Skip to content
2000
Volume 23, Issue 1
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

The use of commercial tinctures for the design of a formulation with improved anti-microbial activity in a polyherbal lozenge dosage form has not been described.

Objective

This study aimed to develop and evaluate the antimicrobial activity of a novel polyherbal lozenge formulation containing Ashwagandha, Neem, and Tulsi tinctures in a single-dose administration. According to previous studies, each of these herbs could be used in herbal medicine to provide relief from infection owing to their antimicrobial activity, besides other properties, such as anticancer, antidiabetic, .

Methods

The lozenges were prepared using the molding method using three concentrations (1, 3, and 5% w/w) of commercialized herbal tinctures. Then, they were studied using different assays, including those designed to evaluate physical properties, stability, and antimicrobial activity.

Results

B4, containing 5% w/w of each tincture, showed the highest antimicrobial activity compared with the other batches. This batch exhibited the highest value of bacterial inhibition (17.1 ± 0.07 mm), according to the agar well diffusion method, including as a test microorganism. Hence, B4 was chosen for additional analyses, including physical properties and stability tests. The results followed Indian Pharmacopeia standards and ICH guidelines, respectively. The formulation was stable after 2 weeks, and no significant changes were observed in its physical properties or antimicrobial activity.

Conclusion

This study shows that polyherbal lozenges have anti-microbial activity, with a disintegration period of 3.86 ± 0.07 minutes in the B4 batch.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525302223240606045531
2024-07-05
2025-01-28
Loading full text...

Full text loading...

References

  1. KambojP. HandaU. NagpalK. DhimanS. GuarveK. Effectiveness of herbal tinctures formulated into lozenges: a current stipulation in pediatric patients.Int. J. Early Childhood Special Educ.202214519131919
    [Google Scholar]
  2. KurbanogluS. UsluB. OzkanS.A. Carbon-based nanostructures for electrochemical analysis of oral medicines.Nanostructures for Oral Medicine.Elsevier201788593810.1016/B978‑0‑323‑47720‑8.00029‑8
    [Google Scholar]
  3. KirbyG.C. Medicinal plants and the control of protozoal disease, with particular reference to malaria.Trans. R. Soc. Trop. Med. Hyg.199690660560910.1016/S0035‑9203(96)90404‑69015493
    [Google Scholar]
  4. BetoniJ.E.C. MantovaniR.P. BarbosaL.N. Di StasiL.C. Fernandes JuniorA. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases.Mem. Inst. Oswaldo Cruz2006101438739010.1590/S0074‑0276200600040000716951808
    [Google Scholar]
  5. RehmanH. ZahoorA. ShaikhZ.A. NaveedS. UsmanghaniK. Polyherbal extract based linkus lozenges for symptomatic relief: Design, development, and evaluation.Am. J. Adv. Drug Deliv.201751118
    [Google Scholar]
  6. CarterA. CirinoE. LeeJ. What you need to know about herbal tinctures.2019Available from: https://www.healthline.com/health/what-is-a-tincture
  7. BhartiV.K. MalikJ.K. GuptaR.C. Ashwagandha: multiple health benefits.Nutraceuticals.Academic Press201671773310.1016/B978‑0‑12‑802147‑7.00052‑8
    [Google Scholar]
  8. DarN.J. HamidA. AhmadM. Pharmacologic overview of Withania somnifera, the Indian ginseng.Cell. Mol. Life Sci.201572234445446010.1007/s00018‑015‑2012‑126306935
    [Google Scholar]
  9. DasL. GunindroN. GhoshR. RoyM. DebbaramaA. Mechanism of action of Azadirachta Indica Linn. (Neem) aqueous leaf extract as hypoglycaemic agent.Ind. Med. Gaz.201412932
    [Google Scholar]
  10. VermaS. Chemical constituents and pharmacological action of Ocimum sanctum (Indian holy basil-Tulsi).J. Phytopharmacol.20165520520710.31254/phyto.2016.5507
    [Google Scholar]
  11. GuptaS.K. PrakashJ. SrivastavaS. Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant.Indian J. Exp. Biol.200240776577312597545
    [Google Scholar]
  12. ModyalaD. AparnaC. SrinivasP. Formulation, evaluation and characterization of itraconazole lozenges.J. Pharm. Biol. Sci.201498694
    [Google Scholar]
  13. SaleemS. MuhammadG. HussainM.A. AltafM. BukhariS.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective.Iran. J. Basic Med. Sci.202023121501152633489024
    [Google Scholar]
  14. Kaur, Phytochemical analysis and antimicrobial activity of Withania somnifera against Oral Pathogens.J. Pharm. Bioallied Sci.201911Suppl. 2S316S320
    [Google Scholar]
  15. Biswas, Biological activities and medicinal properties of neem (Azadirachta indica).Curr. Sci.2002821113361345
    [Google Scholar]
  16. GabrieleM. FrassinettiS. CaltavuturoL. MonteroL. DinelliG. LongoV. Di GioiaD. PucciL. Citrus bergamia powder: Antioxidant, antimicrobial and anti-inflammatory properties.J. Funct. Foods20173125526510.1016/j.jff.2017.02.007
    [Google Scholar]
  17. PrakashJ. GuptaS.K. DindaA.K. Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in Swiss albino mice.Nutr. Cancer2002421919710.1207/S15327914NC421_1212235655
    [Google Scholar]
  18. CohenM. Tulsi Ocimum sanctum: A herb for all reasons.J. Ayurveda Integr. Med.20145425125910.4103/0975‑9476.14655425624701
    [Google Scholar]
  19. BastF. RaniP. MeenaD. Chloroplast DNA phylogeography of holy basil (Ocimum tenuiflorum) in Indian subcontinent.Sci. World J.201420141610.1155/2014/84748224523650
    [Google Scholar]
  20. ZiauddinM. PhansalkarN. PatkiP. DiwanayS. PatwardhanB. Studies on the immunomodulatory effects of Ashwagandha.J. Ethnopharmacol.1996502697610.1016/0378‑8741(95)01318‑08866726
    [Google Scholar]
  21. AnbalaganK. SadiqueJ. Influence of an Indian medicine (Ashwagandha) on acute-phase reactants in inflammation.Indian J. Exp. Biol.19811932452497251069
    [Google Scholar]
  22. BhattacharyaS.K. MuruganandamA.V. Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress.Pharmacol. Biochem. Behav.200375354755510.1016/S0091‑3057(03)00110‑212895672
    [Google Scholar]
  23. VermaS.K. KumarA. Therapeutic uses of Withania somnifera (Ashwagandha) with a note on withanolides and its pharmacological actions.Asian J. Pharm. Clin. Res.20114114
    [Google Scholar]
  24. BhattacharyaS.K. BhattacharyaD. SairamK. GhosalS. Effect of Withania somnifera glycowithanolides on a rat model of tardive dyskinesia.Phytomedicine20029216717010.1078/0944‑7113‑0008911995951
    [Google Scholar]
  25. Iqbal ChoudharyM. Dur-e-Shahwar; Parveen, Z.; Jabbar, A.; Ali, I.; Atta-Ur-Rahman, Antifungal steroidal lactones from Withania coagulance.Phytochemistry19954041243124610.1016/0031‑9422(95)00429‑B7492372
    [Google Scholar]
  26. SharmaP.V. Dravya GunaVijnana Chaukhambha Bharati Academy, Varanasi, India, 1993.1999Available from: https://www.scirp.org/%28S%28351jmbntvnsjt1aadkposzje%29%29/reference/referencespapers.aspx?referenceid=493293
  27. SinghN. BhallaM. De JagerP. GilcaM. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda.Afr. J. Tradit. Complement. Altern. Med.201185S20821310.4314/ajtcam.v8i5S.922754076
    [Google Scholar]
  28. PandaS. KarA. Changes in thyroid hormone concentrations after administration of ashwagandha root extract to adult male mice.J. Pharm. Pharmacol.20115091065106810.1111/j.2042‑7158.1998.tb06923.x9811169
    [Google Scholar]
  29. BhattacharyaA. GhosalS. BhattacharyaS.K. Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum.J. Ethnopharmacol.20017411610.1016/S0378‑8741(00)00309‑311137343
    [Google Scholar]
  30. BasirS.F. ShaileyS. Strengthening of antioxidant defense by Azadirachta indica in alloxan-diabetic rat tissues.J. Ayurveda Integr. Med.20123313013510.4103/0975‑9476.10017423125509
    [Google Scholar]
  31. Al AkeelR. MateenA. JanardhanK. GuptaV.C. Analysis of anti-bacterial and anti oxidative activity of Azadirachta indica bark using various solvents extracts.Saudi J. Biol. Sci.2017241111410.1016/j.sjbs.2015.08.00628053565
    [Google Scholar]
  32. SubapriyaR. NaginiS. Medicinal properties of neem leaves: a review.Curr. Med. Chem. Anticancer Agents20055214915610.2174/156801105317482815777222
    [Google Scholar]
  33. IslasJ.F. AcostaE. G-BuentelloZ. Delgado-GallegosJ.L. Moreno-TreviñoM.G. EscalanteB. Moreno-CuevasJ.E. An overview of Neem (Azadirachta indica) and its potential impact on health.J. Funct. Foods20207410417110417110.1016/j.jff.2020.104171
    [Google Scholar]
  34. SoaresD.G. GodinA.M. MenezesR.R. NogueiraR.D. BritoA.M. MeloI.S. CouraG.M. SouzaD.G. AmaralF.A. PaulinoT.P. CoelhoM.M. Anti-inflammatory and antinociceptive activities of azadirachtin in mice.Planta Med.2014808-963063610.1055/s‑0034‑1368507
    [Google Scholar]
  35. GiriR.P. GangawaneD.A.K. GiriD.S.G. Neem the wonder herb: a short review.Int. J. Trend Sci. Res. Develop.20193-396296710.31142/ijtsrd23038
    [Google Scholar]
  36. KumarK.P. BhowmikD. TripathiK.K. ChandiraM. Traditional Indian herbal plants tulsi and its medicinal importance.Res. J. Pharmacog. Phytochem.20102293101
    [Google Scholar]
  37. JamshidiN. CohenM.M. The clinical efficacy and safety of Tulsi in humans: a systematic review of the literature.Evid. Based Complement. Alternat. Med.2017201711310.1155/2017/921756728400848
    [Google Scholar]
  38. MishraS.K. A Review Paper on Tulsi Plant (Ocimum sanctum L.).J. Emerg. Technol. Innov. Res.202291g515g524
    [Google Scholar]
  39. KhaladkarA.S. AvalaskarA. BharatiP. HonkalasK. Formulation and evaluation of Adhulsa lozenges for pediatric patients.J. Drug Deliv. Ther.201992-s115117
    [Google Scholar]
  40. ParasuramanS. BalamuruganS. ChristapherP. PetchiR. YengW. SujithraJ. VijayaC. Evaluation of antidiabetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents.Pharmacognosy Res.20157215616510.4103/0974‑8490.15145725829789
    [Google Scholar]
  41. PaidiR.K. JanaM. RahaS. McKayM. SheininM. MishraR.K. PahanK. Eugenol, a component of holy basil (Tulsi) and common spice clove, inhibits the interaction between sars-cov-2 spike s1 and ace2 to induce therapeutic responses.J. Neuroimmune Pharmacol.202116474375510.1007/s11481‑021‑10028‑134677731
    [Google Scholar]
  42. ParrishC. BartoliniE. SongY. HernandezE. GreenK. OstranderR. Pediatric medical psychology.Int. Rev. Psychiatry202032328429710.1080/09540261.2019.170525832091271
    [Google Scholar]
  43. PfallerM.A. SheehanD.J. RexJ.H. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization.Clin. Microbiol. Rev.200417226828010.1128/CMR.17.2.268‑280.200415084501
    [Google Scholar]
  44. DuryodhanN. AparnaC. SrinivasP. Formulation and evaluation of medicated lozenges of albendazole for pediatrics use.Asian Journal of Biochemical and Pharmaceutical Research201553202215
    [Google Scholar]
  45. CoorevitsL. BoelensJ. ClaeysG. Direct susceptibility testing by disk diffusion on clinical samples: a rapid and accurate tool for antibiotic stewardship.Eur. J. Clin. Microbiol. Infect. Dis.20153461207121210.1007/s10096‑015‑2349‑225698312
    [Google Scholar]
  46. FoersterS. UnemoM. HathawayL.J. LowN. AlthausC.L. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae.BMC Microbiol.201616121610.1186/s12866‑016‑0838‑927639378
    [Google Scholar]
  47. KumarV. ChakrabortyA. KaurM. PandeyS. JenaM.K. Comparative Study on Antimicrobial Activity of Tulsi (Ocimum Sanctum) And Neem (Azadirachta Indica).Methanol Extract. Asian J. Pharm. Clin. Res.2018111251451710.22159/ajpcr.2018.v11i12.28756
    [Google Scholar]
  48. DraškovićM. MedarevićD. AleksićI. ParojčićJ. In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets.Drug Dev. Ind. Pharm.201643572373110.1080/03639045.2016.1220572
    [Google Scholar]
  49. ChenC.Y. NaceG.W. IrwinP.L.A. 6×6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli.J. Microbiol. Methods200355247547910.1016/S0167‑7012(03)00194‑514529971
    [Google Scholar]
  50. ZwieteringM.H. JongenburgerI. RomboutsF.M. van ’t RietK. Modeling of the bacterial growth curve.Appl. Environ. Microbiol.19905661875188110.1128/aem.56.6.1875‑1881.199016348228
    [Google Scholar]
  51. GagneurJ. NeudeckerA. Cell Growth: fitting cell population growth models.2012Available from: http://www.bioconductor.org/packages/release/bioc/manuals/cellGrowth/man/cellGrowth.pdf
    [Google Scholar]
  52. ChandrasekarR. SivagamiB. Formulation and evaluation of a poly herbal skin care cream containing neem and tulsi.Res. J. Top. Cosmet. Sci.201891253210.5958/2321‑5844.2018.00006.7
    [Google Scholar]
  53. PrajapatiS.K. MalaiyaA. MishraG. JainD. KesharwaniP. ModyN. AhmadiA. PaliwalR. JainA. An exhaustive comprehension of the role of herbal medicines in Pre and Post COVID manifestations.J. Ethnopharmacol.202229611542010.1016/j.jep.2022.11542035654349
    [Google Scholar]
/content/journals/aia/10.2174/0122113525302223240606045531
Loading
/content/journals/aia/10.2174/0122113525302223240606045531
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test