Yamasaki H. Chang J.S. Misawa N. Hirose Y. Minagawa J. Hasunuma T. Kondo A. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci. Rep. 2017 7 1 45471 10.1038/srep45471 28374798
    [Google Scholar]
  43. Perrineau M.M. Zelzion E. Gross J. Price D.C. Boyd J. Bhattacharya D. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii . Environ. Microbiol. 2014 16 6 1755 1766 10.1111/1462‑2920.12372 24373049
    [Google Scholar]
  44. Li X. Yuan Y. Cheng D. Gao J. Kong L. Zhao Q. Wei W. Sun Y. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. Bioresour. Technol. 2018 250 495 504 10.1016/j.biortech.2017.11.072 29197772
    [Google Scholar]
  45. Kato Y. Ho S.H. Vavricka C.J. Chang J.S. Hasunuma T. Kondo A. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresour. Technol. 2017 245 Pt B 1484 1490 10.1016/j.biortech.2017.06.035 28624244
    [Google Scholar]
  46. Sun X.M. Ren L.J. Bi Z.Q. Ji X.J. Zhao Q.Y. Huang H. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis. Bioresour. Technol. 2018 267 438 444 10.1016/j.biortech.2018.07.079 30032058
    [Google Scholar]
  47. Raqiba H. Sibi G. Light emitting diode (LED) illumination for enhanced growth and cellular composition in three microalgae. Adv. Microb. Res. 2019 3 007
    [Google Scholar]
  48. Williams P.J.B. Laurens L.M.L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 2010 3 5 554 590 10.1039/b924978h
    [Google Scholar]
  49. Erickson E. Wakao S. Niyogi K.K. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 2015 82 3 449 465 10.1111/tpj.12825 25758978
    [Google Scholar]
  50. Shi T.Q. Wang L.R. Zhang Z.X. Sun X.M. Huang H. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front. Bioeng. Biotechnol. 2020 8 610 10.3389/fbioe.2020.00610 32850686
    [Google Scholar]
  51. Sforza E. Gris B. de Farias Silva C. Morosinotto T. Bertucco A. Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chem. Eng. 2014 38 211
    [Google Scholar]
  52. Solovchenko A.E. Khozin-Goldberg I. Didi-Cohen S. Cohen Z. Merzlyak M.N. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol. 2008 20 3 245 251 10.1007/s10811‑007‑9233‑0
    [Google Scholar]
  53. Shi K. Gao Z. Shi T.Q. Song P. Ren L.J. Huang H. Ji X.J. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: the state of the art and future perspectives. Front. Microbiol. 2017 8 793 10.3389/fmicb.2017.00793 28507542
    [Google Scholar]
  54. Nogueira DP. Silva AF. Araújo OQ. Chaloub RM. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass and Bioenergy 2014 72 10.1016/j.biombioe.2014.10.017.
    [Google Scholar]
  55. Remmers I.M. Martens D.E. Wijffels R.H. Lamers P.P. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS One 2017 12 4 e0175630 10.1371/journal.pone.0175630 28403203
    [Google Scholar]
  56. Liu J. Qiu W. Song Y. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res. 2016 18 273 280 10.1016/j.algal.2016.06.027
    [Google Scholar]
  57. Liu T. Liu F. Wang C. Wang Z. Li Y. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs. Bioresour. Technol. 2017 232 44 52 10.1016/j.biortech.2017.02.004 28214444
    [Google Scholar]
  58. Giridhar Babu A. Wu X. Kabra A.N. Kim D.P. Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation. Algal Res. 2017 23 178 185 10.1016/j.algal.2017.02.004
    [Google Scholar]
  59. Park W.K. Yoo G. Moon M. Kim C.W. Choi Y.E. Yang J.W. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol. 2013 171 5 1128 1142 10.1007/s12010‑013‑0386‑9 23881782
    [Google Scholar]
  60. Sulochana S.B. Arumugam M. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour. Technol. 2016 213 198 203 10.1016/j.biortech.2016.02.078 26949054
    [Google Scholar]
  61. Lu Y. Tarkowská D. Turečková V. Luo T. Xin Y. Li J. Wang Q. Jiao N. Strnad M. Xu J. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant J. 2014 80 1 52 68 10.1111/tpj.12615 25041627
    [Google Scholar]
  62. Piotrowska-Niczyporuk A. Bajguz A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul. 2014 73 1 57 66 10.1007/s10725‑013‑9867‑7
    [Google Scholar]
  63. Kouzuma A. Watanabe K. Exploring the potential of algae/bacteria interactions. Curr. Opin. Biotechnol. 2015 33 125 129 10.1016/j.copbio.2015.02.007 25744715
    [Google Scholar]
  64. Do Nascimento M. Dublan M.A. Ortiz-Marquez J.C.F. Curatti L. High lipid productivity of an Ankistrodesmus – Rhizobium artificial consortium. Bioresour. Technol. 2013 146 400 407 10.1016/j.biortech.2013.07.085 23948276
    [Google Scholar]
  65. Choix F.J. de-Bashan L.E. Bashan Y. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzyme Microb. Technol. 2012 51 5 300 309 10.1016/j.enzmictec.2012.07.012 22975129
    [Google Scholar]
  66. Nugroho W.A. Nurlaili F.R. Hendrawan Y. Argo B.D. Effect of growth promoting bacteria on the growth rate and lipid content of microalgae Chorella sp. in sludge liquor of anaerobic digester of dairy manure. Int. J. Adv. Sci. Eng. Inf. Technol. 2015 5 5 374 378 10.18517/ijaseit.5.5.586
    [Google Scholar]
  67. Li X. Pei G. Liu L. Chen L. Zhang W. Metabolomic analysis and lipid accumulation in a glucose tolerant Crypthecodinium cohnii strain obtained by adaptive laboratory evolution. Bioresour. Technol. 2017 235 87 95 10.1016/j.biortech.2017.03.049 28365353
    [Google Scholar]
  68. Yi Z. Xu M. Magnusdottir M. Zhang Y. Brynjolfsson S. Fu W. Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylumtricornutum for enhanced carotenoid accumulation. Mar. Drugs 2015 13 10 6138 6151 10.3390/md13106138 26426027
    [Google Scholar]
  69. Li D. Wang L. Zhao Q. Wei W. Sun Y. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour. Technol. 2015 185 269 275 10.1016/j.biortech.2015.03.011 25776894
    [Google Scholar]
  70. Gimpel J.A. Henríquez V. Mayfield S.P. In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front. Microbiol. 2015 6 1376 10.3389/fmicb.2015.01376 26696985
    [Google Scholar]
  71. Talebi A.F. Tohidfar M. Bagheri A. Lyon S.R. Salehi-Ashtiani K. Tabatabaei M. Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Research Journal 2014 1 3 91 97 10.18331/BRJ2015.1.3.6
    [Google Scholar]
  72. Roessler P.G. Brown L.M. Dunahay T.G. Heacox D.A. Jarvis E.E. Schneider J.C. Talbot S.G. Zeiler K.G. Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. ACS Symposium Series Washington, DC 1944 566 255 270
    [Google Scholar]
  73. Cernac A. Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004 40 4 575 585 10.1111/j.1365‑313X.2004.02235.x 15500472
    [Google Scholar]
  74. Ajjawi I. Verruto J. Aqui M. Soriaga L.B. Coppersmith J. Kwok K. Peach L. Orchard E. Kalb R. Xu W. Carlson T.J. Francis K. Konigsfeld K. Bartalis J. Schultz A. Lambert W. Schwartz A.S. Brown R. Moellering E.R. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 2017 35 7 647 652 10.1038/nbt.3865 28628130
    [Google Scholar]
  75. Chowdhury H. Loganathan B. Third-generation biofuels from microalgae: a review. Curr. Opin. Green Sustain. Chem. 2019 20 39 44 10.1016/j.cogsc.2019.09.003
    [Google Scholar]
  76. Cohen Z. Products from microalgae. Products from microalgae. Handbook of Microalgal Mass Culture CRC Press 2017 421 454
    [Google Scholar]
  77. Lee X.J. Ong H.C. Gan Y.Y. Chen W.H. Mahlia T.M.I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manage. 2020 210 112707 10.1016/j.enconman.2020.112707
    [Google Scholar]
  78. Huang H.J. Yuan X.Z. Wu G.Q. Liquefaction of biomass for bio-oil products. Waste Biomass Management – A Holistic Approach 2017 231 250 10.1007/978‑3‑319‑49595‑8_11.
    [Google Scholar]
  79. Vaishnavi M. Gopinath KP. Ghodke PK. Recent advances in hydrothermal liquefaction of microalgae. Micro-algae: Next-generation Feedstock for Biorefineries 2022 97 127 10.1007/978‑981‑19‑0680‑0_5
    [Google Scholar]
  80. Xiu S. Shahbazi A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012 16 7 4406 4414 10.1016/j.rser.2012.04.028
    [Google Scholar]
  81. Morales M. Aflalo C. Bernard O. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenergy 2021 150 106108 10.1016/j.biombioe.2021.106108
    [Google Scholar]
  82. Miao X. Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 2004 110 1 85 93 10.1016/j.jbiotec.2004.01.013 15099908
    [Google Scholar]
  83. Campanella A. Harold M.P. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts. Biomass Bioenergy 2012 46 218 232 10.1016/j.biombioe.2012.08.023
    [Google Scholar]
  84. Naqvi S.R. Naqvi M. Noor T. Hussain A. Iqbal N. Uemura Y. Nishiyama N. Catalytic pyrolysis of BotryococcusBraunii (microalgae) over layered and delaminated zeolites for aromatic hydrocarbon production. Energy Procedia 2017 142 381 385 10.1016/j.egypro.2017.12.060
    [Google Scholar]
  85. Maliutina K. Tahmasebi A. Yu J. Saltykov S.N. Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Convers. Manage. 2017 151 426 438 10.1016/j.enconman.2017.09.013
    [Google Scholar]
  86. Sekar M. Mathimani T. Alagumalai A. Chi N.T.L. Duc P.A. Bhatia S.K. Brindhadevi K. Pugazhendhi A. A review on the pyrolysis of algal biomass for biochar and bio-oil – Bottlenecks and scope. Fuel 2021 283 119190 10.1016/j.fuel.2020.119190
    [Google Scholar]
  87. Conti R. Pezzolesi L. Pistocchi R. Torri C. Massoli P. Fabbri D. Photobioreactor cultivation and catalytic pyrolysis of the microalga Desmodesmus communis (Chlorophyceae) for hydrocarbons production by HZSM-5 zeolite cracking. Bioresour. Technol. 2016 222 148 155 10.1016/j.biortech.2016.10.002 27721094
    [Google Scholar]
  88. Tripathi M. Sahu JN. Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016 55 467 481 10.1016/j.rser.2015.10.122.
    [Google Scholar]
  89. Jena U. Das K.C. Kastner J.R. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol. 2011 102 10 6221 6229 10.1016/j.biortech.2011.02.057 21444202
    [Google Scholar]
  90. Vardon D.R. Sharma B.K. Blazina G.V. Rajagopalan K. Strathmann T.J. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 2012 109 178 187 10.1016/j.biortech.2012.01.008 22285293
    [Google Scholar]
  91. Minowa T. Yokoyama S. Kishimoto M. Okakura T. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 1995 74 12 1735 1738 10.1016/0016‑2361(95)80001‑X
    [Google Scholar]
  92. Garcia Alba L. Torri C. Samorì C. van der Spek J. Fabbri D. Kersten S.R.A. Brilman D.W.F.W. Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels 2012 26 1 642 657 10.1021/ef201415s
    [Google Scholar]
  93. Bach Q.V. Sillero M.V. Tran K.Q. Skjermo J. Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests. Algal Res. 2014 6 271 276 10.1016/j.algal.2014.05.009
    [Google Scholar]
  94. Neveux N. Yuen A.K.L. Jazrawi C. Magnusson M. Haynes B.S. Masters A.F. Montoya A. Paul N.A. Maschmeyer T. de Nys R. Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour. Technol. 2014 155 334 341 10.1016/j.biortech.2013.12.083 24463408
    [Google Scholar]
  95. Bordoloi N. Narzari R. Sut D. Saikia R. Chutia R.S. Kataki R. Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renew. Energy 2016 98 245 253 10.1016/j.renene.2016.03.081
    [Google Scholar]
  96. Wądrzyk M. Janus R. Vos M.P. Brilman D.W.F. Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae. J. Anal. Appl. Pyrolysis 2018 134 415 426 10.1016/j.jaap.2018.07.008
    [Google Scholar]
  97. Paul T. Baskaran D. Pakshirajan K. Pugazhenthi G. Continuous bioreactor with cell recycle using tubular ceramic membrane for simultaneous wastewater treatment and bio-oil production by oleaginous Rhodococcus opacus. Chem. Eng. J. 2019 367 76 85 10.1016/j.cej.2019.02.050
    [Google Scholar]
  98. Li S. Li F. Zhu X. Liao Q. Chang J.S. Ho S.H. Biohydrogen production from microalgae for environmental sustainability. Chemosphere 2022 291 Pt 1 132717 10.1016/j.chemosphere.2021.132717 34757051
    [Google Scholar]
  99. Fang H.H.P. Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002 82 1 87 93 10.1016/S0960‑8524(01)00110‑9 11858207
    [Google Scholar]
  100. Ren N. Wang A. Cao G. Xu J. Gao L. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol. Adv. 2009 27 6 1051 1060 10.1016/j.biotechadv.2009.05.007 19463936
    [Google Scholar]
  101. Sołowski G. Shalaby M.S. Abdallah H. Shaban A.M. Cenian A. Production of hydrogen from biomass and its separation using membrane technology. Renew. Sustain. Energy Rev. 2018 82 3152 3167 10.1016/j.rser.2017.10.027
    [Google Scholar]
  102. Sharma A. Arya S.K. Hydrogen from algal biomass: A review of production process. Biotechnol. Rep. (Amst.) 2017 15 63 69 10.1016/j.btre.2017.06.001 28702371
    [Google Scholar]
  103. Wieczorek N. Kucuker M.A. Kuchta K. Fermentative hydrogen and methane production from microalgal biomass ( Chlorella vulgaris ) in a two-stage combined process. Appl. Energy 2014 132 108 117 10.1016/j.apenergy.2014.07.003
    [Google Scholar]
  104. Shanmugam S. Hari A. Pandey A. Mathimani T. Felix L. Pugazhendhi A. Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel 2020 270 117453 10.1016/j.fuel.2020.117453
    [Google Scholar]
  105. Singh T. Sehgal A. Singh R. Sharma S. Pal D.B. Tashkandi H.M. Raddadi R. Harakeh S. Haque S. Srivastava M. Aly Hassan A. Srivastava N. Gupta V.K. Algal biohydrogen production: Impact of biodiversity and nanomaterials induction. Renew. Sustain. Energy Rev. 2023 183 113389 10.1016/j.rser.2023.113389
    [Google Scholar]
  106. Priya A. Naseem S. Pandey D. Bhowmick A. Attrah M. Dutta K. Rene E.R. Suman S.K. Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. Bioresour. Technol. 2023 369 128446 10.1016/j.biortech.2022.128446 36473587
    [Google Scholar]
  107. Cho Y. Kim H. Kim S.K. Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst. Eng. 2013 36 6 713 719 10.1007/s00449‑013‑0895‑5 23361184
    [Google Scholar]
  108. Harun R. Danquah M.K. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J. 2011 168 3 1079 1084 10.1016/j.cej.2011.01.088
    [Google Scholar]
  109. Ho S.H. Huang S.W. Chen C.Y. Hasunuma T. Kondo A. Chang J.S. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour. Technol. 2013 135 157 165 10.1016/j.biortech.2012.10.100 23186680
    [Google Scholar]
  110. Miranda J.R. Passarinho P.C. Gouveia L. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl. Microbiol. Biotechnol. 2012 96 2 555 564 10.1007/s00253‑012‑4338‑z 22899495
    [Google Scholar]
  111. Kim D.G. Lee C. Park S.M. Choi Y.E. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresour. Technol. 2014 159 240 248 10.1016/j.biortech.2014.02.078 24657754
    [Google Scholar]
  112. Kim H.M. Oh C.H. Bae H.J. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production. Bioresour. Technol. 2017 233 44 50 10.1016/j.biortech.2017.02.040 28258995
    [Google Scholar]
  113. Gohain M. Hasin M. Eldiehy K.S.H. Bardhan P. Laskar K. Phukon H. Mandal M. Kalita D. Deka D. Bio-ethanol production: A route to sustainability of fuels using bio-based heterogeneous catalyst derived from waste. Process Saf. Environ. Prot. 2021 146 190 200 10.1016/j.psep.2020.08.046
    [Google Scholar]
  114. Singh H. Rout S. Das D. Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery. Int. J. Hydrogen Energy 2022 47 1 102 116 10.1016/j.ijhydene.2021.10.018
    [Google Scholar]
  115. Kumar G. Sivagurunathan P. Thi NB. Zhen G. Kobayashi T. Kim SH. Xu K Evaluation of different pretreatments on organic matter solubilization and hydrogen fermentation of mixed microalgae consortia. Int J Hydro Energey 2016 41 46 10.1016/j.ijhydene.2016.05.195.
    [Google Scholar]
  116. Yun Y.M. Kim D.H. Oh Y.K. Shin H.S. Jung K.W. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production. Bioresour. Technol. 2014 159 365 372 10.1016/j.biortech.2014.02.129 24662313
    [Google Scholar]
  117. Cai J. Chen M. Wang G. Pan G. Yu P. Fermentative hydrogen and polyhydroxybutyrate production from pretreated cyanobacterial blooms. Algal Res. 2015 12 295 299 10.1016/j.algal.2015.09.014
    [Google Scholar]
  118. Ghosh S. Roy S. Das D. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel. Appl. Biochem. Biotechnol. 2015 175 7 3322 3335 10.1007/s12010‑015‑1503‑8 25690351
    [Google Scholar]
  119. Xu J. Upcraft T. Tang Q. Guo M. Huang Z. Zhao M. Ruan W. Hydrogen generation performance from Taihu algae and food waste by anaerobic codigestion. Energy Fuels 2019 33 2 1279 1289 10.1021/acs.energyfuels.8b04052
    [Google Scholar]
  120. Jehlee A. Rodjaroen S. Waewsak J. Reungsang A. O-Thong S. Improvement of biohythane production from Chlorella sp. TISTR 8411 biomass by co-digestion with organic wastes in a two-stage fermentation. Int. J. Hydrogen Energy 2019 44 32 17238 17247 10.1016/j.ijhydene.2019.03.026
    [Google Scholar]
  121. Bharathiraja B. Chakravarthy M. Ranjith Kumar R. Yogendran D. Yuvaraj D. Jayamuthunagai J. Praveen Kumar R. Palani S. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew. Sustain. Energy Rev. 2015 47 634 653 10.1016/j.rser.2015.03.047
    [Google Scholar]
  122. John R.P. Anisha G.S. Nampoothiri K.M. Pandey A. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 2011 102 1 186 193 10.1016/j.biortech.2010.06.139 20663661
    [Google Scholar]
  123. Rajkumar R. Yaakob Z. Takriff M.S. Potential of micro and macro algae for biofuel production: a brief review. BioResources 2014 9 1 1606 1633
    [Google Scholar]
  124. Fulton E.A. Parslow J.S. Smith A.D.M. Johnson C.R. Biogeochemical marine ecosystem models II: the effect of physiological detail on model performance. Ecol. Modell. 2004 173 4 371 406 10.1016/j.ecolmodel.2003.09.024
    [Google Scholar]
  125. Chen C.Y. Zhao X.Q. Yen H.W. Ho S.H. Cheng C.L. Lee D.J. Bai F.W. Chang J.S. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 2013 78 1 10 10.1016/j.bej.2013.03.006
    [Google Scholar]
  126. Bibi R. Ahmad Z. Imran M. Hussain S. Ditta A. Mahmood S. Khalid A. Algal bioethanol production technology: A trend towards sustainable development. Renew. Sustain. Energy Rev. 2017 71 976 985 10.1016/j.rser.2016.12.126
    [Google Scholar]
  127. Fakruddin M. Abdul Quay M. Morshed Ah M. Choudhury N. Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST-072011. Biotechnology (Faisalabad) 2012 11 4 248 252 10.3923/biotech.2012.248.252
    [Google Scholar]
  128. Choi J.A. Hwang J.H. Dempsey B.A. Abou-Shanab R.A.I. Min B. Song H. Lee D.S. Kim J.R. Cho Y. Hong S. Jeon B.H. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy Environ. Sci. 2011 4 9 3513 3520 10.1039/c1ee01068a
    [Google Scholar]
  129. Khambhaty Y. Mody K. Gandhi M.R. Thampy S. Maiti P. Brahmbhatt H. Eswaran K. Ghosh P.K. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 2012 103 1 180 185 10.1016/j.biortech.2011.10.015 22050835
    [Google Scholar]
  130. Dienst D. Georg J. Abts T. Jakorew L. Kuchmina E. Börner T. Wilde A. Dühring U. Enke H. Hess W.R. Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol. Biofuels 2014 7 1 21 10.1186/1754‑6834‑7‑21 24502290
    [Google Scholar]
  131. Kurade M.B. Saha S. Salama E.S. Patil S.M. Govindwar S.P. Jeon B.H. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 2019 272 351 359 10.1016/j.biortech.2018.10.047 30384210
    [Google Scholar]
  132. De Clercq D. Wen Z. Fei F. Caicedo L. Yuan K. Shang R. Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion. Sci. Total Environ. 2020 712 134574 10.1016/j.scitotenv.2019.134574 31931191
    [Google Scholar]
  133. Milledge J.J. Nielsen B.V. Maneein S. Harvey P.J. A brief review of anaerobic digestion of algae for bioenergy. Energies 2019 12 6 1166 10.3390/en12061166
    [Google Scholar]
  134. Kavitha S. Schikaran M. Yukesh Kannah R. Gunasekaran M. Kumar G. Rajesh Banu J. Nanoparticle induced biological disintegration: A new phase separated pretreatment strategy on microalgal biomass for profitable biomethane recovery. Bioresour. Technol. 2019 289 121624 10.1016/j.biortech.2019.121624 31203180
    [Google Scholar]
  135. Bohutskyi P. Betenbaugh M.J. Bouwer E.J. The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour. Technol. 2014 155 366 372 10.1016/j.biortech.2013.12.095 24468544
    [Google Scholar]
  136. Dikshit P.K. Padhi S.K. Pattanaik L. Khan A. Ranjan A. Sadhu S. A critical review on nanotechnological advancement in biogas production from organic waste. Biomass Convers. Biorefin. 2023 ••• 1 23 10.1007/s13399‑023‑04432‑1
    [Google Scholar]
  137. Wang W. Wang S. Ma X. Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011 40 7 3703 3727 10.1039/c1cs15008a 21505692
    [Google Scholar]
  138. Sarchami T. Rehmann L. Optimizing acid hydrolysis of Jerusalem artichoke-derived inulin for fermentative butanol production. BioEnergy Res. 2015 8 3 1148 1157 10.1007/s12155‑014‑9568‑8
    [Google Scholar]
  139. Huzir N.M. Aziz M.M.A. Ismail S.B. Abdullah B. Mahmood N.A.N. Umor N.A. Syed Muhammad S.A.F. Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renew. Sustain. Energy Rev. 2018 94 476 485 10.1016/j.rser.2018.06.036
    [Google Scholar]
  140. Anandharaj M. Lin Y.J. Rani R.P. Nadendla E.K. Ho M.C. Huang C.C. Cheng J.F. Chang J.J. Li W.H. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc. Natl. Acad. Sci. USA 2020 117 5 2385 2394 10.1073/pnas.1916529117 31953261
    [Google Scholar]
  141. Visioli F. Strata A. Milk, dairy products, and their functional effects in humans: a narrative review of recent evidence. Adv. Nutr. 2014 5 2 131 143 10.3945/an.113.005025 24618755
    [Google Scholar]
  142. Zhang J. Wang P. Wang X. Feng J. Sandhu H.S. Wang Y. Enhancement of sucrose metabolism in Clostridium saccharoperbutylacetonicum N1-4 through metabolic engineering for improved acetone–butanol–ethanol (ABE) fermentation. Bioresour. Technol. 2018 270 430 438 10.1016/j.biortech.2018.09.059 30245312
    [Google Scholar]
  143. Lu C. Yu L. Varghese S. Yu M. Yang S.T. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. Bioresour. Technol. 2017 243 1000 1008 10.1016/j.biortech.2017.07.043 28747008
    [Google Scholar]
  144. Abdul Razack S. Duraiarasan S. Mani V. Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production. Biotechnol. Rep. (Amst.) 2016 11 70 76 10.1016/j.btre.2016.07.001 28352542
    [Google Scholar]
  145. Jiang W. Zhao J. Wang Z. Yang S.T. Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations. Bioresour. Technol. 2014 163 172 179 10.1016/j.biortech.2014.04.047 24811445
    [Google Scholar]
  146. Zheng J. Tashiro Y. Yoshida T. Gao M. Wang Q. Sonomoto K. Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresour. Technol. 2013 129 360 365 10.1016/j.biortech.2012.11.066 23262012
    [Google Scholar]
  147. Kushwaha D. Srivastava N. Mishra I. Upadhyay S.N. Mishra P.K. Recent trends in biobutanol production. Rev. Chem. Eng. 2019 35 4 475 504 10.1515/revce‑2017‑0041
    [Google Scholar]
  148. Onay M. The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel 2020 273 117795 10.1016/j.fuel.2020.117795
    [Google Scholar]
  149. Figueroa-Torres G.M. Wan Mahmood W.M.A. Pittman J.K. Theodoropoulos C. Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochem. Eng. J. 2020 153 107396 10.1016/j.bej.2019.107396
    [Google Scholar]
  150. Efremenko E.N. Nikolskaya A.B. Lyagin I.V. Senko O.V. Makhlis T.A. Stepanov N.A. Maslova O.V. Mamedova F. Varfolomeev S.D. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour. Technol. 2012 114 342 348 10.1016/j.biortech.2012.03.049 22483558
    [Google Scholar]
  151. Cheng H.H. Whang L.M. Chan K.C. Chung M.C. Wu S.H. Liu C.P. Tien S.Y. Chen S.Y. Chang J.S. Lee W.J. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour. Technol. 2015 184 379 385 10.1016/j.biortech.2014.11.017 25499745
    [Google Scholar]
  152. Wang Y. Guo W. Cheng C.L. Ho S.H. Chang J.S. Ren N. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour. Technol. 2016 200 557 564 10.1016/j.biortech.2015.10.056 26528906
    [Google Scholar]
  153. Schenk P.M. Thomas-Hall S.R. Stephens E. Marx U.C. Mussgnug J.H. Posten C. Kruse O. Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 2008 1 1 20 43 10.1007/s12155‑008‑9008‑8
    [Google Scholar]
  154. Rawat J. Gupta P.K. Pandit S. Priya K. Agarwal D. Pant M. Thakur V.K. Pande V. Latest expansions in lipid enhancement of microalgae for biodiesel production: an update. Energies 2022 15 4 1550 10.3390/en15041550
    [Google Scholar]
  155. Nautiyal P. Subramanian K.A. Dastidar M.G. Production and characterization of biodiesel from algae. Fuel Process. Technol. 2014 120 79 88 10.1016/j.fuproc.2013.12.003
    [Google Scholar]
  156. Hossain A.B.M.S. Salleh A. Boyce A.N. chowdhury P. Naqiuddin M. Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol. 2008 4 3 250 254 10.3844/ajbbsp.2008.250.254
    [Google Scholar]
  157. Campbell M.N. Biodiesel: algae as a renewable source for liquid fuel. Guelph Engineering Journal. 2008 1 1 2 7
    [Google Scholar]
  158. Ahmed I. Ali M. Ahmad N. Ahmad I. Production of biodiesel from algae. J. Pure Appl. Microbiol. 2015 9 1 79 85
    [Google Scholar]
  159. Khan S. Siddique R. Sajjad W. Nabi G. Hayat K.M. Duan P. Yao L. Biodiesel production from algae to overcome the energy crisis. Hayati J. Biosci. 2017 24 4 163 167 10.1016/j.hjb.2017.10.003
    [Google Scholar]
  160. Chance R. Roessler P. Production of biocrude in an advanced photobioreactor-based biorefinery. 2020 Available from: https://www.energy.gov/sites/prod/files/2019/03/f61/Production%20of%20Biocrude%20in%20an%20Advanced%20Photobioreactor-Based%20Biorefinery_EE0007690.pdf
    [Google Scholar]
  161. Legere E. Roessler P. Miller H. Belicka L. Yuan Y. Chance R. Dalrymple K. Porubsky W. Coleman J. Sweeney K. Ahlm P. Recovery act–integrated pilot-scale biorefinery for producing ethanol from hybrid algae. 2017 10.2172/1360777
    [Google Scholar]
  162. Available from: http://algenol.com/direct-to-ethanol/direct-to-ethanol
  163. Noor A. Naseer F. History and recent advances of algal biofuel commercialization. Handbook of Algal Biofuels 2022 567 586 10.1016/B978‑0‑12‑823764‑9.00021‑2
    [Google Scholar]
  164. Available from: http://www.sapphireenergy.com/locations/green-crude-farm.html
  165. Sharma P. Sharma N. Industrial and biotechnological applications of algae: A review. J Adv Plant Biol 2017 1 1 10.14302/issn.2638‑4469.japb‑17‑1534
    [Google Scholar]
  166. Available from: http://en.openei.org/wiki/Aurora_BioFuels_Inc
  167. Brasil B.S.A.F. Silva F.C.P. Siqueira F.G. Microalgae biorefineries: The Brazilian scenario in perspective. N. Biotechnol. 2017 39 Pt A 90 98 10.1016/j.nbt.2016.04.007 27343427
    [Google Scholar]
/content/journals/biot/10.2174/0118722083322399240927051315
Loading
/content/journals/biot/10.2174/0118722083322399240927051315
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Biogas ; Algal Biofuel ; Bioethanol ; Biohydrogen and Bio-butanol ; Biomethane ; Biodiesel ; Bio-oil
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test