Skip to content
2000
image of Unveiling the Potency: Synthesis and Assessment of Antimicrobial Potential of Some Bis(indolyl)methane Derivatives

Abstract

Background

The urgent need for new antimicrobial compounds arises from the growing threat of multidrug-resistant human pathogens responsible for infectious diseases. The indole moiety, a prevalent heterocyclic ring system found in nature, is a key structural element in many pharmaceutical agents due to its wide range of biological activities. Bis(indolyl)methanes, in particular, have emerged as promising candidates for antibacterial activity.

Aim

This study aimed to evaluate the antibacterial activity of nine bis(indolyl)methane derivatives against a range of pathogenic bacterial strains responsible for various human diseases.

Methods

The compounds were synthesized using a solvent-free method, and their antibacterial activity was evaluated using the disk diffusion assay. The minimum inhibitory concentration (MIC) of the active compounds identified in the disk diffusion assay was determined by the microtiter broth dilution method in 96-well microtiter plates. Bacterial strains in the mid-log phase of growth were utilized. Bacterial suspensions equivalent to 0.5 McFarland standards were prepared by suspending the bacterial inoculum in sterile water. A working concentration of 100 µg/mL was achieved by diluting the test compounds in 100% DMSO.

Results

The antimicrobial activity of nine synthetic compounds was evaluated against nine medically significant pathogenic strains. These include , , and , known for producing toxins that cause acute foodborne illnesses, as well as K12 and , which can disrupt the intestinal barrier in immunocompromised individuals. The results suggest that these compounds have the potential to be effective antimicrobial agents.

Conclusion

Our findings demonstrate the promising antimicrobial activity of the synthesized compounds, with 1-ethyl-3-((1-ethyl-1-indol-3-yl)(phenyl)methyl)-1-indole emerging as the most potent, significantly inhibiting most tested bacterial strains. These results highlight the potential for developing novel compounds for antibacterial treatment.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525345761241023044441
2024-12-10
2025-04-09
Loading full text...

Full text loading...

References

  1. Koenig X. Hilber K. The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules 2015 20 2 2208 2228 10.3390/molecules20022208 25642835
    [Google Scholar]
  2. Seigler D.S. Plant Secondary Metabolism. New York Springer 2001
    [Google Scholar]
  3. Wang C. Huang Y. Traceless directing strategy: efficient synthesis of N-alkyl indoles via redox-neutral C-H activation. Org. Lett. 2013 15 20 5294 5297 10.1021/ol402523x 24099640
    [Google Scholar]
  4. Suzen S. Buyukbingol E. Anti-cancer activity studies of indolalthiohydantoin (PIT) on certain cancer cell lines. Farmaco 2000 55 4 246 248 10.1016/S0014‑827X(00)00028‑8 10966154
    [Google Scholar]
  5. Hendy M.S. Ali A.A. Ahmed L. Hossam R. Mostafa A. Elmazar M.M. Naguib B.H. Attia Y.M. Ahmed M.S. Structure-based drug design, synthesis, In vitro, and In vivo biological evaluation of indole-based biomimetic analogs targeting estrogen receptor-α inhibition. Eur. J. Med. Chem. 2019 166 281 290 10.1016/j.ejmech.2019.01.068 30731397
    [Google Scholar]
  6. Han Y. Dong W. Guo Q. Li X. Huang L. The importance of indole and azaindole scaffold in the development of antitumor agents. Eur. J. Med. Chem. 2020 203 112506 10.1016/j.ejmech.2020.112506 32688198
    [Google Scholar]
  7. Rani P. Srivastava V.K. Kumar A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem. 2004 39 5 449 452 10.1016/j.ejmech.2003.11.002 15110970
    [Google Scholar]
  8. Misra U. Hitkari A. Saxena A.K. Gurtu S. Shanker K. Biologically active indolylmethyl-1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 4H--1,3,4-triazoles and 1,2,4-triazines. Eur. J. Med. Chem. 1996 31 7-8 629 634 10.1016/0223‑5234(96)89559‑6
    [Google Scholar]
  9. Andreani A. Rambaldi M. Locatelli A. Pifferi G. Synthesis and antiinflammatory activity of indolylacrylic and methylacrylic acids. Eur. J. Med. Chem. 1994 29 11 903 906 10.1016/0223‑5234(94)90115‑5
    [Google Scholar]
  10. Demurtas M. Baldisserotto A. Lampronti I. Moi D. Balboni G. Pacifico S. Vertuani S. Manfredini S. Onnis V. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorg. Chem. 2019 85 568 576 10.1016/j.bioorg.2019.02.007 30825715
    [Google Scholar]
  11. Deka B. Deb M.L. Baruah P.K. Recent Advances on the C2-Functionalization of Indole via Umpolung. Top. Curr. Chem. (Cham) 2020 378 2 22 10.1007/s41061‑020‑0287‑7 32030596
    [Google Scholar]
  12. Reddy B.V.S. Reddy M.R. Madan C. Kumar K.P. Rao M.S. Indium(III) chloride catalyzed three-component coupling reaction: A novel synthesis of 2-substituted aryl(indolyl)kojic acid derivatives as potent antifungal and antibacterial agents. Bioorg. Med. Chem. Lett. 2010 20 24 7507 7511 10.1016/j.bmcl.2010.10.003 21067928
    [Google Scholar]
  13. Zhu Y. Zhao J. Luo L. Gao Y. Bao H. Li P. Zhang H. Research progress of indole compounds with potential antidiabetic activity. Eur. J. Med. Chem. 2021 223 113665 10.1016/j.ejmech.2021.113665 34192642
    [Google Scholar]
  14. Agarwal A. Srivastava K. Puri S.K. Chauhan P.M.S. Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 2005 15 12 3133 3136 10.1016/j.bmcl.2005.04.011 15925306
    [Google Scholar]
  15. Schuck D.C. Jordão A.K. Nakabashi M. Cunha A.C. Ferreira V.F. Garcia C.R.S. Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum. Eur. J. Med. Chem. 2014 78 375 382 10.1016/j.ejmech.2014.03.055 24699367
    [Google Scholar]
  16. Li J.Y. Sun X.F. Li J.J. Yu F. Zhang Y. Huang X.J. Jiang F.X. The antimalarial activity of indole alkaloids and hybrids. Arch. Pharm. (Weinheim) 2020 353 11 2000131 10.1002/ardp.202000131 32785974
    [Google Scholar]
  17. Kumari A. Singh R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019 89 103021 10.1016/j.bioorg.2019.103021 31176854
    [Google Scholar]
  18. Tiwari R.K. Singh D. Singh J. Yadav V. Pathak A.K. Dabur R. Chhillar A.K. Singh R. Sharma G.L. Chandra R. Verma A.K. Synthesis and antibacterial activity of substituted 1,2,3,4-tetrahydropyrazino [1,2-a] indoles. Bioorg. Med. Chem. Lett. 2006 16 2 413 416 10.1016/j.bmcl.2005.09.066 16246547
    [Google Scholar]
  19. Whitehead C.W. Whitesitt C.A. Effect of lipophilic substituents on some biological properties of indoles. J. Med. Chem. 1974 17 12 1298 1304 10.1021/jm00258a014 4214926
    [Google Scholar]
  20. Yamamoto Y. Kurazono M. A new class of anti-MRSA and anti-VRE agents: Preparation and antibacterial activities of indole-containing compounds. Bioorg. Med. Chem. Lett. 2007 17 6 1626 1628 10.1016/j.bmcl.2006.12.081 17254785
    [Google Scholar]
  21. Mahboobi S. Eichhorn E. Popp A. Sellmer A. Elz S. Möllmann U. 3-Bromo-4-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione derivatives as new lead compounds for antibacterially active substances. Eur. J. Med. Chem. 2006 41 2 176 191 10.1016/j.ejmech.2005.10.006 16375991
    [Google Scholar]
  22. Ryu C.K. Lee J.Y. Park R.E. Ma M.Y. Nho J.H. Synthesis and antifungal activity of 1H-indole-4,7-diones. Bioorg. Med. Chem. Lett. 2007 17 1 127 131 10.1016/j.bmcl.2006.09.076 17046257
    [Google Scholar]
  23. Bolous M. Arumugam N. Almansour A.I. Suresh Kumar R. Maruoka K. Antharam V.C. Thangamani S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg. Med. Chem. Lett. 2019 29 16 2059 2063 10.1016/j.bmcl.2019.07.022 31320146
    [Google Scholar]
  24. Hidalgo-Romano B. Gollihar J. Brown S.A. Whiteley M. Valenzuela E. Kaplan H.B. Wood T.K. McLean R.J.C. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. Microbiology (Reading) 2014 160 11 2464 2473 10.1099/mic.0.081729‑0 25165125
    [Google Scholar]
  25. Fu S.F. Wei J.Y. Chen H.W. Liu Y.Y. Lu H.Y. Chou J.Y. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal. Behav. 2015 10 8 e1048052 10.1080/15592324.2015.1048052 26179718
    [Google Scholar]
  26. Zhang M.Z. Chen Q. Yang G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem. 2015 89 1 421 441 10.1016/j.ejmech.2014.10.065 25462257
    [Google Scholar]
  27. Santos A.S. Ferro R.D. Viduedo N. Maia L.B. Silva A.M.S. Marques M.M.B. Synthesis of Bis(3‐indolyl)methanes Mediated by Potassium tert‐ Butoxide. ChemistryOpen 2023 12 1 e202200265 10.1002/open.202200265 36650736
    [Google Scholar]
  28. Patil S.A. Patil R. Miller D.D. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents. Future Med. Chem. 2012 4 16 2085 2115 10.4155/fmc.12.141 23157240
    [Google Scholar]
  29. Sarva S. Harinath J.S. Sthanikam S.P. Ethiraj S. Vaithiyalingam M. Cirandur S.R. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin. Chem. Lett. 2016 27 1 16 20 10.1016/j.cclet.2015.08.012
    [Google Scholar]
  30. Nemallapudi B.R. Zyryanov G.V. Avula B. Guda M.R. Gundala S. An effective green and ecofriendly catalyst for synthesis of bis(indolyl)methanes as promising antimicrobial agents. J. Heterocycl. Chem. 2019 56 12 3324 3332 10.1002/jhet.3729
    [Google Scholar]
  31. Biswal S. Sahoo U. Sethy S. Kumar H.K.S. Banerjee M. Indole: the molecule of diverse biological activities. Asian J. Pharm. Clin. Res. 2012 5 1 1 6
    [Google Scholar]
  32. Shaikh T.M. Debebe H. Synthesis and Evaluation of Antimicrobial Activities of Novel N-Substituted Indole Derivatives. J. Chem. 2020 2020 1 9 10.1155/2020/1543081
    [Google Scholar]
  33. Bandini M. Eichholzer A. Catalytic functionalization of indoles in a new dimension. Angew. Chem. Int. Ed. 2009 48 51 9608 9644 10.1002/anie.200901843 19946913
    [Google Scholar]
  34. Sandtorv A.H. Transition Metal‐Catalyzed CH Activation of Indoles. Adv. Synth. Catal. 2015 357 11 2403 2435 10.1002/adsc.201500374
    [Google Scholar]
  35. Allen J.R. Bahamonde A. Furukawa Y. Sigman M.S. Enantioselective N -Alkylation of Indoles via an Intermolecular Aza-Wacker-Type Reaction. J. Am. Chem. Soc. 2019 141 22 8670 8674 10.1021/jacs.9b01476 31117643
    [Google Scholar]
  36. Karchava A.V. Melkonyan F.S. Yurovskaya M.A. New strategies for the synthesis of N-alkylated indoles (Review). Chem. Heterocycl. Compd. 2012 48 3 391 407 10.1007/s10593‑012‑1006‑2
    [Google Scholar]
  37. Karchava A.V. Shuleva I.S. Ovcharenko A.A. Yurovskaya M.A. 2- and 3-phenylsulfonylindoles – synthetic equivalents of unsubstituted indole in N-alkylation reactions. Chem. Heterocycl. Compd. 2010 46 3 291 301 10.1007/s10593‑010‑0504‑3
    [Google Scholar]
  38. Sukata K. N -Alkylation of Pyrrole, Indole, and Several Other Nitrogen Heterocycles Using Potassium Hydroxide as a Base in the Presence of Polyethylene Glycols or Their Dialkyl Ethers. Bull. Chem. Soc. Jpn. 1983 56 1 280 284 10.1246/bcsj.56.280
    [Google Scholar]
  39. Guida W.C. Mathre D.J. Phase-transfer alkylation of heterocycles in the presence of 18-crown-6 and potassium tert-butoxide. J. Org. Chem. 1980 45 16 3172 3176 10.1021/jo01304a006
    [Google Scholar]
  40. Tejchman W. Korona-Glowniak I. Malm A. Zylewski M. Suder P. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res. 2017 26 6 1316 1324 10.1007/s00044‑017‑1852‑7 28515623
    [Google Scholar]
  41. Lelario F. Scrano L. De Franchi S. Bonomo M.G. Salzano G. Milan S. Milella L. Bufo S.A. Identification and antimicrobial activity of most representative secondary metabolites from different plant species. Chem. Biol. Technol. Agric. 2018 5 1 13 10.1186/s40538‑018‑0125‑0
    [Google Scholar]
  42. Sharma D.K. Tripathi A.K. Sharma R. Chib R. ur Rasool R. Hussain A. Singh B. Goswami A. Khan I.A. Mukherjee D. A new class of bactericidal agents against S. aureus, MRSA and VRE derived from bisindolylmethane. Med. Chem. Res. 2014 23 4 1643 1653 10.1007/s00044‑013‑0764‑4
    [Google Scholar]
  43. Naik C P. G B A. Seikh A.H. Dutta S. Synthesis, characterization, and antibacterial activity of novel bis(indolyl)methanes sourced from biorenewable furfurals using gluconic acid aqueous solution (GAAS) as a sustainable catalyst. RSC Advances 2024 14 30 21553 21562 10.1039/D4RA03905J 38979445
    [Google Scholar]
  44. Hidron A.I. Edwards J.R. Patel J. Horan T.C. Sievert D.M. Pollock D.A. Fridkin S.K. National Healthcare Safety Network Team Participating National Healthcare Safety Network Facilities NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect. Control Hosp. Epidemiol. 2008 29 11 996 1011 10.1086/591861 18947320
    [Google Scholar]
  45. Gilmore M.S. Lebreton F. van Schaik W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr. Opin. Microbiol. 2013 16 1 10 16 10.1016/j.mib.2013.01.006 23395351
    [Google Scholar]
  46. Jett B.D. Huycke M.M. Gilmore M.S. Virulence of enterococci. Clin. Microbiol. Rev. 1994 7 4 462 478 10.1128/CMR.7.4.462 7834601
    [Google Scholar]
  47. Richards M.J. Edwards J.R. Culver D.H. Gaynes R.P. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 2000 21 8 510 515 10.1086/501795 10968716
    [Google Scholar]
  48. Maki D.G. Agger W.A. Enterococcal Bacteremia. Medicine (Baltimore) 1988 67 4 248 269 10.1097/00005792‑198807000‑00005 3134590
    [Google Scholar]
  49. Actor J.K. Clinical Bacteriology Wiley 2012 10.1016/B978‑0‑323‑07447‑6.00012‑0
    [Google Scholar]
  50. Beecher D.J. Wong A.L. Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J. Biol. Chem. 1997 272 1 233 239 10.1074/jbc.272.1.233 8995253
    [Google Scholar]
  51. Kramer J.M. Gilbert R.J. Bacillus cereus and other Bacillus species. Foodborne bacterial pathogens. Doyle M.P. New York Marcel Dekker, Inc. 1989 21 77
    [Google Scholar]
  52. Todd E.C.D. Bacteria: Staphylococcus aureus. Encyclopedia of Food Safety. Motarjemi Y. Moy G. Todd E. USA Elsevier 2014 Vol. 1 530 534 10.1016/B978‑0‑12‑378612‑8.00115‑3
    [Google Scholar]
  53. Foster T.J. Potential for vaccination against infections caused by Staphylococcus aureus. Vaccine 1991 9 4 221 227 10.1016/0264‑410X(91)90103‑D 2058264
    [Google Scholar]
  54. Bennish M.L. Potentially lethal complications of shigellosis. Clin. Infect. Dis. 1991 13 Suppl. 4 S319 S324 10.1093/clinids/13.Supplement_4.S319 2047657
    [Google Scholar]
  55. Kotloff K.L. Winickoff J.P. Ivanoff B. Clemens J.D. Swerdlow D.L. Sansonetti P.J. Adak G.K. Levine M.M. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 1999 77 8 651 666 10516787
    [Google Scholar]
  56. Bennish M.L. Wojtyniak B.J. Mortality due to shigellosis: community and hospital data. Clin. Infect. Dis. 1991 13 Suppl. 4 S245 S251 10.1093/clinids/13.Supplement_4.S245 2047645
    [Google Scholar]
  57. Ashkenazi S. Levy I. Kazaronovski V. Samra Z. Growing antimicrobial resistance of Shigella isolates. J. Antimicrob. Chemother. 2003 51 2 427 429 10.1093/jac/dkg080 12562716
    [Google Scholar]
  58. DuPont H.L. Levine M.M. Hornick R.B. Formal S.B. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 1989 159 6 1126 1128 10.1093/infdis/159.6.1126 2656880
    [Google Scholar]
  59. Small P. Blankenhorn D. Welty D. Zinser E. Slonczewski J.L. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J. Bacteriol. 1994 176 6 1729 1737 10.1128/jb.176.6.1729‑1737.1994 8132468
    [Google Scholar]
  60. Hetem D.J. Rooijakkers S.H.M. Ekkelenkamp M.B. Staphylococci and Micrococci. Infectious diseases. Cohen J. Powderly W.G. Opal S.M. Elsevier 2017 Vol. 1 1509 1522.e2 10.1016/B978‑0‑7020‑6285‑8.00176‑3
    [Google Scholar]
  61. Fosse T. Toga B. Peloux Y. Granthil C. Bertrando J. Sethian M. Meningitis due to Micrococcus luteus. Infection 1985 13 6 280 281 10.1007/BF01645439 4077270
    [Google Scholar]
  62. Wu W. Jin Y. Bai F. Pseudomonas aeruginosa. Molecular Medical Microbiology. Tang Y.W. Sussman M. Liu D. Poxton I. Schwartzman J. Elsevier 2015 Vol. 2 753 767
    [Google Scholar]
  63. Planet P.J. Pseudomonas aeruginosa. Principles and Practice of Pediatric Infectious Diseases. Long S.S. Prober C.G. Fischer M. Kimberlin D. Elsevier 2018 866 870 10.1016/B978‑0‑323‑40181‑4.00155‑9
    [Google Scholar]
  64. Radoshevich L. Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018 16 1 32 46 10.1038/nrmicro.2017.126 29176582
    [Google Scholar]
  65. Deb M.L. Bhuyan P.J. Uncatalysed Knoevenagel condensation in aqueous medium at room temperature. Tetrahedron Lett. 2005 46 38 6453 6456 10.1016/j.tetlet.2005.07.111
    [Google Scholar]
  66. Deka B. Baruah P.K. Deb M.L. Multi-component synthesis of 3-substituted indoles and their cyclisation to α-carbolines via I 2 -promoted intramolecular C2 oxidative amination/aromatisation at room temperature. Org. Biomol. Chem. 2018 16 42 7806 7810 10.1039/C8OB02362J 30328453
    [Google Scholar]
  67. Deka B. Thakuria R. Deb M.L. Baruah P.K. A revisit to the multi-component reaction of indole, aldehyde, and N-substituted aniline catalyzed by PMA–SiO2. Monatsh. Chem. 2018 149 12 2245 2252 10.1007/s00706‑018‑2290‑z
    [Google Scholar]
  68. Deka B. Deb M.L. Thakuria R. Baruah P.K. I2/TBHP/cyclohexanone a novel catalyst system for the oxidative dearomatization of indoles to indolin-3-ones at room temperature under solvent-free condition. Catal. Commun. 2018 106 68 72 10.1016/j.catcom.2017.12.015
    [Google Scholar]
  69. Deb M.L. Deka B. Saikia P.J. Baruah P.K. Base-promoted three-component cascade approach to unsymmetrical bis(indolyl)methanes. Tetrahedron Lett. 2017 58 20 1999 2003 10.1016/j.tetlet.2017.04.032
    [Google Scholar]
  70. Deb M.L. Borpatra P.J. Saikia P.J. Baruah P.K. Introducing tetramethylurea as a new methylene precursor: a microwave-assisted RuCl 3 -catalyzed cross dehydrogenative coupling approach to bis(indolyl)methanes. Org. Biomol. Chem. 2017 15 6 1435 1443 10.1039/C6OB02671K 28102407
    [Google Scholar]
  71. Deb M. Baruah P. Das C. Deka B. Saikia P. Hydrogen-Bond-Catalyzed Arylation of 3-(Aminoalkyl)indoles via C–N Bond Cleavage with Thiourea under Microwave Irradiation: An Approach to 3-(α,α-Diarylmethyl)indoles. Synlett 2016 27 20 2788 2794 10.1055/s‑0036‑1588887
    [Google Scholar]
  72. Rahman I. Deka B. Deb M.L. Baruah P.K. C‐C Bond Cleavage by the Reaction of Cyclic Amines or Indoles with Activated Olefins: A Redox‐Neutral Mechanism for the Reducing Action of Tetrahydroisoquinolines. ChemistrySelect 2019 4 35 10425 10429 10.1002/slct.201902655
    [Google Scholar]
  73. Deb M.L. Pegu C.D. Deka B. Dutta P. Kotmale. A. S.; Baruah, P.K. Brønsted-Acid-Mediated Divergent Reactions of Betti Bases with Indoles: An Approach to Chromeno[2,3-b]indoles through Intramolecular Dehydrogenative C2-Alkoxylation of Indole. Eur. J. Med. Chem. 2016 2016 20 3441 3448
    [Google Scholar]
  74. Gopalaiah K. Chandrudu S. Devi A. Iron-Catalyzed Oxidative Coupling of Benzylamines and Indoles: Novel Approach for Synthesis of Bis(indolyl)methanes. Synthesis 2015 47 12 1766 1774 10.1055/s‑0034‑1380012
    [Google Scholar]
  75. Bhat M.I. Sowmya K. Kapila S. Kapila R. Escherichia coli K12: An evolving opportunistic commensal gut microbe distorts barrier integrity in human intestinal cells. Microb. Pathog. 2019 133 103545 10.1016/j.micpath.2019.103545 31112772
    [Google Scholar]
  76. Steck N. Hoffmann M. Sava I.G. Kim S.C. Hahne H. Tonkonogy S.L. Mair K. Krueger D. Pruteanu M. Shanahan F. Vogelmann R. Schemann M. Kuster B. Sartor R.B. Haller D. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 2011 141 3 959 971 10.1053/j.gastro.2011.05.035 21699778
    [Google Scholar]
/content/journals/aia/10.2174/0122113525345761241023044441
Loading
/content/journals/aia/10.2174/0122113525345761241023044441
Loading

Data & Media loading...

Supplements

Supporting information for the characterization of each synthesized compound, including NMR data and disk diffusion assay to evaluate the antimicrobial activity of the compounds, is provided.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test