Skip to content
2000
Volume 23, Issue 3
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Viral infections impact millions of individuals annually and in 2018, the WHO called for global preparedness to address potential high-mortality pathogens, referred to as “Pathogen X,” which can include fungi, viruses, parasites, or prions. The constant evolution of RNA viruses leads to continually changing variants, challenging the effectiveness of vaccines and drugs. In underserved healthcare regions, plant-based phytochemicals offer promise in combating viral diseases due to their ready availability, proven effectiveness, and low toxicity. Amidst the evolving virus variants and recurring fatal outbreaks, especially in resource-constrained regions, phytochemicals hold promise as potential anti-infective agents. This review delves into plant-based antivirals, aiming to update plant-derived antiviral compounds' status against existing and emerging viruses from 2019 to 2023. The study aimed to identify active components from medicinal plants with IC and EC values against human-infecting viruses. It utilized and methods to predict phytochemical mechanisms and enhance bioavailability. Among the phytochemicals studied as antivirals, Emodin, Quercetin, Myricetin, Resveratrol, and Silymarin demonstrated efficacy against multiple viruses. Notably, certain plant compounds were effective against multiple viruses and could serve as potential antiviral treatments. Overall, the review illustrates that harnessing plant-derived compounds shows promise in combating current and evolving infectious threats.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525312781240819105116
2024-09-09
2025-06-22
Loading full text...

Full text loading...

References

  1. NIAID Pandemic preparedness plan targets ‘Prototype’ and priority.Available from: https://www.nih.gov/news-events/news-releases/niaid-pandemic-preparedness-plan-targets-prototype-priority-pathogens
  2. SimpsonS. KaufmannM.C. GlozmanV. ChakrabartiA. DiseaseX. DiseaseX. Accelerating the development of medical countermeasures for the next pandemic.Lancet Infect. Dis.2020205e108e11510.1016/S1473‑3099(20)30123‑7 32197097
    [Google Scholar]
  3. WeissR.A. SankaranN. Emergence of epidemic diseases: Zoonoses and other origins.Fac. Rev.202211210.12703/r/11‑2 35156099
    [Google Scholar]
  4. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  5. AbdallaM. El-ArabeyA.A. JiangX. What are the challenges faced by COVID-19 vaccines?Expert Rev. Vaccines20222115710.1080/14760584.2022.2008245 34798801
    [Google Scholar]
  6. MengJ. SunH. ZhuR. A novel design of COVID-19 vaccine with high effectiveness and popularization.ICBioMed202310.1117/12.2669364
    [Google Scholar]
  7. MicalR. Martin-VelezJ. BlackstoneT. DerouinA. Vaccine hesitancy in rural pediatric primary care.J. Pediatr. Health Care2021351162210.1016/j.pedhc.2020.07.003 33010996
    [Google Scholar]
  8. MipatriniD. MontaldoC. BartoliniB. RezzaG. IavicoliS. IppolitoG. ZumlaA. PetersenE. ‘Disease X’—time to act now and prepare for the next pandemic threat.Eur. J. Public Health202232684184210.1093/eurpub/ckac151 36250806
    [Google Scholar]
  9. AlthoffK.N. StewartC.N. HumesE. ZhangJ. GeraceL. BoydC.M. WongC. JusticeA.C. GeboK.A. ThorneJ.E. RubtsovaA.A. HorbergM.A. SilverbergM.J. LengS.X. RebeiroP.F. MooreR.D. BuchaczK. KasaieP. The shifting age distribution of people with HIV using antiretroviral therapy in the United States.AIDS202236345947110.1097/QAD.0000000000003128 34750289
    [Google Scholar]
  10. MorenoS. PernoC.F. MallonP.W. BehrensG. CorbeauP. RoutyJ-P. DarcisG. Two‐drug vs. three‐drug combinations for HIV‐1: Do we have enough data to make the switch?HIV Med.201920S421210.1111/hiv.12716
    [Google Scholar]
  11. AatiH. El-GamalA. ShaheenH. KayserO. Traditional use of ethnomedicinal native plants in the Kingdom of Saudi Arabia.J. Ethnobiol. Ethnomed.2019151210.1186/s13002‑018‑0263‑2 30626417
    [Google Scholar]
  12. ChoudharyN. SinghV. Multi-scale mechanism of antiviral drug-alike phytoligands from Ayurveda in managing COVID-19 and associated metabolic comorbidities: Insights from network pharmacology.Mol. Divers.20222652575259410.1007/s11030‑021‑10352‑x 34993740
    [Google Scholar]
  13. GhildiyalR. PrakashV. ChaudharyV.K. GuptaV. GabraniR. Phytochemicals as Antiviral Agents: Recent Updates;Springer eBooks202027929510.1007/978‑981‑15‑1761‑7_12
    [Google Scholar]
  14. NawrotR. WarowickaA. MusidlakO. WęglewskaM. BałdyszS. Goździcka-JózefiakA. Antiviral compounds isolated from plants.Postepy Biochem.202166435637210.18388/pb.2020_361 33470074
    [Google Scholar]
  15. Ben-ShabatS. YarmolinskyL. PoratD. DahanA. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies.Drug Deliv. Transl. Res.202010235436710.1007/s13346‑019‑00691‑6 31788762
    [Google Scholar]
  16. Musarra-PizzoM. PennisiR. Ben-AmorI. MandalariG. SciortinoM.T. Antiviral activity exerted by natural products against human viruses.Viruses202113582810.3390/v13050828 34064347
    [Google Scholar]
  17. WaniA.R. YadavK. KhursheedA. RatherM.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses.Microb. Pathog.202115210462010.1016/j.micpath.2020.104620 33212200
    [Google Scholar]
  18. BhattacharjeeA. PurohitP. RoyP.K. Neuroprotective drug discovery from phytochemicals and metabolites for CNS viral infection: A systems biology approach with clinical and imaging validation.Front. Neurosci.20221691786710.3389/fnins.2022.917867 35958991
    [Google Scholar]
  19. ChandraK. DasA.K. BandayS. RanaN.A. AroraM. JainS. IslamF. AgarwalS. KashyapV. JoshiS. MueedA. DudejaM. Efficacy of polyherbal formulations for prevention of COVID ‐19 infection in high‐risk subjects: A randomized open‐label controlled clinical trial.Phytother. Res.20223693632364310.1002/ptr.7531 35791089
    [Google Scholar]
  20. AhmedS. UllahN. ParveenS. JavedI. JalilN.A.C. MurteyM.D. SheikhI.S. KhanS. OjhaS.C. ChenK. Effect of silymarin as an adjunct therapy in combination with sofosbuvir and ribavirin in hepatitis C patients: A miniature clinical trial.Oxid. Med. Cell. Longev.2022202211410.1155/2022/9199190 35154575
    [Google Scholar]
  21. WangT. WangX. ZhuoY. SiC. YangL. MengL. ZhuB. Antiviral activity of a polysaccharide from Radix Isatidis (Isatis indigotica Fortune) against hepatitis B virus (HBV) in vitro via activation of JAK/STAT signal pathway.J. Ethnopharmacol.202025711278210.1016/j.jep.2020.112782 32217096
    [Google Scholar]
  22. AbookleeshF.L. Al-AnziB.S. UllahA. Potential antiviral action of alkaloids.Molecules202227390310.3390/molecules27030903 35164173
    [Google Scholar]
  23. BadshahS.L. FaisalS. MuhammadA. PoulsonB.G. EmwasA.H. JaremkoM. Antiviral activities of flavonoids.Biomed. Pharmacother.202114011159610.1016/j.biopha.2021.111596 34126315
    [Google Scholar]
  24. MursaliyevaV.K. SarsenbekB.T. DzhakibaevaG.T. MukhanovT.M. MammadovR. Total content of Saponins, Phenols and Flavonoids and antioxidant and antimicrobial activity of in vitro culture of Allochrusa gypsophiloides (regel) schischk compared to wild plants.Plants20231220352110.3390/plants12203521 37895985
    [Google Scholar]
  25. ChenY.N. KaoW.M.W. LeeS.C. WuJ.M. HoY.S. HsiehM.K. Antiviral properties of Pennisetum purpureum extract against coronaviruses and enteroviruses.Pathogens20221111137110.3390/pathogens11111371 36422622
    [Google Scholar]
  26. DzoboK. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery.Comprehensive Pharmacol202240842210.1016/B978‑0‑12‑820472‑6.00041‑4
    [Google Scholar]
  27. ZhangL.X. DongJ. WeiH. ShiS.H. LuA.P. DengG.M. CaoD.S. TCMSID: A simplified integrated database for drug discovery from traditional chinese medicine.J. Cheminform.20221418910.1186/s13321‑022‑00670‑z 36587232
    [Google Scholar]
  28. SantaK. WatanabeK. KumazawaY. NagaokaI. Phytochemicals and vitamin D for a healthy life and prevention of diseases.Int. J. Mol. Sci.202324151216710.3390/ijms241512167 37569540
    [Google Scholar]
  29. Bittner FialováS. RendekováK. MučajiP. NagyM. SlobodníkováL. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering european legislation and folk medicine—a review.Int. J. Mol. Sci.202122191074610.3390/ijms221910746 34639087
    [Google Scholar]
  30. BehlT. RocchettiG. ChadhaS. ZenginG. BungauS. KumarA. MehtaV. UddinM.S. KhullarG. SetiaD. AroraS. SinanK.I. AkG. PutnikP. GalloM. MontesanoD. Phytochemicals from plant foods as potential source of antiviral agents: An overview.Pharmaceuticals202114438110.3390/ph14040381 33921724
    [Google Scholar]
  31. Al-kuraishyH.M. Al-FakhranyO.M. ElekhnawyE. Al-GareebA.I. AlorabiM. De WaardM. AlbogamiS.M. BatihaG.E.S. Traditional herbs against COVID-19: Back to old weapons to combat the new pandemic.Eur. J. Med. Res.202227118610.1186/s40001‑022‑00818‑5 36154838
    [Google Scholar]
  32. JantanI. ArshadL. SeptamaA.W. HaqueM.A. Mohamed-HusseinZ.A. GovenderN.T. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review.Phytother. Res.20233731036105610.1002/ptr.7671 36343627
    [Google Scholar]
  33. Weekly Epidemiological Update on COVID-19,2023Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---3-august-2023
  34. SippyR. PradoE.O. Pizarro FajardoF. HidalgoI. AguilarG.V. BonvilleC.A. AponteC.C. GómezM.S. AponteJ.L.C. CordovaM.B. PoloG.R. SuryadevaraM. DomachowskeJ.B. Medically attended outpatient coronavirus infections in ecuadorean children during the 20 months preceding countrywide lockdown related to the SARS-CoV-2 pandemic of 2020.Pediatr. Infect. Dis. J.20203910e291e29610.1097/INF.0000000000002840 32773657
    [Google Scholar]
  35. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  36. LeiZ.N. WuZ.X. DongS. YangD.H. ZhangL. KeZ. ZouC. ChenZ.S. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19.Pharmacol. Ther.202021610767210.1016/j.pharmthera.2020.107672 32910933
    [Google Scholar]
  37. GuerraY. CeliD. CuevaP. Perez-CastilloY. GiampieriF. Alvarez-SuarezJ.M. TejeraE. Critical review of plant-derived compounds as possible inhibitors of SARS-CoV-2 proteases: A comparison with experimentally validated molecules.ACS Omega2022749445424455510.1021/acsomega.2c05766 36530229
    [Google Scholar]
  38. PaganoE. The pharmacological potential of plant compounds and preparations in COVID-19: A PTR virtual issue.Phytother. Res.2021Apr 35416831685
    [Google Scholar]
  39. RahmanM.M. IslamM.R. ShohagS. HossainM.E. RahamanM.S. IslamF. AhmedM. MitraS. KhandakerM.U. IdrisA.M. ChidambaramK. EmranT.B. CavaluS. The multifunctional role of herbal products in the management of diabetes and obesity: A comprehensive review.Molecules2022275171310.3390/molecules27051713 35268815
    [Google Scholar]
  40. HuZ. LinJ. ChenJ. CaiT. XiaL. LiuY. SongX. HeZ. Overview of viral pneumonia associated with influenza virus, respiratory syncytial virus, and coronavirus, and therapeutics based on natural products of medicinal plants.Front. Pharmacol.20211263083410.3389/fphar.2021.630834 34234668
    [Google Scholar]
  41. XiuS. DickA. JuH. MirzaieS. AbdiF. CocklinS. ZhanP. LiuX. Inhibitors of SARS-CoV-2 entry: Current and future opportunities.J. Med. Chem.20206321122561227410.1021/acs.jmedchem.0c00502 32539378
    [Google Scholar]
  42. MorseJ.S. LalondeT. XuS. LiuW.R. Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV.ChemBioChem202021573073810.1002/cbic.202000047 32022370
    [Google Scholar]
  43. ZhouP. YangX.L. WangX.G. HuB. ZhangL. ZhangW. SiH.R. ZhuY. LiB. HuangC.L. ChenH.D. ChenJ. LuoY. GuoH. JiangR.D. LiuM.Q. ChenY. ShenX.R. WangX. ZhengX.S. ZhaoK. ChenQ.J. DengF. LiuL.L. YanB. ZhanF.X. WangY.Y. XiaoG.F. ShiZ.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑7 32015507
    [Google Scholar]
  44. ShahhamzeheiN. AbdelfatahS. EfferthT. In silico and in vitro identification of pan-coronaviral main protease inhibitors from a large natural product library.Pharmaceuticals202215330810.3390/ph15030308 35337106
    [Google Scholar]
  45. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach.Life Sci.202025511783110.1016/j.lfs.2020.117831 32450166
    [Google Scholar]
  46. NarkhedeR.R. PiseA.V. ChekeR.S. ShindeS.D. Recognition of natural products as potential inhibitors of covid-19 main protease (Mpro): In-silico evidences.Nat. Prod. Bioprospect.202010529730610.1007/s13659‑020‑00253‑1 32557405
    [Google Scholar]
  47. Tahir ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants.J. Pharm. Anal.202010431331910.1016/j.jpha.2020.03.009 32296570
    [Google Scholar]
  48. VermaD. MitraD. KambojA. MahakurB. ChaudharyP. ShrivastavR. JanmedaP. PantK. MohapatraP.K.D. Canthin-6-one 9-o-beta-glucopyranoside: An inhibitor of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro.Research Square202010.21203/rs.3.rs‑81197/v1
    [Google Scholar]
  49. ShawkyE. NadaA.A. IbrahimR.S. Potential role of medicinal plants and their constituents in the mitigation of SARS-CoV-2: Identifying related therapeutic targets using network pharmacology and molecular docking analyses.RSC Advances20201047279612798310.1039/D0RA05126H 35519104
    [Google Scholar]
  50. LiuJ. YuanS. YaoY. WangJ. ScalabrinoG. JiangS. SheridanH. Network pharmacology and molecular docking elucidate the underlying pharmacological mechanisms of the herb Houttuynia cordata in treating pneumonia caused by SARS-CoV-2.Viruses2022147158810.3390/v14071588 35891565
    [Google Scholar]
  51. YehY.C. DoanL.H. HuangZ.Y. ChuL.W. ShiT.H. LeeY.R. WuC.T. LinC.H. ChiangS.T. LiuH.K. ChuangT.H. PingY.H. LiuH.S. HuangC.Y.F. Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) suppress SARS-CoV-2 entry and COVID-19 related cytokine storm in vitro.Front. Pharmacol.20221276555310.3389/fphar.2021.765553 35401158
    [Google Scholar]
  52. SuH. YaoS. ZhaoW. LiM. LiuJ. ShangW. XieH. KeC. HuH. GaoM. YuK. LiuH. ShenJ. TangW. ZhangL. XiaoG. NiL. WangD. ZuoJ. JiangH. BaiF. WuY. YeY. XuY. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients.Acta Pharmacol. Sin.20204191167117710.1038/s41401‑020‑0483‑6 32737471
    [Google Scholar]
  53. LungJ. LinY.S. YangY.H. ChouY.L. ShuL.H. ChengY.C. LiuH.T. WuC.Y. The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase.J. Med. Virol.202092669369710.1002/jmv.25761 32167173
    [Google Scholar]
  54. ShanmugarajanD.P.P. KumarB.R.P. SureshB. Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: Computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets.RSC Advances20201052313853139910.1039/D0RA03167D 35520671
    [Google Scholar]
  55. JoshiT. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking.Eur. Rev. Med. Pharmacol. Sci.202024845294536
    [Google Scholar]
  56. BiedenkopfN. SchlerethJ. GrünwellerA. BeckerS. HartmannR.K. RNA binding of ebola virus VP30 is essential for activating viral transcription.J. Virol.201690167481749610.1128/JVI.00271‑16 27279615
    [Google Scholar]
  57. ElgnerF. SabinoC. BasicM. PloenD. GrünwellerA. HildtE. Inhibition of zika virus replication by silvestrol.Viruses201810414910.3390/v10040149 29584632
    [Google Scholar]
  58. MüllerC. SchulteF.W. Lange-GrünwellerK. ObermannW. MadhugiriR. PleschkaS. ZiebuhrJ. HartmannR.K. GrünwellerA. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses.Antiviral Res.201815012312910.1016/j.antiviral.2017.12.010 29258862
    [Google Scholar]
  59. ZhuQ. XuY. WangT. XieF. Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives.Front. Immunol.202213105343710.3389/fimmu.2022.1053437 36505489
    [Google Scholar]
  60. PrompetcharaE. KetloyC. PalagaT. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic.Asian Pac. J. Allergy Immunol.20203811910.12932/AP‑200220‑0772 32105090
    [Google Scholar]
  61. SrivastavaR.A.K. MistryS. SharmaS. A novel anti-inflammatory natural product from Sphaeranthus indicus inhibits expression of VCAM1 and ICAM1, and slows atherosclerosis progression independent of lipid changes.Nutr. Metab. 20151212010.1186/s12986‑015‑0018‑1 26064179
    [Google Scholar]
  62. KhannaK. KohliS.K. KaurR. BhardwajA. BhardwajV. OhriP. SharmaA. AhmadA. BhardwajR. AhmadP. Herbal immune-boosters: Substantial warriors of pandemic COVID-19 battle.Phytomedicine20218515336110.1016/j.phymed.2020.153361 33485605
    [Google Scholar]
  63. NourazarianS.M. NourazarianA. MajidiniaM. RoshaniaslE. Effect of root extracts of medicinal herb glycyrrhiza glabra on HSP90 gene expression and apoptosis in the HT-29 colon cancer cell line.Asian Pac. J. Cancer Prev.201616188563856610.7314/APJCP.2015.16.18.8563 26745117
    [Google Scholar]
  64. HussainF. JahanN. RahmanK. SultanaB. JamilS. Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their angiotensin-converting enzyme (ACE) inhibition potential.Oxid. Med. Cell. Longev.2018201811110.1155/2018/4643736 30581531
    [Google Scholar]
  65. KhanM.Y. KumarV. Mechanism & inhibition kinetics of bioassay-guided fractions of Indian medicinal plants and foods as ACE inhibitors.J. Tradit. Complement. Med.201991738410.1016/j.jtcme.2018.02.00130671369
    [Google Scholar]
  66. PolanskyH. LoriG. Coronavirus disease 2019 (COVID-19): First indication of efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 infection.Int. J. Antimicrob. Agents202055610597110.1016/j.ijantimicag.2020.105971 32283177
    [Google Scholar]
  67. HeidaryF. VarnaseriM. GharebaghiR. The potential use of persian herbal medicines against COVID-19 through angiotensin-converting enzyme 2.Arch. Clin. Infect. Dis.20201510.5812/archcid.102838
    [Google Scholar]
  68. Srilatha Goothy, ; Anita Choudhary, ; Hirok Chakraborty, Ayurveda’s holistic lifestyle approach for the management of coronavirus disease (COVID-19): Possible role of tulsi.Int. J. Pharm. Sci. Res.202011SPL1161810.26452/ijrps.v11iSPL1.1976
    [Google Scholar]
  69. ZhangJ. LiuY. LeiW. ShenJ. LuJ. TaoT. CaoX. YangZ. HuangJ. ShiC. Oral Liushen pill for patients with COVID‐19: A prospective randomized controlled trial.Pulm. Circ.2023131e1218710.1002/pul2.1218736733313
    [Google Scholar]
  70. SarfrazI. RasulA. HussainG. AdemS. AliM. Natural immune boosters as first-line armours to combat viral infection-COVID19: Myth or science.Preprints202010.20944/preprints202003.0427.v1
    [Google Scholar]
  71. TariqS. MalikA. LandryK.B. MalikM. AjnumH. LatiefN. MalikK. IjazB. In silico screening of compounds derived from tectona grandis leaves against COVID-19 NSP12 and NSP15 through molecular docking approach.Biol. Clin. Sci. Res. J.20232023128510.54112/bcsrj.v2023i1.285
    [Google Scholar]
  72. MartineauA.R. JolliffeD.A. HooperR.L. GreenbergL. AloiaJ.F. BergmanP. Dubnov-RazG. EspositoS. GanmaaD. GindeA.A. GoodallE.C. GrantC.C. GriffithsC.J. JanssensW. LaaksiI. Manaseki-HollandS. MaugerD. MurdochD.R. NealeR. ReesJ.R. SimpsonS.Jr StelmachI. KumarG.T. UrashimaM. CamargoC.A. Jr Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data.BMJ2017356i658310.1136/bmj.i6583 28202713
    [Google Scholar]
  73. PacesJ. StrizovaZ. SmrzD. CernyJ. COVID-19 and the immune system.Physiol. Res.202069337938810.33549/physiolres.934492 32469225
    [Google Scholar]
  74. GunvilleC. MouraniP. GindeA. The role of vitamin D in prevention and treatment of infection.Inflamm. Allergy Drug Targets201312423924510.2174/18715281113129990046 23782205
    [Google Scholar]
  75. MarutaH. HeH. PAK1-blockers: Potential therapeutics against COVID-19.Med. Drug Discov.2020610003910.1016/j.medidd.2020.100039 32313880
    [Google Scholar]
  76. MarutaH. Herbal therapeutics that block the oncogenic kinase PAK1: A practical approach towards PAK1-dependent diseases and longevity.Phytother. Res.201428565667210.1002/ptr.5054 23943274
    [Google Scholar]
  77. BhuiyanF.R. HowladerS. RaihanT. HasanM. Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic.Front. Med.2020744410.3389/fmed.2020.00444 32850918
    [Google Scholar]
  78. DwarkaD. AgoniC. MellemJ.J. SolimanM.E. BaijnathH. Identification of potential SARS-CoV-2 inhibitors from South African medicinal plant extracts using molecular modelling approaches.S. Afr. J. Bot.202013327328410.1016/j.sajb.2020.07.035 32839635
    [Google Scholar]
  79. AzimK.F. AhmedS.R. BanikA. KhanM.M.R. DebA. SomanaS.R. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach.IMU20202010036710.1016/j.imu.2020.100367 32537482
    [Google Scholar]
  80. NieC. TrimpertJ. MoonS. HaagR. GilmoreK. KauferB. SeebergerP. In vitro efficacy of Artemisia extracts against SARS-CoV-2.J. Virol.202110.3390/molecules27123828 35744958
    [Google Scholar]
  81. KhanT. KhanM.A. MashwaniZ.R. UllahN. NadhmanA. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites.Biocatal. Agric. Biotechnol.20213110189010.1016/j.bcab.2020.101890 33520034
    [Google Scholar]
  82. JinY.H. MinJ.S. JeonS. LeeJ. KimS. ParkT. ParkD. JangM.S. ParkC.M. SongJ.H. KimH.R. KwonS. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections.Phytomedicine20218615344010.1016/j.phymed.2020.153440 33376043
    [Google Scholar]
  83. DeyD. HossainR. BiswasP. PaulP. IslamMd. Amentoflavone derivatives significantly act towards the main protease (3CLPRO/MPRO) of SARS-CoV-2: In silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology.Mol. Divers.20222785787110.1007/s11030‑022‑10459‑9
    [Google Scholar]
  84. IacovelliF. CostanzaG. RomeoA. CosioT. LannaC. BagnuloA. Di MaioU. SbardellaA. GazianoR. GrelliS. SquillaciE. MianiA. PiscitelliP. BianchiL. FalconiM. CampioneE. Interaction of Pelargonium sidoides compounds with lactoferrin and SARS-CoV-2: Insights from molecular simulations.Int. J. Environ. Res. Public Health2022199525410.3390/ijerph19095254 35564648
    [Google Scholar]
  85. OhishiT. HishikiT. BaigM.S. RajpootS. SaqibU. TakasakiT. HaraY. Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2.PLoS One2022177e027111210.1371/journal.pone.0271112 35830431
    [Google Scholar]
  86. RattisB.A.C. RamosS.G. CelesM.R.N. Curcumin as a potential treatment for covid-19.Front. Pharmacol.20211267528710.3389/fphar.2021.675287 34025433
    [Google Scholar]
  87. WangX. LiY. O’BrienK.L. MadhiS.A. WiddowsonM.A. ByassP. OmerS.B. AbbasQ. AliA. AmuA. Azziz-BaumgartnerE. BassatQ. Abdullah BrooksW. ChavesS.S. ChungA. CohenC. EchavarriaM. FasceR.A. GentileA. GordonA. GroomeM. HeikkinenT. HirveS. JaraJ.H. KatzM.A. Khuri-BulosN. KrishnanA. de LeonO. LuceroM.G. McCrackenJ.P. Mira-IglesiasA. MoïsiJ.C. MunywokiP.K. OurohiréM. PolackF.P. RahiM. RasmussenZ.A. RathB.A. SahaS.K. SimõesE.A.F. SotomayorV. ThamthitiwatS. TreurnichtF.K. WamukoyaM. YoshidaL.M. ZarH.J. CampbellH. NairH. NairH. CampbellH. WangX. LiY. ChungA. RahiM. AbbasQ. AliA. BhuttaZ.A. SaeedB. SoofiS.B. YousafzaiM.T. ZaidiA.K. AmuA. AwiniE. Azziz-BaumgartnerE. BaggettH.C. ChavesS.S. ShangN. SchragS.J. WiddowsonM-A. TempiaS. BassatQ. LanaspaM. AcácioS. BrooksW.A. DriscollA. KnollM.D. O’BrienK.L. ProsperiC. BaquiA.H. MullanyL. ByassP. CohenC. von GottbergA. HellfersceeO. TreurnichtF.K. WalazaS. GoswamiD. RahmanM. ConnorN.E. El ArifeenS. EchavarriaM. MarconeD.N. ReyesN. GutierrezA. RodriguezI. LopezO. OrtizD. GonzalezN. GentileA. del Valle JuarezM. GordonA. CutlandC. GroomeM. MadhiS.A. NunesM.C. NzenzeS. HeikkinenT. HirveS. JuvekarS. HalasaN. JaraJ.H. BernartC. KatzM.A. GoferI. AvniY.S. Khuri-BulosN. FaoriS. ShehabiA. KrishnanA. KumarR. AmarchandR. ContrerasC.L. de LeonO. LopezM.R. McCrackenJ.P. MaldonadoH. SamayoaA.P. GomezA.B. LuceroM.G. NillosL.T. LupisanS.P. NohynekH. Mira-IglesiasA. Puig-BarberàJ. Díez-DomingoJ. GessnerB.D. Njanpop-LafourcadeB-M. MoïsiJ.C. TallH. MunywokiP.K. NgamaM. NokesD.J. OmerS.B. ClarkD.R. OurohiréM. AliS. PascalZ. CheikB.H. CaballeroM.T. LibsterR. PolackF.P. RasmussenZ.A. ThomasE.D. BakerJ.M. RathB.A. ObermeierP.E. HassanuzzamanM. IslamM. IslamM.S. SahaS.K. PanigrahiP. BoseA. IsaacR. MurdochD. NandaP. QaziS.A. HessongD. SimőesE.A.F. SotomayorV. ThamthitiwatS. ChittaganpitchM. DawoodH. KyobutungiC. WamukoyaM. ZirabaA.K. YoshidaL-M. YoshiharaK. DandD-A. LeM-N. NicolM.P. ZarH.J. BroorS. ChadhaM. MadridL. GreshL. BalmasedaA. KuanG. WairagkarN. TapiaM.D. KnoblerS.L. BarahonaA. FergusonE. SchweigerB. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: A systematic review and modelling study.Lancet Glob. Health202084e497e51010.1016/S2214‑109X(19)30545‑5 32087815
    [Google Scholar]
  88. KalyvianakiK. MalamosP. MastrodimouN. Manoura-ZonouI. VamvoukakiR. NotasG. MalliarakiN. MoustouE. TzardiM. PirintsosS. LionisC. SourvinosG. CastanasE. KampaM. Toxicity evaluation of an essential oil mixture from the Cretan herbs thyme, Greek sage and Cretan dittany.NPJ Sci. Food2020412010.1038/s41538‑020‑00080‑1 33298942
    [Google Scholar]
  89. NishiA. KaifuchiN. ShimoboriC. OhbuchiK. IizukaS. SugiyamaA. OguraK. YamamotoM. KurokiH. NabeshimaS. YachieA. MatsuokaY. KitanoH. Effects of maoto (ma-huang-tang) on host lipid mediator and transcriptome signature in influenza virus infection.Sci. Rep.2021111423210.1038/s41598‑021‑82707‑1 33608574
    [Google Scholar]
  90. LeeB.W. HaT.K.Q. ChoH.M. AnJ.P. KimS.K. KimC.S. KimE. OhW.K. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2.J. Ethnopharmacol.202025911294510.1016/j.jep.2020.112945 32389854
    [Google Scholar]
  91. Borges-ArgáezR. Chan-BalanR. Cetina-MontejoL. Ayora-TalaveraG. Sansores-PerazaP. Gómez-CarballoJ. Cáceres-FarfánM. In vitro evaluation of anthraquinones from Aloe vera (Aloe barbadensis Miller) roots and several derivatives against strains of influenza virus.Ind. Crops Prod.201913246847510.1016/j.indcrop.2019.02.056 32288269
    [Google Scholar]
  92. NieL. WuY. DaiZ. MaS. Antiviral activity of Isatidis Radix derived glucosinolate isomers and their breakdown products against influenza A in vitro/ovo and mechanism of action.J. Ethnopharmacol.202025111255010.1016/j.jep.2020.112550 31918015
    [Google Scholar]
  93. Javadi-FarsaniF. MoradiM-T. TabarraeiA. KarimiA. NikooM-H.R. An in vitro antiviral evaluation of punicalagin toward influenza a virus.Research Square202210.21203/rs.3.rs‑1645284/v1
    [Google Scholar]
  94. HegazyA. MostafaI. ElshaierY.A.M.M. MahmoudS.H. Abo ShamaN.M. ShehataM. YahyaG. NasrN.F. El-HalawanyA.M. AliM.A. AliM.A. MraheilM.A. El-ShazlyA.M. MostafaA. Robust antiviral activity of santonica flower extract (Artemisia cina) against Avian and human influenza a viruses: in vitro and chemoinformatic studies.ACS Omega2022745412124122310.1021/acsomega.2c04867 36406485
    [Google Scholar]
  95. ShokryS. HegazyA. AbbasA.M. MostafaI. EissaI.H. MetwalyA.M. YahyaG. El-ShazlyA.M. AboshanabK.M. MostafaA. Phytoestrogen β-sitosterol exhibits potent in vitro antiviral activity against influenza a viruses.Vaccines202311222810.3390/vaccines11020228 36851106
    [Google Scholar]
  96. Abou BakerD.H. AmarowiczR. KandeilA. AliM.A. IbrahimE.A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus.J. Agric. Res.2021410013510.1016/j.jafr.2021.100135 36570026
    [Google Scholar]
  97. MotlhatlegoK.E. MehrbodP. FotouhiF. AbdallaM.A. EloffJ.N. McGawL.J. Anti-InfluenzaA. Anti-influenza A virus activity of two Newtonia species and the isolated compound myricetin-3-o-rhamnoside.BMC Complement. Med. Ther.20212119210.1186/s12906‑021‑03250‑0 33726731
    [Google Scholar]
  98. JamesC. HarfoucheM. WeltonN.J. TurnerK.M.E. Abu-RaddadL.J. GottliebS.L. LookerK.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016.Bull. World Health Organ.202098531532910.2471/BLT.19.237149 32514197
    [Google Scholar]
  99. HansenA.B.E. VestergaardH. DessauR.B. BodilsenJ. AndersenN.S. OmlandL.H. ChristiansenC.B. Ellermann-EriksenS. NielsenL. BenfieldT. SørensenH.T. AndersenC.Ø. LebechA.M. ObelN. Long-term survival, morbidity, social functioning and risk of disability in patients with a herpes simplex virus type 1 or type 2 central nervous system infection, Denmark, 2000–2016.Clin. Epidemiol.20201274575510.2147/CLEP.S256838 32765109
    [Google Scholar]
  100. GuoH. WanX. NiuF. SunJ. ShiC. YeJ.M. ZhouC. Evaluation of antiviral effect and toxicity of total flavonoids extracted from Robinia pseudoacacia cv. idaho.Biomed. Pharmacother.201911810933510.1016/j.biopha.2019.109335 31452513
    [Google Scholar]
  101. ChenN. WuZ. LiW. LiY. LuoD. ChenL. ZhangX. ZhangY. WangG. LiY. Acylphloroglucinols-based meroterpenoid enantiomers with antiviral activities from Dryopteris crassirhizoma.Ind. Crops Prod.202015011241510.1016/j.indcrop.2020.112415
    [Google Scholar]
  102. LeilaA. LamjedB. RoudainaB. NajlaT. TaamalliA. JellouliS. MokhtarZ. Isolation of an antiviral compound from Tunisian olive twig cultivars.Microb. Pathog.201912824524910.1016/j.micpath.2019.01.012 30633983
    [Google Scholar]
  103. ShaoQ. LiuT. WangW. LiuT. JinX. ChenZ. Promising role of emodin as therapeutics to against viral infections.Front. Pharmacol.20221390262610.3389/fphar.2022.902626 35600857
    [Google Scholar]
  104. FahmyN.M. Al-SayedE. MoghannemS. AzamF. El-ShazlyM. SingabA.N. Breaking down the barriers to a natural antiviral agent: Antiviral activity and molecular docking of erythrina speciosa extract, fractions, and the major compound.Chem. Biodivers.2020172e190051110.1002/cbdv.201900511 31800173
    [Google Scholar]
  105. LuoZ. KuangX.P. ZhouQ.Q. YanC.Y. LiW. GongH.B. KuriharaH. LiW.X. LiY.F. HeR.R. Inhibitory effects of baicalein against herpes simplex virus type 1.Acta Pharm. Sin. B202010122323233810.1016/j.apsb.2020.06.008 33354504
    [Google Scholar]
  106. El GendyA.E.N.G. EssaA.F. El-RashedyA.A. ElgamalA.M. KhalafD.D. HassanE.M. Abd-ElGawadA.M. ElgorbanA.M. ZaghloulN.S. AlameryS.F. ElshamyA.I. Antiviral potentialities of chemical characterized essential oils of acacia nilotica bark and fruits against hepatitis A and herpes simplex viruses: In vitro, in silico, and molecular dynamics studies.Plants20221121288910.3390/plants11212889 36365342
    [Google Scholar]
  107. SaiduM.B. KúszN. TsaiY.C. VágvölgyiM. BerkeczR. KókaiD. BuriánK. HohmannJ. RédeiD. Triterpenes and phenolic compounds from Euphorbia deightonii with antiviral activity against herpes simplex virus type-2.Plants202211676410.3390/plants11060764 35336645
    [Google Scholar]
  108. GopalS.K. RangasamyM. BalasubramaniamN. In-silico docking analysis of phytochemicals from mimosa pudica l. Leaves as an antiviral agent against herpes simplex virus type I.Int. J. Pharm. Sci. Res.201810312411245
    [Google Scholar]
  109. HibberdC. HibberdO. BeakeM. Immune thrombocytopenic purpura secondary to varicella zoster virus.BMJ Case Rep.2023165e25465910.1136/bcr‑2023‑254659 37258046
    [Google Scholar]
  110. AngamuthuD. PurushothamanI. KothandanS. SwaminathanR. Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to human herpes virus-3.Eur. J. Integr. Med.2019289810810.1016/j.eujim.2019.04.008
    [Google Scholar]
  111. BishoyiA. AlamM.A. HasanM.R. KhanujaM. PillotonR. NarangJ. Cyclic voltammetric-paper-based genosensor for detection of the target DNA of Zika virus.Micromachines20221312203710.3390/mi13122037 36557336
    [Google Scholar]
  112. PaixaoE.S. CardimL.L. CostaM.C.N. BrickleyE.B. de Carvalho-SauerR.C.O. CarmoE.H. AndradeR.F.S. RodriguesM.S. VeigaR.V. CostaL.C. MooreC.A. FrançaG.V.A. SmeethL. RodriguesL.C. BarretoM.L. TeixeiraM.G. Mortality from congenital zika syndrome — Nationwide cohort study in Brazil.N. Engl. J. Med.2022386875776710.1056/NEJMoa2101195 35196428
    [Google Scholar]
  113. MohdA. ZainalN. TanK.K. AbuBakarS. Resveratrol affects Zika virus replication in vitro.Sci. Rep.2019911433610.1038/s41598‑019‑50674‑3 31586088
    [Google Scholar]
  114. OliveiraM.B.S. ValentimI.B. RochaT.S. SantosJ.C. PiresK.S.N. TanabeE.L.L. BorbelyK.S.C. BorbelyA.U. GoulartM.O.F. Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant.Ind. Crops Prod.202015211250310.1016/j.indcrop.2020.112503 32346222
    [Google Scholar]
  115. ShuklaD. AlanaziA.M. PandaS.P. DwivediV.D. KamalM.A. Unveiling the antiviral potential of Plant compounds from the Meliaceae family against the Zika virus through QSAR modeling and MD simulation analysis.J. Biomol. Struct. Dyn.202311610.1080/07391102.2023.2259498 37728536
    [Google Scholar]
  116. KumareeK.K. AnthikapalliN.V.A. PrasansuklabA. In silico screening for potential inhibitors from the phytocompounds of Carica papaya against Zika virus NS5 protein.F1000 Res.20231265510.12688/f1000research.134956.1
    [Google Scholar]
  117. YuW. ZhangB. HongX. CaiH. WangY. LuJ. HuX. CaoB. Identification of desoxyrhapontigenin as a novel antiviral agent against congenital Zika virus infection.Antiviral Res.202321110554210.1016/j.antiviral.2023.105542 36646387
    [Google Scholar]
  118. LeeW.P. LanK.L. LiaoS.X. HuangY.H. HouM.C. LanK.H. Antiviral effect of saikosaponin B2 in combination with daclatasvir on NS5A resistance-associated substitutions of hepatitis C virus.J. Chin. Med. Assoc.201982536837410.1097/JCMA.0000000000000095 30920421
    [Google Scholar]
  119. da SilvaT.F. FerrazA.C. AlmeidaL.T. CaetanoC.C.S. CaminiF.C. LimaR.L.S. AndradeA.C.S.P. de OliveiraD.B. RochaK.L.S. SilvaB.M. de MagalhãesJ.C. MagalhãesC.L.B. Antiviral effect of silymarin against Zika virus in vitro.Acta Trop.202021110561310.1016/j.actatropica.2020.105613 32621935
    [Google Scholar]
  120. BatistaM.N. BragaA.C.S. CamposG.R.F. SouzaM.M. MatosR.P.A. LopesT.Z. CandidoN.M. LimaM.L.D. MachadoF.C. AndradeS.T.Q. BittarC. NogueiraM.L. CarneiroB.M. MariuttiR.B. ArniR.K. CalmonM.F. RahalP. Natural products isolated from oriental medicinal herbs inactivate zika virus.Viruses20191114910.3390/v11010049 30641880
    [Google Scholar]
  121. LimaL.D.A. ReisA.C.C. SousaJ.A.C. ValenteG.M. de Mello SilvaB. MagalhãesC.L.B. KohlhoffM. TeixeiraL.F.M. BrandãoG.C. Anti–zika virus activity and isolation of flavonoids from ethanol extracts of Curatella americana L. Leaves.Molecules2023286254610.3390/molecules28062546 36985517
    [Google Scholar]
  122. GboreD.J. ZakariS. YusufL. In silico studies of bioactive compounds from Alpinia officinarum as inhibitors of Zika virus protease.Inform. Med. Unlocked20233810121410.1016/j.imu.2023.101214
    [Google Scholar]
  123. TuW.C. HuangY.X. LiB. JiangY.J. YangQ.Y. ZebM.A. YangP.Y. WangH.J. LiX.L. XiaoW.L. ZhengC.B. LiuM.F. Wulfenioidins D–N, structurally diverse diterpenoids with anti-zika virus activity isolated from Orthosiphon wulfenioides.J. Nat. Prod.202386102348235910.1021/acs.jnatprod.3c00543 37737089
    [Google Scholar]
  124. KaS. MerindolN. SowA.A. SinghA. LandelouciK. PlourdeM.B. PépinG. MasiM. Di LecceR. EvidenteA. SeckM. BerthouxL. Chatel-ChaixL. Desgagné-PenixI. Amaryllidaceae alkaloid cherylline inhibits the replication of dengue and zika viruses.Antimicrob. Agents Chemother.2021659e00398e2110.1128/AAC.00398‑21 34152811
    [Google Scholar]
  125. TorreeleE. BoumY.II AdjahoI. AléF.G.B. IssoufouS.H. HarcziG. OkontaC. OlliaroP. Breakthrough treatments for Ebola virus disease, but no access—what went wrong, and how can we do better?Lancet Infect. Dis.2023237e253e25810.1016/S1473‑3099(22)00810‑6 36682365
    [Google Scholar]
  126. CohenJ. Forgotten Ebola vaccine could help in outbreak.Science2022378661834034110.1126/science.adf4959 36302017
    [Google Scholar]
  127. WoolseyC. FearsA.C. BorisevichV. AgansK.N. DobiasN.S. PrasadA.N. DeerD.J. GeisbertJ.B. FentonK.A. GeisbertT.W. CrossR.W. Natural history of Sudan ebolavirus infection in rhesus and cynomolgus macaques.Emerg. Microbes Infect.20221111635164610.1080/22221751.2022.2086072 35657325
    [Google Scholar]
  128. KamorudeenR.T. AdedokunK.A. OlarinmoyeA.O. Ebola outbreak in West Africa, 2014 – 2016: Epidemic timeline, differential diagnoses, determining factors, and lessons for future response.J. Infect. Public Health202013795696210.1016/j.jiph.2020.03.014 32475805
    [Google Scholar]
  129. LaneT. AnantpadmaM. FreundlichJ.S. DaveyR.A. MadridP.B. EkinsS. The natural product eugenol is an inhibitor of the ebola virus in vitro.Pharm. Res.201936710410.1007/s11095‑019‑2629‑0 31101988
    [Google Scholar]
  130. TsangN.Y. LiW.F. VarhegyiE. RongL. ZhangH.J. Ebola entry inhibitors discovered from Maesa perlarius.Int. J. Mol. Sci.2022235262010.3390/ijms23052620 35269770
    [Google Scholar]
  131. FanunzaE. IampietroM. DistintoS. CoronaA. QuartuM. MaccioniE. HorvatB. TramontanoE. Quercetin blocks ebola virus infection by counteracting the VP24 interferon-inhibitory function.Antimicrob. Agents Chemother.2020647e00530e2010.1128/AAC.00530‑20 32366711
    [Google Scholar]
  132. WellsD.W. GuoS. ShaoW. BaleM.J. CoffinJ.M. HughesS.H. WuX. An analytical pipeline for identifying and mapping the integration sites of HIV and other retroviruses.BMC Genomics202021121610.1186/s12864‑020‑6647‑4 32151239
    [Google Scholar]
  133. KhalidK. PaddaJ. KhedrA. IsmailD. ZubairU. Al-EwaidatO.A. PaddaS. CooperA.C. Jean-CharlesG. HIV and messenger RNA vaccine.Cureus2021137e1619710.7759/cureus.16197 34367800
    [Google Scholar]
  134. TanC.J. LiS.F. HuangN. ZhangY. DiY.T. ZhengY.T. HaoX.J. Daphnane diterpenoids from trigonostemon lii and inhibition activities against HIV-1.Nat. Prod. Bioprospect.2020101374410.1007/s13659‑020‑00231‑7 32048186
    [Google Scholar]
  135. FobofouS.A.T. FrankeK. BrandtW. ManzinA. MadedduS. SerreliG. SannaG. WessjohannL.A. Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum.Nat. Prod. Res.202337121947195310.1080/14786419.2022.2110094 35959682
    [Google Scholar]
  136. IndriatiD.W. TumewuL. WidyawaruyantiA. KhairunisaS.Q. The activities of Methanol extract, Hexane and Ethyl Acetate Fractions from Ficus fistulosa in HIV inhibition in vitro.Res J Pharm Technol202013118710.5958/0974‑360X.2020.00038.4
    [Google Scholar]
  137. FastStats.Available from: https://www.cdc.gov/nchs/fastats/hepatitis.htm
  138. HaqqiA. MunirR. KhalidM. KhurramM. ZaidM. AliM. ShahZ.H. AhmedH. AfzalM.S. Prevalence of hepatitis C virus genotypes in Pakistan: Current scenario and review of literature.Viral Immunol.201932940241310.1089/vim.2019.0058 31556811
    [Google Scholar]
  139. ParvezM. Al-DosariM. AbdelwahidM. AlqahtaniA. AlanziA. Novel anti hepatitis B virus active catechin and epicatechin from Rhus tripartita.Exp. Ther. Med.202223639810.3892/etm.2022.11325 35619632
    [Google Scholar]
  140. MoharanaM. PattanayakS.K. KhanF. Identification of novel potential hepatitis E virus inhibitors as seen from molecular docking, free energy landscape and molecular dynamics simulation studies.Mol. Simul.2023491096798110.1080/08927022.2023.2202764
    [Google Scholar]
  141. AhmedS. ParvezM. Al-DosariM. AbdelwahidM. AlhowirinyT. Al-RehailyA. Novel anti hepatitis B virus flavonoids sakuranetin and velutin from Rhus retinorrhoea.Mol. Med. Rep.202328317610.3892/mmr.2023.13063 37539729
    [Google Scholar]
  142. ParvezM.K. AhmedS. Al-DosariM.S. AbdelwahidM.A.S. ArbabA.H. Al-RehailyA.J. Al-OqailM.M. Novel anti-hepatitis B virus activity of Euphorbia schimperi and its quercetin and kaempferol derivatives.ACS Omega2021643291002911010.1021/acsomega.1c04320 34746599
    [Google Scholar]
  143. ParvezM.K. Al-DosariM.S. ArbabA.H. Al-RehailyA.J. AbdelwahidM.A.S. Bioassay-guided isolation of anti-hepatitis B virus flavonoid myricetin-3-O-rhamnoside along with quercetin from Guiera senegalensis leaves.Saudi Pharm. J.202028555055910.1016/j.jsps.2020.03.006 32435135
    [Google Scholar]
  144. SahucM.E. SahliR. RivièreC. PèneV. LavieM. VandeputteA. BrodinP. RosenbergA.R. DubuissonJ. KsouriR. RouilléY. SahpazS. SéronK. Dehydrojuncusol, a natural phenanthrene compound extracted from Juncus maritimus, is a new inhibitor of hepatitis C virus RNA replication.J. Virol.20199310e0200910.1128/JVI.02009‑18 30842319
    [Google Scholar]
  145. ParvezM.K. Al-DosariM.S. RehmanM.T. Al-RehailyA.J. AlqahtaniA.S. AlajmiM.F. The anti-hepatitis B virus and anti-hepatotoxic efficacies of solanopubamine, a rare alkaloid from Solanum schimperianum.Saudi Pharm. J.202230435936810.1016/j.jsps.2022.02.001 35527834
    [Google Scholar]
  146. GentileA. Florencia LucionM. del Valle JuárezM. Soledad AresoM. PaglieriL. Agustina PirkerM. BakirJ. ViegasM. GoyaS. MistchenkoA.S. 2316 RSV mortality: 19 Years’ experience in a pediatric hospital in argentina.Open Forum Infect. Dis.20196Suppl. 2S79410.1093/ofid/ofz360.1994
    [Google Scholar]
  147. BonavitacolaJ. Study Explores Mortality Rates and Risk Factors in Patients Hospitalized for RSV.AJMC2023
    [Google Scholar]
  148. BergeronH.C. TrippR.A. Breakthrough therapy designation of nirsevimab for the prevention of lower respiratory tract illness caused by respiratory syncytial virus infections (RSV).Expert Opin. Investig. Drugs2022311232910.1080/13543784.2022.2020248 34937485
    [Google Scholar]
  149. ChenL.F. ZhongY.L. LuoD. LiuZ. TangW. ChengW. XiongS. LiY.L. LiM.M. Antiviral activity of ethanol extract of Lophatherum gracile against respiratory syncytial virus infection.J. Ethnopharmacol.201924211157510.1016/j.jep.2018.10.036 30391397
    [Google Scholar]
  150. SalinasF.M. VázquezL. GentiliniM.V. O’DonohoeA. RegueiraE. Nabaes JodarM.S. ViegasM. MicheliniF.M. HermidaG. AlchéL.E. BuenoC.A. Aesculus hippocastanum L. seed extract shows virucidal and antiviral activities against respiratory syncytial virus (RSV) and reduces lung inflammation in vivo.Antiviral Res.201916411110.1016/j.antiviral.2019.01.018 30711418
    [Google Scholar]
  151. ChenW. ZhangH. WangJ. HuX. Flavonoid glycosides from the bulbs of lilium speciosum var. gloriosoides and their potential antiviral activity against RSV.Chem. Nat. Compd.201955346146410.1007/s10600‑019‑02714‑7
    [Google Scholar]
  152. SongJ.G. SuJ.C. SongQ.Y. HuangR.L. TangW. HuL.J. HuangX.J. JiangR.W. LiY.L. YeW.C. WangY. Cleistocaltones A and B, antiviral phloroglucinol–terpenoid adducts from Cleistocalyx operculatus.Org. Lett.201921239579958310.1021/acs.orglett.9b03743 31755722
    [Google Scholar]
  153. LiangY. LiK. NiuF. LiY. WeiH. DaiY. WangY. ZhouC. WanX. Salvia plebeia R. Br. polysaccharides (SPP) against RSV (respiratory syncytial virus) infection: Antiviral effect and mechanisms of action.Biomed. Pharmacother.202114111184310.1016/j.biopha.2021.111843 34175821
    [Google Scholar]
  154. SytayaYu.S. MindlinaA.Ya. Enterovirus vesicular stomatitis with exanthema: Epidemiological features and vaccination. Vaccine prophylaxis20222110711610.31631/2073‑3046‑2022‑21‑3‑107‑116
    [Google Scholar]
  155. GrapinM. MirandA. PinquierD. BassetA. BendavidM. BisseuxM. JeannoëlM. KirecheB. KossorotoffM. L’HonneurA.S. RobinL. VilleY. RenolleauS. LemeeV. JarreauP.H. DesguerreI. LacailleF. Leruez-VilleM. GuillaumeC. HenquellC. LapillonneA. SchuffeneckerI. AubartM. Severe and fatal neonatal infections linked to a new variant of echovirus 11, France, July 2022 to April 2023.Euro Surveill.20232822230025310.2807/1560‑7917.ES.2023.28.22.2300253 37261730
    [Google Scholar]
  156. MaY. CongW. HuangH. SunL. MaiA.H. BoonenK. MaryamW. De BorggraeveW. LuoG. LiuQ. SchoofsL. Van KuppeveldF. NeytsJ. MirabelliC. LuytenW. Identification of fukinolic acid from Cimicifuga heracleifolia and its derivatives as novel antiviral compounds against enterovirus A71 infection.Int. J. Antimicrob. Agents201953212813610.1016/j.ijantimicag.2018.07.014 30063999
    [Google Scholar]
  157. OlasunkanmiO.I. FeiY. Avala NtsigouayeJ. YiM. WangY. LiuJ. ChengW. MegetoJ. BashirT. ChenY. XuW. LinL. ZhaoW. WangY. ZhongZ. Antiviral activity of trans -Hexenoic acid against coxsackievirus B and enterovirus A71.Antimicrob. Agents Chemother.2023673e00868e2210.1128/aac.00868‑22 36786598
    [Google Scholar]
  158. SunJ. MaX. SunL. ZhangY. HaoC. WangW. Inhibitory effects and mechanisms of proanthocyanidins against enterovirus 71 infection.Virus Res.202332919909810.1016/j.virusres.2023.199098 36944412
    [Google Scholar]
  159. CaoY. LeiE. LiL. RenJ. HeX. YangJ. WangS. Antiviral activity of Mulberroside C against enterovirus A71 in vitro and in vivo.Eur. J. Pharmacol.202190617420410.1016/j.ejphar.2021.174204 34051220
    [Google Scholar]
  160. ChoiH.J. Antiviral activity of quercetin-3-glucoside against non-polio enterovirus.J. Bacteriol. Virol.2022521202710.4167/jbv.2022.52.1.020
    [Google Scholar]
  161. KimM. KimS.R. ParkJ. MunS.H. KwakM. KoH.J. BaekS.H. Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo.Carbohydr. Polym.202228111905710.1016/j.carbpol.2021.119057 35074124
    [Google Scholar]
  162. LalaniS. MasomianM. PohC.L. Functional insights into silymarin as an antiviral agent against enterovirus A71 (EV-A71).Int. J. Mol. Sci.20212216875710.3390/ijms22168757 34445463
    [Google Scholar]
  163. MurugesanA. ManoharanM. Dengue virus.Emerging and Reemerging Viral Pathogens.Academic Press202028135910.1016/B978‑0‑12‑819400‑3.00016‑8
    [Google Scholar]
  164. Dengue and severe dengue.2023Available from: www.who.int https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue Retrieved October 15, 2023.
  165. PratheebaT. TaranathV. Sai GopalD.V.R. NatarajanD. Antidengue potential of leaf extracts of Pavetta tomentosa and Tarenna asiatica (Rubiaceae) against dengue virus and its vector Aedes aegypti (Diptera: Culicidae).Heliyon2019511e0273210.1016/j.heliyon.2019.e02732 31844692
    [Google Scholar]
  166. MaryamM. TeK.K. WongF.C. ChaiT.T. LowG.K.K. GanS.C. CheeH. Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus.J. Integr. Agric.20201941085109610.1016/S2095‑3119(19)62820‑0
    [Google Scholar]
  167. JainJ. KumarA. NarayananV. RamaswamyR.S. SathiyarajeswaranP. Shree DeviM.S. KannanM. SunilS. Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation.J. Ayurveda Integr. Med.202011332933510.1016/j.jaim.2018.05.006 30685096
    [Google Scholar]
  168. Monsalve-EscuderoL.M. Loaiza-CanoV. Zapata-CardonaM.I. Quintero-GilD.C. Hernández-MiraE. Pájaro-GonzálezY. Oliveros-DíazA.F. Diaz-CastilloF. QuiñonesW. RobledoS. Martinez-GutierrezM. The antiviral and virucidal activities of voacangine and structural analogs extracted from Tabernaemontana cymosa depend on the dengue virus strain.Plants2021107128010.3390/plants10071280 34201900
    [Google Scholar]
  169. Trujillo-CorreaA.I. Quintero-GilD.C. Diaz-CastilloF. QuiñonesW. RobledoS.M. Martinez-GutierrezM. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting.BMC Complement. Altern. Med.201919129810.1186/s12906‑019‑2695‑1 31694638
    [Google Scholar]
  170. Abd WahabN.Z. IbrahimN. Styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus binds to dengue virus serotype-2 envelope protein and inhibits early stage of virus replication.Molecules20222714456610.3390/molecules27144566 35889438
    [Google Scholar]
  171. IwuM.M. OkunjiC.O. TchimeneM. SokombaE. Antiviral activity of andrographolide against ebola virus, dengue fever and sars coronavirus.Research Square202010.21203/rs.3.rs‑24311/v1
    [Google Scholar]
  172. KaushikS. KaushikS. KumarR. DarL. YadavJ.P. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus.Virusdisease202031447047810.1007/s13337‑020‑00624‑9 32904730
    [Google Scholar]
  173. PanyaA. SawasdeeN. SongprakhonP. TragoolpuaY. RotarayanontS. ChoowongkomonK. YenchitsomanusP. A synthetic bioactive peptide derived from the asian medicinal plant acacia catechu binds to dengue virus and inhibits cell entry.Viruses20201211126710.3390/v12111267 33172110
    [Google Scholar]
  174. SinhaM. ChakrabortyU. KoolA. ChakravartiM. DasS. GhoshS. ThakurL. KhurannaA. NayakD. BasuB. KarS. RayR. DasS. In-vitro antiviral action of Eupatorium perfoliatum against dengue virus infection: Modulation of mTOR signaling and autophagy.J. Ethnopharmacol.202228211462710.1016/j.jep.2021.114627 34509603
    [Google Scholar]
  175. TangK. ZhangX. GuoY. Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry.Acta Pharm. Sin. B202010578979810.1016/j.apsb.2020.02.014 32528827
    [Google Scholar]
  176. MüllerC. ObermannW. SchulteF.W. Lange-GrünwellerK. OestereichL. ElgnerF. GlitscherM. HildtE. SinghK. WendelH.G. HartmannR.K. ZiebuhrJ. GrünwellerA. Comparison of broad-spectrum antiviral activities of the synthetic rocaglate CR-31-B (−) and the eIF4A-inhibitor Silvestrol.Antiviral Res.202017510470610.1016/j.antiviral.2020.104706 31931103
    [Google Scholar]
  177. SilvaN.I.O. SacchettoL. de RezendeI.M. TrindadeG.S. LaBeaudA.D. de ThoisyB. DrumondB.P. Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease.Virol. J.2020171910.1186/s12985‑019‑1277‑7 31973727
    [Google Scholar]
  178. NwaiwuA.U. MusekiwaA. TamuziJ.L. SambalaE.Z. NyasuluP.S. The incidence and mortality of yellow fever in Africa: A systematic review and meta-analysis.BMC Infect. Dis.2021211108910.1186/s12879‑021‑06728‑x 34688249
    [Google Scholar]
  179. NairJ.J. van StadenJ. Antiviral alkaloid principles of the plant family Amaryllidaceae.Phytomedicine202310815448010.1016/j.phymed.2022.154480 36240608
    [Google Scholar]
  180. de Castro BarbosaE. AlvesT.M.A. KohlhoffM. JangolaS.T.G. PiresD.E.V. FigueiredoA.C.C. AlvesÉ.A.R. Calzavara-SilvaC.E. SobralM. KroonE.G. RosaL.H. ZaniC.L. de OliveiraJ.G. Searching for plant-derived antivirals against dengue virus and Zika virus.Virol. J.20221913110.1186/s12985‑022‑01751‑z 35193667
    [Google Scholar]
  181. MohsinN.A. IrfanM. AamirM.N. In silico approaches for novel drug discovery against coronavirus by employing the hybrid molecular technique: A review.JCBC202120766767410.1142/S2737416521300017
    [Google Scholar]
  182. SindhuT.J. ArathiK.N. AkhileshK.J. JoseA. BinsiyaK.P. ThomasB. WilsonE. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in Novel Corona Virus Disease: In silico approaches.AJPTech20201026010.5958/2231‑5713.2020.00012.4
    [Google Scholar]
  183. CharoenkwanP. AnuwongcharoenN. NantasenamatC. HasanMd. In silico approaches for the prediction and analysis of antiviral peptides: A review.Curr. Pharm. Des.2021272180218810.2174/1381612826666201102105827
    [Google Scholar]
  184. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.007336 24381236
    [Google Scholar]
  185. VaouN. StavropoulouE. VoidarouC. TsigalouC. BezirtzoglouE. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives.Microorganisms2021910204110.3390/microorganisms9102041 34683362
    [Google Scholar]
  186. RodriguezE.B. AlmedaR.A. VidallonM.L.P. ReyesC.T. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids.J. Sci. Food Agric.20199941980198910.1002/jsfa.9396 30270448
    [Google Scholar]
  187. SinghC.K. SodhiK.K. The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: A perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment.Front. Nanotechnol.20234108403310.3389/fnano.2022.1084033
    [Google Scholar]
  188. ChenL. HongW. RenW. XuT. QianZ. HeZ. Recent progress in targeted delivery vectors based on biomimetic nanoparticles.Signal Transduct. Target. Ther.20216122510.1038/s41392‑021‑00631‑2 34099630
    [Google Scholar]
  189. ZielińskaA. EderP. KarczewskiJ. SzalataM. HryhorowiczS. WielgusK. SzalataM. DobrowolskaA. AtanasovA.G. SłomskiR. SoutoE.B. Tocilizumab-coated solid lipid nanoparticles loaded with cannabidiol as a novel drug delivery strategy for treating COVID-19: A review.Front. Immunol.202314114799110.3389/fimmu.2023.1147991 37033914
    [Google Scholar]
/content/journals/aia/10.2174/0122113525312781240819105116
Loading
/content/journals/aia/10.2174/0122113525312781240819105116
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anti-infectives; anti-viral; bioavailability; medicinal plant; phytochemicals; virus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test