Skip to content
2000
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Industrialization and globalization have increased the demand for petroleum products that has increased a load on natural energy resources. The escalating fossil fuel utilization has resulted in surpassing the Earth's capacity to absorb greenhouse gases, necessitating the exploration of sustainable bioenergy alternatives to mitigate emissions. Biofuels, derived from algae, offer promising solutions to alleviate fossil fuel dependency. Algae, often regarded as third-generation biofuels, present numerous advantages owing to their high biomass production rates. While algae have been utilized for their bioactive compounds, their capability as biomass for the production of biofuel has gained traction among researchers. Various biofuels such as bio-hydrogen, bio-methane, bio-ethanol, bio-oil, and bio-butanol can be derived from algae through diverse processes like fermentation, photolysis, pyrolysis, and transesterification. Despite the enormous commercial potential of algae-derived biofuels, challenges such as high cultivation costs persist. However, leveraging the utilization of algae byproducts could improve economic viability of biofuel production. Moreover, algae derived biofuels offer environmental sustainability, cost-effectiveness, and waste reduction benefits, promising novel opportunities for a more sustainable energy future. Moreover, advancements in the field could lead to 
patents that drive innovation and commercialization in algae-based biofuel technologies.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083322399240927051315
2024-10-10
2025-04-13
Loading full text...

Full text loading...

References

  1. KosmelaP. KazimierskiP. FormelaK. HaponiukJ. PiszczykŁ. Liquefaction of macroalgae Enteromorpha biomass for the preparation of biopolyols by using crude glycerol.J. Ind. Eng. Chem.20175639940610.1016/j.jiec.2017.07.037
    [Google Scholar]
  2. MalodeS.J. PrabhuK.K. MascarenhasR.J. ShettiN.P. AminabhaviT.M. Recent advances and viability in biofuel production.Energy Convers Manag X20211010007010.1016/j.ecmx.2020.100070
    [Google Scholar]
  3. El-SayedW.M. IbrahimH.A. AbdraboM.A. Abdul-RaoufU.M. Algal-based biofuel: Challenges and future perspectives.Biofuel from Microbes and Plants.CRC Press202110.1201/9780429262975‑2
    [Google Scholar]
  4. Rocha-MenesesL. RaudM. OrupoldK. KikasT. Second-generation bioethanol production: A review of strategies for waste valorisation.Agron. Res. (Tartu)2017153830847
    [Google Scholar]
  5. SrivastavaR.K. ShettiN.P. ReddyK.R. AminabhaviT.M. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review.Environ. Chem. Lett.20201841049107210.1007/s10311‑020‑00999‑7
    [Google Scholar]
  6. KhanM.I. ShinJ.H. KimJ.D. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.Microb. Cell Fact.20181713610.1186/s12934‑018‑0879‑x 29506528
    [Google Scholar]
  7. HoD.P. NgoH.H. GuoW. A mini review on renewable sources for biofuel.Bioresour. Technol.201416974274910.1016/j.biortech.2014.07.022 25115598
    [Google Scholar]
  8. DattaA. HossainA. RoyS. An overview on biofuels and their advantages and disadvantages.Asian J. Chem.20193181851185810.14233/ajchem.2019.22098
    [Google Scholar]
  9. SudhakarM.P. KumarB.R. MathimaniT. ArunkumarK. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective.J. Clean. Prod.20192281320133310.1016/j.jclepro.2019.04.287
    [Google Scholar]
  10. KumariS. KumariS. SinghA. Employing algal biomass for fabrication of biofuels subsequent to phytoremediation.Int. J. Phytoremediation202325894195510.1080/15226514.2022.2122927 36222270
    [Google Scholar]
  11. OzkurtI. Qualifying of safflower and algae for energy.Energy Educ. Sci. Technol. Part A Energy Sci. Res.2009231-2145151
    [Google Scholar]
  12. ChistiY. Biodiesel from microalgae.Biotechnol. Adv.200725329430610.1016/j.biotechadv.2007.02.001 17350212
    [Google Scholar]
  13. KumarA. BeraS. Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation.Bioresour. Technol. Rep.20201210058410.1016/j.biteb.2020.100584
    [Google Scholar]
  14. RichmondA. Handbook of microalgal culture: Biotechnology and applied phycology.Blackwell Publishing2003
    [Google Scholar]
  15. SinghG. PatidarS.K. Microalgae harvesting techniques: A review.J. Environ. Manage.201821749950810.1016/j.jenvman.2018.04.010 29631239
    [Google Scholar]
  16. KumarR.R. RaoH.P. ArumugamM. Lipid extraction methods from microalgae: A comprehensive review.Front. Energy Res.201526110.3389/fenrg.2014.00061
    [Google Scholar]
  17. ShiZ. ZhaoB. TangS. YangX. Hydrotreating lipids for aviation biofuels derived from extraction of wet and dry algae.J. Clean. Prod.201820490691510.1016/j.jclepro.2018.08.351
    [Google Scholar]
  18. SharmaA.K. GhodkeP. SharmaP.K. Holistic utilization of Chlorella pyrenoidosa microalgae for extraction of renewable fuels and value-added biochar through in situ transesterification and pyrolysis reaction process.Biomass Convers. Biorefin.20241445261527410.1007/s13399‑022‑02713‑9
    [Google Scholar]
  19. AdeniyiO.M. AzimovU. BurlukaA. Algae biofuel: Current status and future applications.Renew. Sustain. Energy Rev.20189031633510.1016/j.rser.2018.03.067
    [Google Scholar]
  20. BošnjakovićM. SinagaN. The perspective of large-scale production of algae biodiesel.Appl. Sci. (Basel)20201022818110.3390/app10228181
    [Google Scholar]
  21. YaşarF. Evaluation and advantages of algae as an energy source.J Turk Chem Soc Sec A: Chem2018531309131810.18596/jotcsa.425907
    [Google Scholar]
  22. Simas-RodriguesC. VillelaH.D.M. MartinsA.P. MarquesL.G. ColepicoloP. TononA.P. Microalgae for economic applications: Advantages and perspectives for bioethanol.J. Exp. Bot.201566144097410810.1093/jxb/erv130 25873683
    [Google Scholar]
  23. MaJ. LiL. ZhaoQ. YuL. FrearC. Biomethane production from whole and extracted algae biomass: Long-term performance evaluation and microbial community dynamics.Renew. Energy2021170384810.1016/j.renene.2021.01.113
    [Google Scholar]
  24. SajjadiB. ChenW.Y. RamanA.A.A. IbrahimS. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition.Renew. Sustain. Energy Rev.20189720023210.1016/j.rser.2018.07.050
    [Google Scholar]
  25. ShokraviH. ShokraviZ. AzizM.A. ShokraviH. Algal biofuel: A promising alternative for fossil fuel.In: Fossil Free Fuels.201918721110.1201/9780429327773‑11
    [Google Scholar]
  26. ShinY.S. ChoiH.I. ChoiJ.W. LeeJ.S. SungY.J. SimS.J. Multilateral approach on enhancing economic viability of lipid production from microalgae: A review.Bioresour. Technol.201825833534410.1016/j.biortech.2018.03.002 29555159
    [Google Scholar]
  27. GaoY. YangM. WangC. Nutrient deprivation enhances lipid content in marine microalgae.Bioresour. Technol.201314748449110.1016/j.biortech.2013.08.066 24012737
    [Google Scholar]
  28. SinghP. KumariS. GuldheA. MisraR. RawatI. BuxF. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae.Renew. Sustain. Energy Rev.20165511610.1016/j.rser.2015.11.001
    [Google Scholar]
  29. LiT. WanL. LiA. ZhangC. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations.Chin. J. Oceanology Limnol.20133161306131410.1007/s00343‑013‑2316‑7
    [Google Scholar]
  30. YuN. DieuL.T.J. HarveyS. LeeD.Y. Optimization of process configuration and strain selection for microalgae-based biodiesel production.Bioresour. Technol.2015193253410.1016/j.biortech.2015.05.101 26115529
    [Google Scholar]
  31. AndersenT. AndersenF.Ø. Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake.Aquat. Bot.200684326727110.1016/j.aquabot.2005.09.009
    [Google Scholar]
  32. TangD. HanW. LiP. MiaoX. ZhongJ. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels.Bioresour. Technol.201110233071307610.1016/j.biortech.2010.10.047 21041075
    [Google Scholar]
  33. KaewkannetraP. EnmakP. ChiuT. The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production.Biotechnol. Bioprocess Eng.; BBE201217359159710.1007/s12257‑011‑0533‑5
    [Google Scholar]
  34. ZouD. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta).Aquaculture20052503-472673510.1016/j.aquaculture.2005.05.014
    [Google Scholar]
  35. de Castro AraújoS. GarciaV.M.T. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids.Aquaculture20052461-440541210.1016/j.aquaculture.2005.02.051
    [Google Scholar]
  36. GordilloF.J.L. JiménezC. GoutxM. NiellX. Effects of CO2 and nitrogen supply on the biochemical composition of Ulva rigida with especial emphasis on lipid class analysis.J. Plant Physiol.2001158336737310.1078/0176‑1617‑00209
    [Google Scholar]
  37. RavelonandroP.H. RatianarivoD.H. Joannis-CassanC. IsambertA. RaherimandimbyM. Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition.Food Bioprod. Process.201189320921610.1016/j.fbp.2010.04.009
    [Google Scholar]
  38. de MoraisM.G. CostaJ.A.V. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide.Energy Convers. Manage.20074872169217310.1016/j.enconman.2006.12.011
    [Google Scholar]
  39. SalamaE.S. KimH.C. Abou-ShanabR.A.I. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress.Bioprocess Biosyst. Eng.201336682783310.1007/s00449‑013‑0919‑1 23411874
    [Google Scholar]
  40. GoncalvesE.C. WilkieA.C. KirstM. RathinasabapathiB. Metabolic regulation of triacylglycerol accumulation in the green algae: Identification of potential targets for engineering to improve oil yield.Plant Biotechnol. J.20161481649166010.1111/pbi.12523 26801206
    [Google Scholar]
  41. HoS.H. NakanishiA. YeX. Optimizing biodiesel production in marine Chlamydomonassp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy.Biotechnol. Biofuels2014719710.1186/1754‑6834‑7‑97 24387051
    [Google Scholar]
  42. HoS.H. NakanishiA. KatoY. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.Sci. Rep.2017714547110.1038/srep45471 28374798
    [Google Scholar]
  43. PerrineauM.M. ZelzionE. GrossJ. PriceD.C. BoydJ. BhattacharyaD. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii.Environ. Microbiol.20141661755176610.1111/1462‑2920.12372 24373049
    [Google Scholar]
  44. LiX. YuanY. ChengD. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt.Bioresour. Technol.201825049550410.1016/j.biortech.2017.11.072 29197772
    [Google Scholar]
  45. KatoY HoSH VavrickaCJ ChangJS HasunumaT KondoA Evolutionary engineering of saltresistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching.Bioresour Technol2017245(Pt B)1484149010.1016/j.biortech.2017.06.03528624244
    [Google Scholar]
  46. SunX.M. RenL.J. BiZ.Q. JiX.J. ZhaoQ.Y. HuangH. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis.Bioresour. Technol.201826743844410.1016/j.biortech.2018.07.079 30032058
    [Google Scholar]
  47. RaqibaH. SibiG. Light emitting diode (LED) illumination for enhanced growth and cellular composition in three microalgae.Adv Microb Res20193116
    [Google Scholar]
  48. WilliamsP.J.B. LaurensL.M.L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics.Energy Environ. Sci.20103555459010.1039/b924978h
    [Google Scholar]
  49. EricksonE. WakaoS. NiyogiK.K. Light stress and photoprotection in Chlamydomonas reinhardtii.Plant J.201582344946510.1111/tpj.12825 25758978
    [Google Scholar]
  50. ShiT.Q. WangL.R. ZhangZ.X. SunX.M. HuangH. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae.Front. Bioeng. Biotechnol.2020861010.3389/fbioe.2020.00610 32850686
    [Google Scholar]
  51. SforzaE. GrisB. de Farias SilvaC. MorosinottoT. BertuccoA. Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor.Chem. Eng.201438211
    [Google Scholar]
  52. SolovchenkoA.E. Khozin-GoldbergI. Didi-CohenS. CohenZ. MerzlyakM.N. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa.J. Appl. Phycol.200820324525110.1007/s10811‑007‑9233‑0
    [Google Scholar]
  53. ShiK. GaoZ. ShiT.Q. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: The state of the art and future perspectives.Front. Microbiol.2017879310.3389/fmicb.2017.00793 28507542
    [Google Scholar]
  54. NogueiraDP SilvaAF AraújoOQ ChaloubRM Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae.Biomass Bioenergy20147228028710.1016/j.biombioe.2014.10.017
    [Google Scholar]
  55. RemmersI.M. MartensD.E. WijffelsR.H. LamersP.P. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities.PLoS One2017124e017563010.1371/journal.pone.0175630 28403203
    [Google Scholar]
  56. LiuJ. QiuW. SongY. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda.Algal Res.20161827328010.1016/j.algal.2016.06.027
    [Google Scholar]
  57. LiuT. LiuF. WangC. WangZ. LiY. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.Bioresour. Technol.2017232445210.1016/j.biortech.2017.02.004 28214444
    [Google Scholar]
  58. Giridhar BabuA. WuX. KabraA.N. KimD.P. Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation.Algal Res.20172317818510.1016/j.algal.2017.02.004
    [Google Scholar]
  59. ParkW.K. YooG. MoonM. KimC.W. ChoiY.E. YangJ.W. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.Appl. Biochem. Biotechnol.201317151128114210.1007/s12010‑013‑0386‑9 23881782
    [Google Scholar]
  60. SulochanaS.B. ArumugamM. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.Bioresour. Technol.201621319820310.1016/j.biortech.2016.02.078 26949054
    [Google Scholar]
  61. LuY. TarkowskáD. TurečkováV. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function.Plant J.2014801526810.1111/tpj.12615 25041627
    [Google Scholar]
  62. Piotrowska-NiczyporukA. BajguzA. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae).Plant Growth Regul.2014731576610.1007/s10725‑013‑9867‑7
    [Google Scholar]
  63. KouzumaA. WatanabeK. Exploring the potential of algae/bacteria interactions.Curr. Opin. Biotechnol.20153312512910.1016/j.copbio.2015.02.007 25744715
    [Google Scholar]
  64. Do NascimentoM. DublanM.A. Ortiz-MarquezJ.C.F. CurattiL. High lipid productivity of an Ankistrodesmus - Rhizobium artificial consortium.Bioresour. Technol.201314640040710.1016/j.biortech.2013.07.085 23948276
    [Google Scholar]
  65. ChoixF.J. de-BashanL.E. BashanY. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.Enzyme Microb. Technol.201251530030910.1016/j.enzmictec.2012.07.012 22975129
    [Google Scholar]
  66. NugrohoW.A. NurlailiF.R. HendrawanY. ArgoB.D. Effect of growth promoting bacteria on the growth rate and lipid content of microalgae Chorella sp. in sludge liquor of anaerobic digester of dairy manure.Int. J. Adv. Sci. Eng. Inf. Technol.20155537437810.18517/ijaseit.5.5.586
    [Google Scholar]
  67. LiX. PeiG. LiuL. ChenL. ZhangW. Metabolomic analysis and lipid accumulation in a glucose tolerant Crypthecodinium cohnii strain obtained by adaptive laboratory evolution.Bioresour. Technol.2017235879510.1016/j.biortech.2017.03.049 28365353
    [Google Scholar]
  68. YiZ. XuM. MagnusdottirM. ZhangY. BrynjolfssonS. FuW. Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum for enhanced carotenoid accumulation.Mar. Drugs201513106138615110.3390/md13106138 26426027
    [Google Scholar]
  69. LiD. WangL. ZhaoQ. WeiW. SunY. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.Bioresour. Technol.201518526927510.1016/j.biortech.2015.03.011 25776894
    [Google Scholar]
  70. GimpelJ.A. HenríquezV. MayfieldS.P. In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity.Front. Microbiol.20156137610.3389/fmicb.2015.01376 26696985
    [Google Scholar]
  71. TalebiA.F. TohidfarM. BagheriA. LyonS.R. Salehi-AshtianiK. TabatabaeiM. Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality.Biofuel Research Journal201413919710.18331/BRJ2015.1.3.6
    [Google Scholar]
  72. RoesslerP.G. BrownL.M. DunahayT.G. Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae.ACS Symposium SeriesWashington, DC194456625570
    [Google Scholar]
  73. CernacA. BenningC. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis.Plant J.200440457558510.1111/j.1365‑313X.2004.02235.x 15500472
    [Google Scholar]
  74. AjjawiI. VerrutoJ. AquiM. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator.Nat. Biotechnol.201735764765210.1038/nbt.3865 28628130
    [Google Scholar]
  75. ChowdhuryH. LoganathanB. Third-generation biofuels from microalgae: A review.Curr. Opin. Green Sustain. Chem.201920394410.1016/j.cogsc.2019.09.003
    [Google Scholar]
  76. CohenZ. Products from microalgae. Products from microalgae. In: Handbook of Microalgal Mass Culture.CRC Press2017421454
    [Google Scholar]
  77. LeeX.J. OngH.C. GanY.Y. ChenW.H. MahliaT.M.I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production.Energy Convers. Manage.202021011270710.1016/j.enconman.2020.112707
    [Google Scholar]
  78. HuangH.J. YuanX.Z. WuG.Q. Liquefaction of biomass for bio-oil products.In: Waste Biomass Management - A Holistic Approach.201723125010.1007/978‑3‑319‑49595‑8_11
    [Google Scholar]
  79. VaishnaviM. GopinathK.P. GhodkeP.K. Recent advances in hydrothermal liquefaction of microalgae.In: Micro-algae: Next-generation Feedstock for Biorefineries.20229712710.1007/978‑981‑19‑0680‑0_5
    [Google Scholar]
  80. XiuS. ShahbaziA. Bio-oil production and upgrading research: A review.Renew. Sustain. Energy Rev.20121674406441410.1016/j.rser.2012.04.028
    [Google Scholar]
  81. MoralesM. AflaloC. BernardO. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species.Biomass Bioenergy202115010610810.1016/j.biombioe.2021.106108
    [Google Scholar]
  82. MiaoX. WuQ. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides.J. Biotechnol.20041101859310.1016/j.jbiotec.2004.01.013 15099908
    [Google Scholar]
  83. CampanellaA. HaroldM.P. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts.Biomass Bioenergy20124621823210.1016/j.biombioe.2012.08.023
    [Google Scholar]
  84. NaqviS.R. NaqviM. NoorT. Catalytic pyrolysis of Botryococcus braunii (microalgae) over layered and delaminated zeolites for aromatic hydrocarbon production.Energy Procedia201714238138510.1016/j.egypro.2017.12.060
    [Google Scholar]
  85. MaliutinaK. TahmasebiA. YuJ. SaltykovS.N. Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor.Energy Convers. Manage.201715142643810.1016/j.enconman.2017.09.013
    [Google Scholar]
  86. SekarM. MathimaniT. AlagumalaiA. A review on the pyrolysis of algal biomass for biochar and bio-oil - Bottlenecks and scope.Fuel202128311919010.1016/j.fuel.2020.119190
    [Google Scholar]
  87. ContiR. PezzolesiL. PistocchiR. TorriC. MassoliP. FabbriD. Photobioreactor cultivation and catalytic pyrolysis of the microalga Desmodesmus communis (Chlorophyceae) for hydrocarbons production by HZSM-5 zeolite cracking.Bioresour. Technol.201622214815510.1016/j.biortech.2016.10.002 27721094
    [Google Scholar]
  88. TripathiM SahuJN GanesanP Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review.Renew Sustain Energy Rev20165546748110.1016/j.rser.2015.10.122
    [Google Scholar]
  89. JenaU. DasK.C. KastnerJ.R. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis.Bioresour. Technol.2011102106221622910.1016/j.biortech.2011.02.057 21444202
    [Google Scholar]
  90. VardonD.R. SharmaB.K. BlazinaG.V. RajagopalanK. StrathmannT.J. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis.Bioresour. Technol.201210917818710.1016/j.biortech.2012.01.008 22285293
    [Google Scholar]
  91. MinowaT. YokoyamaS. KishimotoM. OkakuraT. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction.Fuel199574121735173810.1016/0016‑2361(95)80001‑X
    [Google Scholar]
  92. Garcia AlbaL. TorriC. SamorìC. Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept.Energy Fuels201226164265710.1021/ef201415s
    [Google Scholar]
  93. BachQ.V. SilleroM.V. TranK.Q. SkjermoJ. Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests.Algal Res.2014627127610.1016/j.algal.2014.05.009
    [Google Scholar]
  94. NeveuxN. YuenA.K.L. JazrawiC. Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae.Bioresour. Technol.201415533434110.1016/j.biortech.2013.12.083 24463408
    [Google Scholar]
  95. BordoloiN. NarzariR. SutD. SaikiaR. ChutiaR.S. KatakiR. Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus.Renew. Energy20169824525310.1016/j.renene.2016.03.081
    [Google Scholar]
  96. WądrzykM. JanusR. VosM.P. BrilmanD.W.F. Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae.J. Anal. Appl. Pyrolysis201813441542610.1016/j.jaap.2018.07.008
    [Google Scholar]
  97. PaulT. BaskaranD. PakshirajanK. PugazhenthiG. Continuous bioreactor with cell recycle using tubular ceramic membrane for simultaneous wastewater treatment and bio-oil production by oleaginous Rhodococcus opacus.Chem. Eng. J.2019367768510.1016/j.cej.2019.02.050
    [Google Scholar]
  98. LiS. LiF. ZhuX. LiaoQ. ChangJ.S. HoS.H. Biohydrogen production from microalgae for environmental sustainability.Chemosphere2022291Pt 113271710.1016/j.chemosphere.2021.132717 34757051
    [Google Scholar]
  99. FangH.H.P. LiuH. Effect of pH on hydrogen production from glucose by a mixed culture.Bioresour. Technol.2002821879310.1016/S0960‑8524(01)00110‑9 11858207
    [Google Scholar]
  100. RenN. WangA. CaoG. XuJ. GaoL. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges.Biotechnol. Adv.20092761051106010.1016/j.biotechadv.2009.05.007 19463936
    [Google Scholar]
  101. SołowskiG. ShalabyM.S. AbdallahH. ShabanA.M. CenianA. Production of hydrogen from biomass and its separation using membrane technology.Renew. Sustain. Energy Rev.2018823152316710.1016/j.rser.2017.10.027
    [Google Scholar]
  102. SharmaA. AryaS.K. Hydrogen from algal biomass: A review of production process.Biotechnol. Rep. (Amst.)201715636910.1016/j.btre.2017.06.001 28702371
    [Google Scholar]
  103. WieczorekN. KucukerM.A. KuchtaK. Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process.Appl. Energy201413210811710.1016/j.apenergy.2014.07.003
    [Google Scholar]
  104. ShanmugamS. HariA. PandeyA. MathimaniT. FelixL. PugazhendhiA. Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production.Fuel202027011745310.1016/j.fuel.2020.117453
    [Google Scholar]
  105. SinghT. SehgalA. SinghR. Algal biohydrogen production: Impact of biodiversity and nanomaterials induction.Renew. Sustain. Energy Rev.202318311338910.1016/j.rser.2023.113389
    [Google Scholar]
  106. PriyaA. NaseemS. PandeyD. Innovative strategies in algal biomass pretreatment for biohydrogen production.Bioresour. Technol.202336912844610.1016/j.biortech.2022.128446 36473587
    [Google Scholar]
  107. ChoY. KimH. KimS.K. Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast.Bioprocess Biosyst. Eng.201336671371910.1007/s00449‑013‑0895‑5 23361184
    [Google Scholar]
  108. HarunR. DanquahM.K. Enzymatic hydrolysis of microalgal biomass for bioethanol production.Chem. Eng. J.201116831079108410.1016/j.cej.2011.01.088
    [Google Scholar]
  109. HoS.H. HuangS.W. ChenC.Y. HasunumaT. KondoA. ChangJ.S. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E.Bioresour. Technol.201313515716510.1016/j.biortech.2012.10.100 23186680
    [Google Scholar]
  110. MirandaJ.R. PassarinhoP.C. GouveiaL. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.Appl. Microbiol. Biotechnol.201296255556410.1007/s00253‑012‑4338‑z 22899495
    [Google Scholar]
  111. KimD.G. LeeC. ParkS.M. ChoiY.E. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.Bioresour. Technol.201415924024810.1016/j.biortech.2014.02.078 24657754
    [Google Scholar]
  112. KimH.M. OhC.H. BaeH.J. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production.Bioresour. Technol.2017233445010.1016/j.biortech.2017.02.040 28258995
    [Google Scholar]
  113. GohainM. HasinM. EldiehyK.S.H. Bio-ethanol production: A route to sustainability of fuels using bio-based heterogeneous catalyst derived from waste.Process Saf. Environ. Prot.202114619020010.1016/j.psep.2020.08.046
    [Google Scholar]
  114. SinghH. RoutS. DasD. Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery.Int. J. Hydrogen Energy202247110211610.1016/j.ijhydene.2021.10.018
    [Google Scholar]
  115. KumarG SivagurunathanP ThiNB Evaluation of different pretreatments on organic matter solubilization and hydrogen fermentation of mixed microalgae consortia.Int J Hydro Energey20164146216282164010.1016/j.ijhydene.2016.05.195
    [Google Scholar]
  116. YunY.M. KimD.H. OhY.K. ShinH.S. JungK.W. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.Bioresour. Technol.201415936537210.1016/j.biortech.2014.02.129 24662313
    [Google Scholar]
  117. CaiJ. ChenM. WangG. PanG. YuP. Fermentative hydrogen and polyhydroxybutyrate production from pretreated cyanobacterial blooms.Algal Res.20151229529910.1016/j.algal.2015.09.014
    [Google Scholar]
  118. GhoshS. RoyS. DasD. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel.Appl. Biochem. Biotechnol.201517573322333510.1007/s12010‑015‑1503‑8 25690351
    [Google Scholar]
  119. XuJ. UpcraftT. TangQ. Hydrogen generation performance from Taihu algae and food waste by anaerobic codigestion.Energy Fuels20193321279128910.1021/acs.energyfuels.8b04052
    [Google Scholar]
  120. JehleeA. RodjaroenS. WaewsakJ. ReungsangA. O-Thong S. Improvement of biohythane production from Chlorella sp. TISTR 8411 biomass by co-digestion with organic wastes in a two-stage fermentation.Int. J. Hydrogen Energy20194432172381724710.1016/j.ijhydene.2019.03.026
    [Google Scholar]
  121. BharathirajaB. ChakravarthyM. Ranjith KumarR. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products.Renew. Sustain. Energy Rev.20154763465310.1016/j.rser.2015.03.047
    [Google Scholar]
  122. JohnR.P. AnishaG.S. NampoothiriK.M. PandeyA. Micro and macroalgal biomass: A renewable source for bioethanol.Bioresour. Technol.2011102118619310.1016/j.biortech.2010.06.139 20663661
    [Google Scholar]
  123. RajkumarR. YaakobZ. TakriffM.S. Potential of micro and macro algae for biofuel production: A brief review.BioResources20149116061633
    [Google Scholar]
  124. FultonE.A. ParslowJ.S. SmithA.D.M. JohnsonC.R. Biogeochemical marine ecosystem models II: the effect of physiological detail on model performance.Ecol. Modell.2004173437140610.1016/j.ecolmodel.2003.09.024
    [Google Scholar]
  125. ChenC.Y. ZhaoX.Q. YenH.W. Microalgae-based carbohydrates for biofuel production.Biochem. Eng. J.20137811010.1016/j.bej.2013.03.006
    [Google Scholar]
  126. BibiR. AhmadZ. ImranM. Algal bioethanol production technology: A trend towards sustainable development.Renew. Sustain. Energy Rev.20177197698510.1016/j.rser.2016.12.126
    [Google Scholar]
  127. FakruddinM. Abdul QuayM. Morshed AhM. ChoudhuryN. Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST-072011.Biotechnology (Faisalabad)201211424825210.3923/biotech.2012.248.252
    [Google Scholar]
  128. ChoiJ.A. HwangJ.H. DempseyB.A. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent.Energy Environ. Sci.2011493513352010.1039/c1ee01068a
    [Google Scholar]
  129. KhambhatyY. ModyK. GandhiM.R. Kappaphycus alvarezii as a source of bioethanol.Bioresour. Technol.2012103118018510.1016/j.biortech.2011.10.015 22050835
    [Google Scholar]
  130. DienstD. GeorgJ. AbtsT. Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803.Biotechnol. Biofuels2014712110.1186/1754‑6834‑7‑21 24502290
    [Google Scholar]
  131. KuradeM.B. SahaS. SalamaE.S. PatilS.M. GovindwarS.P. JeonB.H. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane.Bioresour. Technol.201927235135910.1016/j.biortech.2018.10.047 30384210
    [Google Scholar]
  132. De ClercqD. WenZ. FeiF. CaicedoL. YuanK. ShangR. Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion.Sci. Total Environ.202071213457410.1016/j.scitotenv.2019.134574 31931191
    [Google Scholar]
  133. MilledgeJ.J. NielsenB.V. ManeeinS. HarveyP.J. A brief review of anaerobic digestion of algae for bioenergy.Energies2019126116610.3390/en12061166
    [Google Scholar]
  134. KavithaS. SchikaranM. Yukesh KannahR. GunasekaranM. KumarG. Rajesh BanuJ. Nanoparticle induced biological disintegration: A new phase separated pretreatment strategy on microalgal biomass for profitable biomethane recovery.Bioresour. Technol.201928912162410.1016/j.biortech.2019.121624 31203180
    [Google Scholar]
  135. BohutskyiP. BetenbaughM.J. BouwerE.J. The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains.Bioresour. Technol.201415536637210.1016/j.biortech.2013.12.095 24468544
    [Google Scholar]
  136. DikshitP.K. PadhiS.K. PattanaikL. KhanA. RanjanA. SadhuS. A critical review on nanotechnological advancement in biogas production from organic waste.Biomass Convers. Biorefin.202312310.1007/s13399‑023‑04432‑1
    [Google Scholar]
  137. WangW. WangS. MaX. GongJ. Recent advances in catalytic hydrogenation of carbon dioxide.Chem. Soc. Rev.20114073703372710.1039/c1cs15008a 21505692
    [Google Scholar]
  138. SarchamiT. RehmannL. Optimizing acid hydrolysis of Jerusalem artichoke-derived inulin for fermentative butanol production.BioEnergy Res.2015831148115710.1007/s12155‑014‑9568‑8
    [Google Scholar]
  139. HuzirN.M. AzizM.M.A. IsmailS.B. Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation.Renew. Sustain. Energy Rev.20189447648510.1016/j.rser.2018.06.036
    [Google Scholar]
  140. AnandharajM. LinY.J. RaniR.P. Constructing a yeast to express the largest cellulosome complex on the cell surface.Proc. Natl. Acad. Sci. USA202011752385239410.1073/pnas.1916529117 31953261
    [Google Scholar]
  141. VisioliF. StrataA. Milk, dairy products, and their functional effects in humans: A narrative review of recent evidence.Adv. Nutr.20145213114310.3945/an.113.005025 24618755
    [Google Scholar]
  142. ZhangJ. WangP. WangX. FengJ. SandhuH.S. WangY. Enhancement of sucrose metabolism in Clostridium saccharoperbutylacetonicum N1-4 through metabolic engineering for improved acetone-butanol-ethanol (ABE) fermentation.Bioresour. Technol.201827043043810.1016/j.biortech.2018.09.059 30245312
    [Google Scholar]
  143. LuC. YuL. VargheseS. YuM. YangS.T. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB.Bioresour. Technol.20172431000100810.1016/j.biortech.2017.07.043 28747008
    [Google Scholar]
  144. Abdul RazackS. DuraiarasanS. ManiV. Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production.Biotechnol. Rep. (Amst.)201611707610.1016/j.btre.2016.07.001 28352542
    [Google Scholar]
  145. JiangW. ZhaoJ. WangZ. YangS.T. Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations.Bioresour. Technol.201416317217910.1016/j.biortech.2014.04.047 24811445
    [Google Scholar]
  146. ZhengJ. TashiroY. YoshidaT. GaoM. WangQ. SonomotoK. Continuous butanol fermentation from xylose with high cell density by cell recycling system.Bioresour. Technol.201312936036510.1016/j.biortech.2012.11.066 23262012
    [Google Scholar]
  147. KushwahaD. SrivastavaN. MishraI. UpadhyayS.N. MishraP.K. Recent trends in biobutanol production.Rev. Chem. Eng.201935447550410.1515/revce‑2017‑0041
    [Google Scholar]
  148. OnayM. The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production.Fuel202027311779510.1016/j.fuel.2020.117795
    [Google Scholar]
  149. Figueroa-TorresG.M. Wan MahmoodW.M.A. PittmanJ.K. TheodoropoulosC. Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production.Biochem. Eng. J.202015310739610.1016/j.bej.2019.107396
    [Google Scholar]
  150. EfremenkoE.N. NikolskayaA.B. LyaginI.V. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells.Bioresour. Technol.201211434234810.1016/j.biortech.2012.03.049 22483558
    [Google Scholar]
  151. ChengH.H. WhangL.M. ChanK.C. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum.Bioresour. Technol.201518437938510.1016/j.biortech.2014.11.017 25499745
    [Google Scholar]
  152. WangY. GuoW. ChengC.L. HoS.H. ChangJ.S. RenN. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis.Bioresour. Technol.201620055756410.1016/j.biortech.2015.10.056 26528906
    [Google Scholar]
  153. SchenkP.M. Thomas-HallS.R. StephensE. Second generation biofuels: high-efficiency microalgae for biodiesel production.BioEnergy Res.200811204310.1007/s12155‑008‑9008‑8
    [Google Scholar]
  154. RawatJ. GuptaP.K. PanditS. Latest expansions in lipid enhancement of microalgae for biodiesel production: An update.Energies2022154155010.3390/en15041550
    [Google Scholar]
  155. NautiyalP. SubramanianK.A. DastidarM.G. Production and characterization of biodiesel from algae.Fuel Process. Technol.2014120798810.1016/j.fuproc.2013.12.003
    [Google Scholar]
  156. HossainA.B.M.S. SallehA. BoyceA.N. chowdhury P, Naqiuddin M. Biodiesel fuel production from algae as renewable energy.Am. J. Biochem. Biotechnol.20084325025410.3844/ajbbsp.2008.250.254
    [Google Scholar]
  157. CampbellM.N. Biodiesel: Algae as a renewable source for liquid fuel.Guelph Eng J20081127
    [Google Scholar]
  158. AhmedI. AliM. AhmadN. AhmadI. Production of biodiesel from algae.J. Pure Appl. Microbiol.2015917985
    [Google Scholar]
  159. KhanS. SiddiqueR. SajjadW. Biodiesel production from algae to overcome the energy crisis.Hayati J. Biosci.201724416316710.1016/j.hjb.2017.10.003
    [Google Scholar]
  160. ChanceR. RoesslerP. Production of biocrude in an advanced photobioreactor-based biorefinery.2020Available from: https://www.energy.gov/sites/prod/files/2019/03/f61/Production%20of%20Biocrude%20in%20an%20Advanced%20Photobioreactor-Based%20Biorefinery_EE0007690.pdf
  161. LegereE. RoesslerP. MillerH. BelickaL. YuanY. ChanceR. Recovery act–integrated pilot-scale biorefinery for producing ethanol from hybrid algae (No. DE–-EE0002867). Algenol IBR Final Report.Algenol Biotech LLC (United States)20172172136077710.2172/1360777
    [Google Scholar]
  162. Available from: http://algenol.com/direct-to-ethanol/direct-to-ethanol
  163. NoorA. NaseerF. History and recent advances of algal biofuel commercialization.In: Handbook of Algal Biofuels.202256758610.1016/B978‑0‑12‑823764‑9.00021‑2
    [Google Scholar]
  164. Available from: http://www.sapphireenergy.com/locations/green-crude-farm.html
  165. SharmaP. SharmaN. Industrial and biotechnological applications of algae: A review.J Adv Plant Biol20171112510.14302/issn.2638‑4469.japb‑17‑1534
    [Google Scholar]
  166. Available from: http://en.openei.org/wiki/Aurora_BioFuels_Inc
  167. BrasilBSAF SilvaFCP SiqueiraFG Microalgae biorefineries: The Brazilian scenario in perspective.N Biotechnol201739Pt A909810.1016/j.nbt.2016.04.00727343427
    [Google Scholar]
  168. TripathiG. FarooquiA. MishraV. DubeyP. Two Stage Cultivation of Microalga for Sustainable Biofuel Production.Indian Patent, 2023110720462023
    [Google Scholar]
/content/journals/biot/10.2174/0118722083322399240927051315
Loading
/content/journals/biot/10.2174/0118722083322399240927051315
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Algal biofuel; bio-oil; biodiesel; bioethanol; biogas; biohydrogen and bio-butanol; biomethane
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test