Skip to content
2000
image of A Comprehensive Review on the Antimicrobial Activities and Structure-Activity Relationships (SARs) of Rhodanine Analogues

Abstract

Rhodanines are five-member heterocyclics having sulfur, nitrogen, and oxygen atoms in their ring structure and exhibit potent as well as a broad range of pharmacological activities. They are thiazolidine derivatives and are well-known in medicinal chemistry for their wide spectrum of antimicrobial activities. Various modifications can be made to the structure of the rhodanine ring. Studies in recent years have validated the possibility of the potential of rhodanine derivatives to exhibit antimicrobial activity against both Gram-positive and Gram-negative bacterial strains, as well as mycobacterial and fungal strains. In this review, the synthesis, biological activity, and Structure-activity Relationships (SARs) of molecules based on rhodanine against different microbes have been described

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525295259240815073809
2024-09-25
2024-11-22
Loading full text...

Full text loading...

References

  1. Boström J. Brown D.G. Young R.J. Keserü G.M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 2018 17 10 709 727 10.1038/nrd.2018.116 30140018
    [Google Scholar]
  2. Blakemore D.C. Castro L. Churcher I. Rees D.C. Thomas A.W. Wilson D.M. Wood A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018 10 4 383 394 10.1038/s41557‑018‑0021‑z 29568051
    [Google Scholar]
  3. Gomtsyan A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd. 2012 48 1 7 10 10.1007/s10593‑012‑0960‑z
    [Google Scholar]
  4. Taylor A.P. Robinson R.P. Fobian Y.M. Blakemore D.C. Jones L.H. Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016 14 28 6611 6637 10.1039/C6OB00936K 27282396
    [Google Scholar]
  5. Zhang Z. Nie X. Wang F. Chen G. Huang W.Q. Xia L. Zhang W.J. Hao Z.Y. Hong C.Y. Wang L.H. You Y.Z. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat. Commun. 2020 11 1 3654 10.1038/s41467‑020‑17474‑0 32694628
    [Google Scholar]
  6. Ramirez M.A. Borja N.L. Epalrestat: An aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 2008 28 5 646 655 10.1592/phco.28.5.646 18447661
    [Google Scholar]
  7. Welsch M.E. Snyder S.A. Stockwell B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010 14 3 347 361 10.1016/j.cbpa.2010.02.018 20303320
    [Google Scholar]
  8. Zhao H. Dietrich J. Privileged scaffolds in lead generation. Expert Opin. Drug Discov. 2015 10 7 781 790 10.1517/17460441.2015.1041496 25959748
    [Google Scholar]
  9. Kargar Razi M. Javahershenas R. Adelzadeh M. Ghobadi M. Kazemi M. Synthetic routes to rhodanine scaffolds. Synth. Commun. 2020 50 24 3739 3756 10.1080/00397911.2020.1812658
    [Google Scholar]
  10. Kaminskyy D. Kryshchyshyn A. Lesyk R. 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017 140 542 594 10.1016/j.ejmech.2017.09.031 28987611
    [Google Scholar]
  11. Sim M.M. Ng S.B. Buss A.D. Crasta S.C. Goh K.L. Lee S.K. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase. Bioorg. Med. Chem. Lett. 2002 12 4 697 699 10.1016/S0960‑894X(01)00832‑0 11844704
    [Google Scholar]
  12. Liu J. Wu F. Chen L. Hu J. Zhao L. Chen C. Peng L. Evaluation of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives as tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 2011 21 8 2376 2379 10.1016/j.bmcl.2011.02.076 21411319
    [Google Scholar]
  13. Jiang H. Zhang W.J. Li P.H. Wang J. Dong C.Z. Zhang K. Chen H.X. Du Z.Y. Synthesis and biological evaluation of novel carbazole-rhodanine conjugates as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett. 2018 28 8 1320 1323 10.1016/j.bmcl.2018.03.017 29545100
    [Google Scholar]
  14. Karaman M. Temel Y. Bayindir S. Inhibition effect of rhodanines containing benzene moieties on pentose phosphate pathway enzymes and molecular docking. J. Mol. Struct. 2020 1220 128700 10.1016/j.molstruc.2020.128700
    [Google Scholar]
  15. Irvine M.W. Patrick G.L. Kewney J. Hastings S.F. MacKenzie S.J. Rhodanine derivatives as novel inhibitors of PDE4. Bioorg. Med. Chem. Lett. 2008 18 6 2032 2037 10.1016/j.bmcl.2008.01.117 18304812
    [Google Scholar]
  16. Chandrappa S. Chandru H. Sharada A.C. Vinaya K. Ananda Kumar C.S. Thimmegowda N.R. Nagegowda P. Karuna Kumar M. Rangappa K.S. Synthesis and in vivo anticancer and antiangiogenic effects of novel thioxothiazolidin-4-one derivatives against transplantable mouse tumor. Med. Chem. Res. 2010 19 3 236 249 10.1007/s00044‑009‑9187‑7
    [Google Scholar]
  17. Song H. Lee Y.S. Roh E.J. Seo J.H. Oh K.S. Lee B.H. Han H. Shin K.J. Discovery of potent and selective rhodanine type IKKβ inhibitors by hit-to-lead strategy. Bioorg. Med. Chem. Lett. 2012 22 17 5668 5674 10.1016/j.bmcl.2012.06.088 22858099
    [Google Scholar]
  18. Ramkumar K. Yarovenko V.N. Nikitina A.S. Zavarzin I.V. Krayushkin M.M. Kovalenko L.V. Esqueda A. Odde S. Neamati N. Design, synthesis and structure-activity studies of rhodanine derivatives as HIV-1 integrase inhibitors. Molecules 2010 15 6 3958 3992 10.3390/molecules15063958 20657419
    [Google Scholar]
  19. Talele T.T. Arora P. Kulkarni S.S. Patel M.R. Singh S. Chudayeu M. Kaushik-Basu N. Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. 2010 18 13 4630 4638 10.1016/j.bmc.2010.05.030 20627595
    [Google Scholar]
  20. Patel B.A. Krishnan R. Khadtare N. Gurukumar K.R. Basu A. Arora P. Bhatt A. Patel M.R. Dana D. Kumar S. Kaushik-Basu N. Talele T.T. Design and synthesis of l- and d-phenylalanine derived rhodanines with novel C5-arylidenes as inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. 2013 21 11 3262 3271 10.1016/j.bmc.2013.03.041 23598249
    [Google Scholar]
  21. Sing W.T. Lee C.L. Yeo S.L. Lim S.P. Sim M.M. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg. Med. Chem. Lett. 2001 11 2 91 94 10.1016/S0960‑894X(00)00610‑7 11206478
    [Google Scholar]
  22. El-Miligy M.M.M. Hazzaa A.A. El-Messmary H. Nassra R.A. El-Hawash S.A.M. New hybrid molecules combining benzothiophene or benzofuran with rhodanine as dual COX-1/2 and 5-LOX inhibitors: Synthesis, biological evaluation and docking study. Bioorg. Chem. 2017 72 102 115 10.1016/j.bioorg.2017.03.012 28390993
    [Google Scholar]
  23. Yin L.J. bin Ahmad Kamar A.K.D. Fung G.T. Liang C.T. Avupati V.R. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed. Pharmacother. 2022 145 112406 10.1016/j.biopha.2021.112406 34785416
    [Google Scholar]
  24. Nitsche C. Schreier V.N. Behnam M.A.M. Kumar A. Bartenschlager R. Klein C.D. Thiazolidinone-peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J. Med. Chem. 2013 56 21 8389 8403 10.1021/jm400828u 24083834
    [Google Scholar]
  25. Krátký M. Štěpánková Š. Vorčáková K. Vinšová J. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorg. Chem. 2016 68 23 29 10.1016/j.bioorg.2016.07.004 27428597
    [Google Scholar]
  26. Heng S. Tieu W. Hautmann S. Kuan K. Pedersen D.S. Pietsch M. Gütschow M. Abell A.D. New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds. Bioorg. Med. Chem. 2011 19 24 7453 7463 10.1016/j.bmc.2011.10.042 22075233
    [Google Scholar]
  27. Khodair A.I. Awad M.K. Gesson J.P. Elshaier Y.A.M.M. New N-ribosides and N-mannosides of rhodanine derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling studies. Carbohydr. Res. 2020 487 107894 10.1016/j.carres.2019.107894 31865252
    [Google Scholar]
  28. Tintori C. Iovenitti G. Ceresola E.R. Ferrarese R. Zamperini C. Brai A. Poli G. Dreassi E. Cagno V. Lembo D. Canducci F. Botta M. Rhodanine derivatives as potent anti-HIV and anti-HSV microbicides. PLoS One 2018 13 6 e0198478 10.1371/journal.pone.0198478 29870553
    [Google Scholar]
  29. Ali Muhammad S. Ravi S. Thangamani A. Synthesis and evaluation of some novel N-substituted rhodanines for their anticancer activity. Med. Chem. Res. 2016 25 5 994 1004 10.1007/s00044‑016‑1545‑7
    [Google Scholar]
  30. Fu H. Hou X. Wang L. Dun Y. Yang X. Fang H. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. Bioorg. Med. Chem. Lett. 2015 25 22 5265 5269 10.1016/j.bmcl.2015.09.051 26421995
    [Google Scholar]
  31. Johnson S.L. Jung D. Forino M. Chen Y. Satterthwait A. Rozanov D.V. Strongin A.Y. Pellecchia M. Anthrax lethal factor protease inhibitors: Synthesis, SAR, and structure-based 3D QSAR studies. J. Med. Chem. 2006 49 1 27 30 10.1021/jm050892j 16392787
    [Google Scholar]
  32. Afifi O.S. Shaaban O.G. Abd El Razik H.A. Shams El-Dine S.E.D.A. Ashour F.A. El-Tombary A.A. Abu-Serie M.M. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg. Chem. 2019 87 821 837 10.1016/j.bioorg.2019.03.076 30999135
    [Google Scholar]
  33. Lin L. Lu L. Yuan C. Wang A. Zhu M. Fu X. Xing S. The dual inhibition against the activity and expression of tyrosine phosphatase PRL-3 from a rhodanine derivative. Bioorg. Med. Chem. Lett. 2021 41 127981 10.1016/j.bmcl.2021.127981 33766767
    [Google Scholar]
  34. Yang N. Ren Z. Zheng J. Feng L. Li D. Gao K. Zhang L. Liu Y. Zuo P. 5-(4-hydroxy-3-dimethoxybenzylidene)-rhodanine (RD-1)-improved mitochondrial function prevents anxiety- and depressive-like states induced by chronic corticosterone injections in mice. Neuropharmacology 2016 105 587 593 10.1016/j.neuropharm.2016.02.031 26926430
    [Google Scholar]
  35. Mermer A. The importance of rhodanine scaffold in medicinal chemistry: A comprehensive overview. Mini Rev. Med. Chem. 2021 21 6 738 789 10.2174/1389557521666201217144954 33334286
    [Google Scholar]
  36. Tomasić T. Masic L. Rhodanine as a privileged scaffold in drug discovery. Curr. Med. Chem. 2009 16 13 1596 1629 10.2174/092986709788186200 19442136
    [Google Scholar]
  37. Liu J. Wu Y. Piao H. Zhao X. Zhang W. Wang Y. Liu M. A comprehensive review on the biological and pharmacological activities of rhodanine based compounds for research and development of drugs. Mini Rev. Med. Chem. 2018 18 11 948 961 10.2174/1389557516666160928162724 27697041
    [Google Scholar]
  38. Mousavi S.M. Zarei M. Hashemi S.A. Babapoor A. Amani A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1132 1148 10.1080/21691401.2019.1573824 30942110
    [Google Scholar]
  39. Tomašić T. Peterlin Mašič L. Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation. Expert Opin. Drug Discov. 2012 7 7 549 560 10.1517/17460441.2012.688743 22607309
    [Google Scholar]
  40. Maddila S. Gorle S. Jonnalagadda S.B. Drug screening of rhodanine derivatives for antibacterial activity. Expert Opin. Drug Discov. 2020 15 2 203 229 10.1080/17460441.2020.1696768 31777321
    [Google Scholar]
  41. Kaminskyy D. Kryshchyshyn A. Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin. Drug Discov. 2017 12 12 1233 1252 10.1080/17460441.2017.1388370 29019278
    [Google Scholar]
  42. Brown E.D. Wright G.D. Antibacterial drug discovery in the resistance era. Nature 2016 529 7586 336 343 10.1038/nature17042 26791724
    [Google Scholar]
  43. Coates A. Hu Y. Bax R. Page C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 2002 1 11 895 910 10.1038/nrd940 12415249
    [Google Scholar]
  44. Burki T.K. Development of new antibacterial agents: A sense of urgency needed. Lancet Respir. Med. 2021 9 6 e54 10.1016/S2213‑2600(21)00230‑7 34000239
    [Google Scholar]
  45. Rodríguez-Baño J. Rossolini G.M. Schultsz C. Tacconelli E. Murthy S. Ohmagari N. Holmes A. Bachmann T. Goossens H. Canton R. Roberts A.P. Henriques-Normark B. Clancy C.J. Huttner B. Fagerstedt P. Lahiri S. Kaushic C. Hoffman S.J. Warren M. Zoubiane G. Essack S. Laxminarayan R. Plant L. Antimicrobial resistance research in a post-pandemic world: Insights on antimicrobial resistance research in the COVID-19 pandemic. J. Glob. Antimicrob. Resist. 2021 25 5 7 10.1016/j.jgar.2021.02.013 33662647
    [Google Scholar]
  46. Ghosh S. Bornman C. Zafer M.M. Antimicrobial resistance threats in the emerging COVID-19 pandemic: Where do we stand? J. Infect. Public Health 2021 14 5 555 560 10.1016/j.jiph.2021.02.011 33848884
    [Google Scholar]
  47. Tejchman W. Korona-Glowniak I. Kwietniewski L. Żesławska E. Nitek W. Suder P. Żylewski M. Malm A. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Part II. Saudi Pharm. J. 2020 28 4 414 426 10.1016/j.jsps.2020.02.002 32273800
    [Google Scholar]
  48. Xu L.L. Zheng C.J. Sun L.P. Miao J. Piao H.R. Synthesis of novel 1,3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents. Eur. J. Med. Chem. 2012 48 174 178 10.1016/j.ejmech.2011.12.011 22192483
    [Google Scholar]
  49. Abusetta A. Alumairi J. Alkaabi M.Y. Ajeil R.A. Shkaidim A.A. Akram D. Pajak J. Ghattas M.A. Atatreh N. AlNeyadi S.S. Design, synthesis, <i>in vitro</i> antibacterial activity, and docking studies of new rhodanine derivatives. Open J. Med. Chem. 2020 10 1 15 34 10.4236/ojmc.2020.101002
    [Google Scholar]
  50. Horishny V. Kartsev V. Geronikaki A. Matiychuk V. Petrou A. Glamoclija J. Ciric A. Sokovic M. 5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)alkancarboxylic acids as antimicrobial agents: Synthesis, biological evaluation, and molecular docking studies. Molecules 2020 25 8 1964 10.3390/molecules25081964 32340255
    [Google Scholar]
  51. Wu Y. Ding X. Xu S. Yang Y. Zhang X. Wang C. Lei H. Zhao Y. Design and synthesis of biaryloxazolidinone derivatives containing a rhodanine or thiohydantoin moiety as novel antibacterial agents against Gram-positive bacteria. Bioorg. Med. Chem. Lett. 2019 29 3 496 502 10.1016/j.bmcl.2018.12.012 30553735
    [Google Scholar]
  52. Trotsko N. Kosikowska U. Paneth A. Wujec M. Malm A. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharm. J. 2018 26 4 568 577 10.1016/j.jsps.2018.01.016 29844729
    [Google Scholar]
  53. Tejchman W. Korona-Glowniak I. Malm A. Zylewski M. Suder P. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res. 2017 26 6 1316 1324 10.1007/s00044‑017‑1852‑7 28515623
    [Google Scholar]
  54. Song M.X. Li S.H. Peng J.Y. Guo T.T. Xu W.H. Xiong S.F. Deng X.Q. Synthesis and bioactivity evaluation of n-arylsulfonylindole analogs bearing a rhodanine moiety as antibacterial agents. Molecules 2017 22 6 970 10.3390/molecules22060970 28613234
    [Google Scholar]
  55. Krátký M. Vinšová J. Stolaříková J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg. Med. Chem. 2017 25 6 1839 1845 10.1016/j.bmc.2017.01.045 28196707
    [Google Scholar]
  56. AbdelKhalek A. Ashby C.R. Jr Patel B.A. Talele T.T. Seleem M.N. In vitro antibacterial activity of rhodanine derivatives against pathogenic clinical isolates. PLoS One 2016 11 10 e0164227 10.1371/journal.pone.0164227 27711156
    [Google Scholar]
  57. Li C. Liu J.C. Li Y.R. Gou C. Zhang M.L. Liu H.Y. Li X.Z. Zheng C.J. Piao H.R. Synthesis and antimicrobial evaluation of 5-aryl-1,2,4-triazole-3-thione derivatives containing a rhodanine moiety. Bioorg. Med. Chem. Lett. 2015 25 15 3052 3056 10.1016/j.bmcl.2015.04.081 26048807
    [Google Scholar]
  58. Song M.X. Zheng C.J. Deng X.Q. Sun L.P. Wu Y. Hong L. Li Y.J. Liu Y. Wei Z.Y. Jin M.J. Piao H.R. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA). Eur. J. Med. Chem. 2013 60 376 385 10.1016/j.ejmech.2012.12.007 23314051
    [Google Scholar]
  59. Guo M. Zheng C.J. Song M.X. Wu Y. Sun L.P. Li Y.J. Liu Y. Piao H.R. Synthesis and biological evaluation of rhodanine derivatives bearing a quinoline moiety as potent antimicrobial agents. Bioorg. Med. Chem. Lett. 2013 23 15 4358 4361 10.1016/j.bmcl.2013.05.082 23787100
    [Google Scholar]
  60. Miao J. Zheng C.J. Sun L.P. Song M.X. Xu L.L. Piao H.R. Synthesis and potential antibacterial activity of new rhodanine-3-acetic acid derivatives. Med. Chem. Res. 2013 22 9 4125 4132 10.1007/s00044‑012‑0417‑z
    [Google Scholar]
  61. Che J. Zheng C.J. Song M.X. Bi Y.J. Liu Y. Li Y.J. Wu Y. Sun L.P. Piao H.R. Synthesis and antibacterial evaluation of furan derivatives bearing a rhodanine moiety. Med. Chem. Res. 2014 23 1 426 435 10.1007/s00044‑013‑0648‑7
    [Google Scholar]
  62. Patel B.A. Ashby C.R. Jr Hardej D. Talele T.T. The synthesis and SAR study of phenylalanine-derived (Z)-5-arylmethylidene rhodanines as anti-methicillin-resistant Staphylococcus aureus (MRSA) compounds. Bioorg. Med. Chem. Lett. 2013 23 20 5523 5527 10.1016/j.bmcl.2013.08.059 24012180
    [Google Scholar]
  63. Jin X. Zheng C.J. Song M.X. Wu Y. Sun L.P. Li Y.J. Yu L.J. Piao H.R. Synthesis and antimicrobial evaluation of l-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur. J. Med. Chem. 2012 56 203 209 10.1016/j.ejmech.2012.08.026 22982124
    [Google Scholar]
  64. Song M.X. Zheng C.J. Deng X.Q. Wang Q. Hou S.P. Liu T.T. Xing X.L. Piao H.R. Synthesis and bioactivity evaluation of rhodanine derivatives as potential anti-bacterial agents. Eur. J. Med. Chem. 2012 54 403 412 10.1016/j.ejmech.2012.05.023 22703706
    [Google Scholar]
  65. Zheng C.J. Xu L.L. Sun L.P. Miao J. Piao H.R. Synthesis and antibacterial activity of novel 1,3-diphenyl-1H-pyrazoles functionalized with phenylalanine-derived rhodanines. Eur. J. Med. Chem. 2012 58 112 116 10.1016/j.ejmech.2012.10.012 23123727
    [Google Scholar]
  66. Zheng C.J. Song M.X. Sun L.P. Wu Y. Hong L. Piao H.R. Synthesis and biological evaluation of 5-aryloxypyrazole derivatives bearing a rhodanine-3-aromatic acid as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2012 22 23 7024 7028 10.1016/j.bmcl.2012.09.107 23099091
    [Google Scholar]
  67. Chen Z.H. Zheng C.J. Sun L.P. Piao H.R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur. J. Med. Chem. 2010 45 12 5739 5743 10.1016/j.ejmech.2010.09.031 20889240
    [Google Scholar]
  68. Abou-Dobara M.I. El-Sonbati A.Z. Morgan S.M. Influence of substituent effects on spectroscopic properties and antimicrobial activity of 5-(4′-substituted phenylazo)-2-thioxothiazolidinone derivatives. World J. Microbiol. Biotechnol. 2013 29 1 119 126 10.1007/s11274‑012‑1164‑5 22968655
    [Google Scholar]
  69. Liu H. Sun D. Du H. Zheng C. Li J. Piao H. Li J. Sun L. Synthesis and biological evaluation of tryptophan-derived rhodanine derivatives as PTP1B inhibitors and anti-bacterial agents. Eur. J. Med. Chem. 2019 172 163 173 10.1016/j.ejmech.2019.03.059 30978561
    [Google Scholar]
  70. Üngören Ş.H. Albayrak S. Günay A. Yurtseven L. Yurttaş N. A new method for the preparation of 5-acylidene and 5-imino substituted rhodanine derivatives and their antioxidant and antimicrobial activities. Tetrahedron 2015 71 25 4312 4323 10.1016/j.tet.2015.04.069
    [Google Scholar]
  71. Zhang D. Markoulides M.S. Stepanovs D. Rydzik A.M. El-Hussein A. Bon C. Kamps J.J.A.G. Umland K.D. Collins P.M. Cahill S.T. Wang D.Y. von Delft F. Brem J. McDonough M.A. Schofield C.J. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases. Bioorg. Med. Chem. 2018 26 11 2928 2936 10.1016/j.bmc.2018.02.043 29655609
    [Google Scholar]
  72. Zinglé C. Tritsch D. Grosdemange-Billiard C. Rohmer M. Catechol–rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg. Med. Chem. 2014 22 14 3713 3719 10.1016/j.bmc.2014.05.004 24890653
    [Google Scholar]
  73. Brvar M. Perdih A. Hodnik V. Renko M. Anderluh G. Jerala R. Solmajer T. In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorg. Med. Chem. 2012 20 8 2572 2580 10.1016/j.bmc.2012.02.052 22444877
    [Google Scholar]
  74. Hamdy R. Soliman S.S.M. Alsaadi A.I. Fayed B. Hamoda A.M. Elseginy S.A. Husseiny M.I. Ibrahim A.S. Design and synthesis of new drugs inhibitors of Candida albicans hyphae and biofilm formation by upregulating the expression of TUP1 transcription repressor gene. Eur. J. Pharm. Sci. 2020 148 105327 10.1016/j.ejps.2020.105327 32272212
    [Google Scholar]
  75. Subhedar D.D. Shaikh M.H. Shingate B.B. Nawale L. Sarkar D. Khedkar V.M. Kalam Khan F.A. Sangshetti J.N. Quinolidene-rhodanine conjugates: Facile synthesis and biological evaluation. Eur. J. Med. Chem. 2017 125 385 399 10.1016/j.ejmech.2016.09.059 27688192
    [Google Scholar]
  76. Chauhan K. Sharma M. Saxena J. Singh S.V. Trivedi P. Srivastava K. Puri S.K. Saxena J.K. Chaturvedi V. Chauhan P.M.S. Synthesis and biological evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents. Eur. J. Med. Chem. 2013 62 693 704 10.1016/j.ejmech.2013.01.017 23454512
    [Google Scholar]
  77. Subhedar D.D. Shaikh M.H. Nawale L. Yeware A. Sarkar D. Khan F.A.K. Sangshetti J.N. Shingate B.B. Novel tetrazoloquinoline–rhodanine conjugates: Highly efficient synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2016 26 9 2278 2283 10.1016/j.bmcl.2016.03.045 27013391
    [Google Scholar]
  78. Alegaon S.G. Alagawadi K.R. Sonkusare P.V. Chaudhary S.M. Dadwe D.H. Shah A.S. Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett. 2012 22 5 1917 1921 10.1016/j.bmcl.2012.01.052 22325950
    [Google Scholar]
  79. Shaikh M.S. Kanhed A.M. Chandrasekaran B. Palkar M.B. Agrawal N. Lherbet C. Hampannavar G.A. Karpoormath R. Discovery of novel N-methyl carbazole tethered rhodanine derivatives as direct inhibitors of Mycobacterium tuberculosis InhA. Bioorg. Med. Chem. Lett. 2019 29 16 2338 2344 10.1016/j.bmcl.2019.06.015 31227345
    [Google Scholar]
  80. Mori M. Deodato D. Kasula M. Ferraris D.M. Sanna A. De Logu A. Rizzi M. Botta M. Design, synthesis, SAR and biological investigation of 3-(carboxymethyl)rhodanine and aminothiazole inhibitors of Mycobacterium tuberculosis Zmp1. Bioorg. Med. Chem. Lett. 2018 28 4 637 641 10.1016/j.bmcl.2018.01.031 29395975
    [Google Scholar]
  81. bin Ahmad Kamar AKD Ju Yin L Tze Liang C Tjin Fung G Avupati VR Rhodanine scaffold: A review of antidiabetic potential and structure–activity relationships (SAR). Med. Drug Discov. 2022 15 100131 10.1016/j.medidd.2022.100131
    [Google Scholar]
  82. Chaurasiya A. Chawla A. P. Synthetic strategy of 2-thioxo-4-thiazolidinone with core chemistry and biological importance. Pharmaspire 2022 14 03 10.56933/Pharmaspire.2022.14212
    [Google Scholar]
  83. Yarovenko V. Nikitina A. Zavarzin I. Krayushkin M. Kovalenko L. A convenient synthesis of n-substituted 2-thioxo-1,3-thiazolidin-4-ones. Synthesis 2006 2006 8 1246 1248 10.1055/s‑2006‑926409
    [Google Scholar]
  84. Pan Z. An W. Wu L. Fan L. Yang G. Xu C. A new synthesis strategy for rhodanine and its derivatives. Synlett 2021 32 11 1131 1134 10.1055/a‑1485‑5925
    [Google Scholar]
  85. Brown F.C. Bradsher C.K. Morgan E.C. Tetenbaum M. Wilder P. Jr Some 3-substituted rhodanines. J. Am. Chem. Soc. 1956 78 2 384 388 10.1021/ja01583a037
    [Google Scholar]
  86. Aryanasab F. Shokri A. Saidi M.R. A simple approach to the synthesis of 3-substituted rhodanines and thiazolidine-2,4-diones. Sci. Iran. 2013 20 6
    [Google Scholar]
  87. Alizadeh A. Rostamnia S. Zohreh N. Hosseinpour R. A simple and effective approach to the synthesis of rhodanine derivatives via three-component reactions in water. Tetrahedron Lett. 2009 50 14 1533 1535 10.1016/j.tetlet.2008.12.107
    [Google Scholar]
  88. Azizi N. Hasani M. Khajeh M. Edrisi M. A straightforward and sustainable one-pot, four-component synthesis of rhodanine derivatives. Tetrahedron Lett. 2015 56 10 1189 1192 10.1016/j.tetlet.2015.01.102
    [Google Scholar]
  89. Singh S.J. Chauhan S.M.S. Potassium carbonate catalyzed one pot four-component synthesis of rhodanine derivatives. Tetrahedron Lett. 2013 54 20 2484 2488 10.1016/j.tetlet.2013.03.004
    [Google Scholar]
  90. Nitsche C. Klein C.D. Aqueous microwave-assisted one-pot synthesis of N-substituted rhodanines. Tetrahedron Lett. 2012 53 39 5197 5201 10.1016/j.tetlet.2012.07.002
    [Google Scholar]
  91. Radi M. Botta L. Casaluce G. Bernardini M. Botta M. Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives. J. Comb. Chem. 2010 12 1 200 205 10.1021/cc9001789 20028090
    [Google Scholar]
  92. Liang Y. Tang M.L. Huo Z. Zhang C. Sun X. A concise approach to n-substituted rhodanines through a base-assisted one-pot coupling and cyclization process. Molecules 2020 25 5 1138 10.3390/molecules25051138 32143323
    [Google Scholar]
  93. Arafa W.A.A. Fareed M.F. Rabeh S.A. Shaker R.M. Ultrasound mediated green synthesis of rhodanine derivatives: Synthesis, chemical behavior, and antibacterial activity. Phosphorus Sulfur Silicon Relat. Elem. 2016 191 8 1129 1136 10.1080/10426507.2016.1146276
    [Google Scholar]
  94. Karmakar R. Mukhopadhyay C. Ultrasonication under catalyst-free condition: an advanced synthetic technique toward the green synthesis of bioactive heterocycles. Green Synthetic Approaches for Biologically Relevant Heterocycles. Advanced Synthetic Techniques 2021 1 10.1016/B978‑0‑12‑820586‑0.00014‑5
    [Google Scholar]
  95. Kumar D. Narwal S. Sandhu J.S. Catalyst-free synthesis of highly biologically active 5-arylidene rhodanine and 2,4-thiazolidinedione derivatives using aldonitrones in polyethylene glycol. Int. J. Med. Chem. 2013 2013 1 4 10.1155/2013/273534 25374689
    [Google Scholar]
  96. Baharfar R. Azimi R. Barzegar S. Mohseni M. Efficient synthesis of rhodanine-based amides via passerini reaction using tetramethylguanidine-functionalized silica nanoparticles as reusable catalyst. J. Braz. Chem. Soc. 2015 26 7 10.5935/0103‑5053.20150108
    [Google Scholar]
  97. Hesse S. Synthesis of 5-arylidenerhodanines in L-proline-based deep eutectic solvent. Beilstein J. Org. Chem. 2023 19 1537 1544 10.3762/bjoc.19.110 37822921
    [Google Scholar]
  98. Lei X. Feng J. Guo Q. Xu C. Shi J. Base-Promoted formal [3 + 2] cycloaddition of α-halohydroxamates with carbon disulfide to synthesize polysubstituted rhodanines. Org. Lett. 2022 24 15 2837 2841 10.1021/acs.orglett.2c00736 35394789
    [Google Scholar]
  99. Tissaoui K. Raouafi N. Boujlel K. Electrogenerated base-promoted synthesis of N -benzylic rhodanine and carbamodithioate derivatives. J. Sulfur Chem. 2010 31 1 41 48 10.1080/17415990903191752
    [Google Scholar]
  100. Mendgen T. Steuer C. Klein C.D. Privileged scaffolds or promiscuous binders: A comparative study on rhodanines and related heterocycles in medicinal chemistry. J. Med. Chem. 2012 55 2 743 753 10.1021/jm201243p 22077389
    [Google Scholar]
  101. Tang S.Q. Lee Y.Y.I. Packiaraj D.S. Ho H.K. Chai C.L.L. Systematic evaluation of the metabolism and toxicity of thiazolidinone and imidazolidinone heterocycles. Chem. Res. Toxicol. 2015 28 10 2019 2033 10.1021/acs.chemrestox.5b00247 26401548
    [Google Scholar]
  102. Zeiger E. Anderson B. Haworth S. Lawlor T. Mortelmans K. Speck W. Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen 1987 9 9 Suppl 10.1002/em.2860090603
    [Google Scholar]
  103. Saha S. New L.S. Ho H.K. Chui W.K. Chan E.C.Y. Investigation of the role of the thiazolidinedione ring of troglitazone in inducing hepatotoxicity. Toxicol. Lett. 2010 192 2 141 149 10.1016/j.toxlet.2009.10.014 19854250
    [Google Scholar]
/content/journals/aia/10.2174/0122113525295259240815073809
Loading
/content/journals/aia/10.2174/0122113525295259240815073809
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antimycobacterial ; thiazolidinone ; Rhodanine ; antibacterial ; antimicrobial ; antifungal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test