Skip to content
2000
image of Synthesis, Characterization, and Anticancer, Antidiabetic, and Antimicrobial Activities of Azo-Schiff Base Ligand with ONO Donor Atom and its Transition Metal Complexes

Abstract

Introduction

Cancer, diabetes, and infection of bacteria and fungi are serious issues in the world. Synthesis of the potential drugs against them is a major challenge to the researcher. Hence, coordination chemistry has attracted researchers as it has various applications in medicinal and biological fields.

Methods

Synthesis and biological evolution of azo-Schiff base ligand and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and VO(II) metal complexes were carried out. These compounds were characterized by Mass, 1H-NMR, FT-IR, Elemental analysis, Molar conductance, Magnetic susceptibility, UV-Vis., P-XRD, TGA, etc., and were screened for biological activities.

Result

Synthesised azo-Schiff base ligand and its metal complexes were evaluated for their antimicrobial, antidiabetic as well as anticáncer activities against various bacteria and fungi and MCF-7 breast cancer cell line, respectively.

Conclusion

From the findings of various results, we can conclude that the synthesized metal complexes exhibit higher biological activities than the azo-Schiff base ligand.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525343891240925093331
2024-11-05
2025-06-26
Loading full text...

Full text loading...

References

  1. Chen M. Chen X. Huang G. Jiang Y. Gou Y. Deng J. Synthesis, anti-tumour activity, and mechanism of benzoyl hydrazine Schiff base-copper complexes. J. Mol. Struct. 2022 1268 133730 10.1016/j.molstruc.2022.133730
    [Google Scholar]
  2. Hamed A.A. Abdelhamid I.A. Saad G.R. Elkady N.A. Elsabee M.Z. Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties. Int. J. Biol. Macromol. 2020 153 492 501 10.1016/j.ijbiomac.2020.02.302 32112843
    [Google Scholar]
  3. Arabahmadi R. Orojloo M. Amani S. Three and four inputs combinational logic circuits based on a azo-azomethine chemosensor for the detection of Ni2+ and CN−/OAC− ions: Experimental and DFT studies. J. Photochem. Photobiol. Chem. 2023 434 114231 10.1016/j.jphotochem.2022.114231
    [Google Scholar]
  4. Malik A. Goyat G. Verma K.K. Garg S. Synthesis, spectral and antimicrobial studies of some O-Vanillin-2-aminopyridine schiff base complexes of organyltellurium(IV). Chem. Sci. Trans. 2018 7 329 337 10.7598/cst2018
    [Google Scholar]
  5. Kalaiarasi G. Dharani S. Puschmann H. Prabhakaran R. Synthesis, structural characterization, DNA/protein binding and antioxidant activities of binuclear Ni(II) complexes containing ONS chelating ligands bridged by 1,3-bis(diphenylphosphino)propane. Inorg. Chem. Commun. 2018 97 34 38 10.1016/j.inoche.2018.09.004
    [Google Scholar]
  6. Luo H. Xia Y. Sun B. Huang L. Wang X. Lou H. Zhu X. Pan W. Zhang X. Synthesis and evaluation of In Vitro antibacterial and antitumor activities of novel N,N-Disubstituted schiff bases. Biochem. Res. Int. 2017 2017 1 10 10.1155/2017/6257240 28713593
    [Google Scholar]
  7. Al-Shemary R.K. Design, synthesis and biological evaluation of schiff bases and their Co(II), Cu(II), Ni(II) chelates from derivative containing indole moiety bearing-triazole. Eur. Chem. Bull. 2017 6 10 433 10.17628/ecb.2017.6.433‑439
    [Google Scholar]
  8. More G. Bootwala S.Z. Mascarenhas J. Aruna K. Anti-microbial and anti-tubercular activity evaluation of newly synthesized zinc complexes of aminothiophene schiff bases. Int. J. Pharm. Sci. Res. 2018 9 3029 3035 10.13040/IJPSR.09758232.9(7).3029‑35
    [Google Scholar]
  9. Zoubi W.A. Biological activities of schiff bases and their complexes: A review of recent works. Int. J. Org. Chem. (Irvine) 2013 3 3 73 95 10.4236/ijoc.2013.33A008
    [Google Scholar]
  10. Shreekanta S.A. Venkatesh T.V. Naik P.P. Murugendrappa N. Bulk electroorganic synthesis of schiff bases and their electrical behaviour. IOSR J. Appl. Chem. 2013 3 31 35 10.9790/5736‑0333135
    [Google Scholar]
  11. Bader N. Applications of schiff’s bases chelates in quantitative analysis: A review. Rasayan J. Chem. 2010 3 660 670 https://rasayanjournal.co.in/vol-3/issue-4/10.pdf
    [Google Scholar]
  12. Alorabi A.Q. Abdelbaset M. Zabin S.A. Colorimetric detection of multiple metal Ions using schiff Base 1-(2-Thiophenylimino)-4-(N-dimethyl)benzene. Chemosensors (Basel) 2019 8 1 1 10 10.3390/chemosensors8010001
    [Google Scholar]
  13. Uddin M.N. Khandaker S. Moniruzzaman; Amin, M.S.; Shumi, W.; Rahman, M.A.; Rahman, S.M. Synthesis, characterization, molecular modeling, antioxidant and microbial properties of some Titanium(IV) complexes of schiff bases. J. Mol. Struct. 2018 1166 79 90 10.1016/j.molstruc.2018.04.025
    [Google Scholar]
  14. Bühlmann P. Pretsch E. Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 1998 98 4 1593 1688 10.1021/cr970113+ 11848943
    [Google Scholar]
  15. Naser S. Shatha M. Synthesis, characterization and biological activity study of some new metal complexes with Schiff’s bases derived from [O-vanillin] with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole Egypt. J. Chem. 2021 64 8 4059 4067 10.21608/ejchem.2021.66235.3432
    [Google Scholar]
  16. Majid S.A. Mir J.M. Paul S. Akhter M. Parray H. Ayoub R. Shalla A.H. Experimental and molecular topology-based biological implications of Schiff base complexes: A concise review. Rev. Inorg. Chem. 2019 39 2 113 128 10.1515/revic‑2018‑0023
    [Google Scholar]
  17. More M.S. Joshi P.G. Mishra Y.K. Khanna P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem. 2019 14 100195 10.1016/j.mtchem.2019.100195 32289101
    [Google Scholar]
  18. Saadeh S.M. Synthesis, characterization and biological properties of Co(II), Ni(II), Cu(II) and Zn(II) complexes with an SNO functionalized ligand. Arab. J. Chem. 2013 6 2 191 196 10.1016/j.arabjc.2010.10.002
    [Google Scholar]
  19. Aouniti A. Elmsellem H. Tighadouini S. Elazzouzi M. Radi S. Chetouani A. Hammouti B. Zarrouk A. Schiff’s base derived from 2-acetyl thiophene as corrosion inhibitor of steel in acidic medium. J. Taibah Univ. Sci. 2016 10 5 774 785 10.1016/j.jtusci.2015.11.008
    [Google Scholar]
  20. Selim N.M. Arief M.H. Ahmed M.H. Selim N.M.M. Synthesis of some heterocyclic compounds based on (2, 3-dioxo-2, 3-dihydro-1H-indol-1-yl) acetyl acetic acid derivatives. Int. J. Basic Appl. Sci. 2013 2 2 153 159 10.14419/ijbas.v2i2.721
    [Google Scholar]
  21. Luna I. Neves W. de Lima-Neto R. Albuquerque A. Pitta M. Rêgo M. Neves R. Scotti M. Mendonça-Junior F. Design, synthesis and antifungal activity of new Schiff bases bearing 2-aminothiophene derivatives obtained by molecular simplification. J. Braz. Chem. Soc. 2021 32 5 1017 1029 10.21577/0103‑5053.20210004
    [Google Scholar]
  22. Hameed L. Shaalan N. Synthesis, characterization and biological activity study of some new metal ion complexes with Schiff’s bases derived from isatin with 2-aminobenzohydrazide Chem. Methodology 2022 6 2 137 145 10.22034/chemm.2022.2.6
    [Google Scholar]
  23. Lloyd D.H. Alternatives to conventional antimicrobial drugs: A review of future prospects. Vet. Dermatol. 2012 23 4 299 304 e59-e60 10.1111/j.1365‑3164.2012.01042.x
    [Google Scholar]
  24. Mukhtorov L. Pestsov G. Nikishina M. Ivanova E. Atroshchenko Y. Perelomov L. Fungicidal properties of 2-amino-4-nitrophenol and its derivatives. Bull. Environ. Contam. Toxicol. 2019 102 6 880 886 10.1007/s00128‑019‑02602‑4 30923837
    [Google Scholar]
  25. Muchandi A.A. Jadhav A.S. Patil S.B. Patil S.A. Jadhav N.B. Antioxidant and in vitro antidiabetic activities of methanol extract of Piper cubeba L. Int. Res. J. Pharm. Med. Sci. 2018 1 3 1 4 https://irjpms.com/wpcontent/uploads/2018/03/IRJPMS-PP1638-18.pdf
    [Google Scholar]
  26. Shinde A.H. Patil C.J. Synthesis and characterization of azo Schiff bases and their β-lactam derivatives. Asian J. Chem. 2020 32 6 1520 1524 10.14233/ajchem.2020.22657
    [Google Scholar]
  27. Abdel-Rahman L.H. Abu-Dief A.M. El-Khatib R.M. Abdel-Fatah S.M. Synthesis and characterization of azo Schiff bases and their β-lactam derivatives. Bioorg. Chem. 2016 69 140 152 10.1016/j.bioorg.2016.10.009 27816797
    [Google Scholar]
  28. Anupama B. Padmaja M. Kumari C.G. Synthesis, characterization, biological activity and DNA binding studies of metal complexes with 4-aminoantipyrine Schiff base ligand. J. Chem. 2012 9 1 389 400 10.1155/2012/291850
    [Google Scholar]
  29. Ramesh R. Maheswaran S. Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes. J. Inorg. Biochem. 2003 96 4 457 462 10.1016/S0162‑0134(03)00237‑X 13678811
    [Google Scholar]
  30. Ali S.A. Soliman A.A. Aboaly M.M. Ramadan R.M. Chromium, molybdenum and ruthenium complexes of 2-hydroxyacetophenone Schiff bases. J. Coord. Chem. 2002 55 10 1161 1170 10.1080/0095897021000023509
    [Google Scholar]
  31. Singh K. Kumar Y. Puri P. Sharma C. Aneja K.R. Antimicrobial, spectral and thermal studies of divalent cobalt, nickel, copper and zinc complexes with triazole Schiff bases. Arab. J. Chem. 2017 10 S978 S987 10.1016/j.arabjc.2012.12.038
    [Google Scholar]
  32. Sakhare M.A. Khillare S.A. Lande M.K. Arbad B.R. Synthesis, characterisation and antimicrobial studies on La (III), Ce (III) and Pr (III) complexes with a tetraaza macrocyclic Ligand. Palagia research. Library 2013 4 1 94 99 https://www.primescholars.com/articles/synthesis-characterisation-and-antimicrobial-studies-on-laiii-ceiii-andpriii-complexes-with-a-tetraaza-macrocyclic-ligand.pdf
    [Google Scholar]
  33. Jayaseelan P. Akila E. Usha Rani M. Rajavel R. Synthesis, spectral characterization, electrochemical, anti-microbial, DNA binding and cleavage studies of new binuclear Schiff base metal(II) complexes derived from o-hydroxyacetophenone. J. Saudi Chem. Soc. 2016 20 6 625 634 10.1016/j.jscs.2013.07.001
    [Google Scholar]
  34. Al-Hamdani Salih A. A.; Balkhi, A. M.; Falah, A.; Shaker, S. A. New azo-Schiff base derived with Ni(II), Co(II), Cu(II), Pd(II) and Pt(II) complexes: Preparation, spectroscopic investigation, structural studies and biological activity. J. Chil. Chem. Soc. 2015 60 1 2774 2785 10.4067/S0717‑97072015000100003
    [Google Scholar]
  35. Bharate Y.N. Sakhare K.B. Surwase S.A. Sakhare M.A. Synthesis, characterization and antibacterial studies of Ni(II), Co(II) acetate and VO(II) complexes of Schiff base ligand Heterocyclic Lett. 2023 13 1 45 52 https://www.heteroletters.org/issue131/Paper-5.pdf
    [Google Scholar]
  36. Bharate Y.N. Sakhare K.B. Chavan S.J. Sakhare M.A.P-X.R.D. spectral and antibacterial studies of Mn(II), Cu(II) and Zn(II) acetate complexes of Schiff base ligand Int. J. of Sci. Rev. Sci. Tech. 2022 9 16 116 122 https://ijsrst.com/home/issue/view/article.php?id=IJSRST22291617
    [Google Scholar]
  37. Kalluru S. Dammu L.K. Nara S.K. Nimmagadda V.V.J. Synthesis and characterization of Schiff base, 3-hydroxy-4-(3-hydroxybenzylidene amino)benzoic acid and their Ni(II) and Zn(II) metal complexes. Int. J. Adv. Sci. Res. 2023 14 1 35 39 10.55218/JASR.202314105
    [Google Scholar]
  38. Mahdi R.T. Masoumeh M. Hossein T.N. Farhad S. Hassan T. Introduction of a new ionic liquid based on tropine for the acceleration of the synthesis of several hetero-aromatic compounds and investigation of its physicochemical property and antibacterial activity Chemical Methodologies 2024 8 401 438 10.48309/CHEMM.2024.452735.1789
    [Google Scholar]
  39. Desai A. Vellat M. Yallur B.C. Chinnam S. Lokesh K.N. Santhosh C.R. Ananthnag G.S. Madhu G.M. Fernandes V.T. Copper oxide nanoparticles: Synthesis and potential antibacterial agents J. Appl. Organomet. Chem. 2024 4 3 221 232 10.48309/JAOC.2024.455077.1193
    [Google Scholar]
  40. Sawant R. Wadekar J. Ukirde R. Barkade G. Synthesis, molecular docking and anticancer activity of novel 1,3-thiazolidin-4-ones. Ulum-i Daruyi 2020 27 3 345 352 10.34172/PS.2020.95
    [Google Scholar]
  41. Sawant V.J. Bamane S.R. Shejwal R.V. Patil S.B. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. J. Magn. Magn. Mater. 2016 417 222 229 10.1016/j.jmmm.2016.05.061
    [Google Scholar]
  42. Hemanth K.M. Sunil K.J. Spandana V. Sandeep B.P. Anticancer activity of terpenoid saponin extract of Psidium guajava on MCF-7 cancer cell line using DAPI and MTT assays. Afr. J. Pharm. Pharmacol. 2021 15 12 206 211 10.5897/AJPP2020.5216
    [Google Scholar]
  43. Uddin N. Rashid F. Ali S. Tirmizi S.A. Ahmad I. Zaib S. Zubair M. Diaconescu P.L. Tahir M.N. Iqbal J. Haider A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn. 2020 38 11 3246 3259 10.1080/07391102.2019.1654924 31411114
    [Google Scholar]
/content/journals/aia/10.2174/0122113525343891240925093331
Loading
/content/journals/aia/10.2174/0122113525343891240925093331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test