Skip to content
2000
Volume 23, Issue 3
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Rhodanines are five-member heterocyclics having sulfur, nitrogen, and oxygen atoms in their ring structure and exhibit potent as well as a broad range of pharmacological activities. They are thiazolidine derivatives and are well-known in medicinal chemistry for their wide spectrum of antimicrobial activities. Various modifications can be made to the structure of the rhodanine ring. Studies in recent years have validated the possibility of the potential of rhodanine derivatives to exhibit antimicrobial activity against both Gram-positive and Gram-negative bacterial strains, as well as mycobacterial and fungal strains. In this review, the synthesis, biological activity, and Structure-activity Relationships (SARs) of molecules based on rhodanine against different microbes have been described.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525295259240815073809
2024-09-25
2025-04-09
Loading full text...

Full text loading...

References

  1. BoströmJ. BrownD.G. YoungR.J. KeserüG.M. Expanding the medicinal chemistry synthetic toolbox.Nat. Rev. Drug Discov.2018171070972710.1038/nrd.2018.116 30140018
    [Google Scholar]
  2. BlakemoreD.C. CastroL. ChurcherI. ReesD.C. ThomasA.W. WilsonD.M. WoodA. Organic synthesis provides opportunities to transform drug discovery.Nat. Chem.201810438339410.1038/s41557‑018‑0021‑z 29568051
    [Google Scholar]
  3. GomtsyanA. Heterocycles in drugs and drug discovery.Chem. Heterocycl. Compd.201248171010.1007/s10593‑012‑0960‑z
    [Google Scholar]
  4. TaylorA.P. RobinsonR.P. FobianY.M. BlakemoreD.C. JonesL.H. FadeyiO. Modern advances in heterocyclic chemistry in drug discovery.Org. Biomol. Chem.201614286611663710.1039/C6OB00936K 27282396
    [Google Scholar]
  5. ZhangZ. NieX. WangF. ChenG. HuangW.Q. XiaL. ZhangW.J. HaoZ.Y. HongC.Y. WangL.H. YouY.Z. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers.Nat. Commun.2020111365410.1038/s41467‑020‑17474‑0 32694628
    [Google Scholar]
  6. RamirezM.A. BorjaN.L. Epalrestat: An aldose reductase inhibitor for the treatment of diabetic neuropathy.Pharmacotherapy200828564665510.1592/phco.28.5.646 18447661
    [Google Scholar]
  7. WelschM.E. SnyderS.A. StockwellB.R. Privileged scaffolds for library design and drug discovery.Curr. Opin. Chem. Biol.201014334736110.1016/j.cbpa.2010.02.018 20303320
    [Google Scholar]
  8. ZhaoH. DietrichJ. Privileged scaffolds in lead generation.Expert Opin. Drug Discov.201510778179010.1517/17460441.2015.1041496 25959748
    [Google Scholar]
  9. Kargar RaziM. JavahershenasR. AdelzadehM. GhobadiM. KazemiM. Synthetic routes to rhodanine scaffolds.Synth. Commun.202050243739375610.1080/00397911.2020.1812658
    [Google Scholar]
  10. KaminskyyD. KryshchyshynA. LesykR. 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry.Eur. J. Med. Chem.201714054259410.1016/j.ejmech.2017.09.031 28987611
    [Google Scholar]
  11. SimM.M. NgS.B. BussA.D. CrastaS.C. GohK.L. LeeS.K. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase.Bioorg. Med. Chem. Lett.200212469769910.1016/S0960‑894X(01)00832‑0 11844704
    [Google Scholar]
  12. LiuJ. WuF. ChenL. HuJ. ZhaoL. ChenC. PengL. Evaluation of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives as tyrosinase inhibitors.Bioorg. Med. Chem. Lett.20112182376237910.1016/j.bmcl.2011.02.076 21411319
    [Google Scholar]
  13. JiangH. ZhangW.J. LiP.H. WangJ. DongC.Z. ZhangK. ChenH.X. DuZ.Y. Synthesis and biological evaluation of novel carbazole-rhodanine conjugates as topoisomerase II inhibitors.Bioorg. Med. Chem. Lett.20182881320132310.1016/j.bmcl.2018.03.017 29545100
    [Google Scholar]
  14. KaramanM. TemelY. BayindirS. Inhibition effect of rhodanines containing benzene moieties on pentose phosphate pathway enzymes and molecular docking.J. Mol. Struct.2020122012870010.1016/j.molstruc.2020.128700
    [Google Scholar]
  15. IrvineM.W. PatrickG.L. KewneyJ. HastingsS.F. MacKenzieS.J. Rhodanine derivatives as novel inhibitors of PDE4.Bioorg. Med. Chem. Lett.20081862032203710.1016/j.bmcl.2008.01.117 18304812
    [Google Scholar]
  16. ChandrappaS. ChandruH. SharadaA.C. VinayaK. Ananda KumarC.S. ThimmegowdaN.R. NagegowdaP. Karuna KumarM. RangappaK.S. Synthesis and in vivo anticancer and antiangiogenic effects of novel thioxothiazolidin-4-one derivatives against transplantable mouse tumor.Med. Chem. Res.201019323624910.1007/s00044‑009‑9187‑7
    [Google Scholar]
  17. SongH. LeeY.S. RohE.J. SeoJ.H. OhK.S. LeeB.H. HanH. ShinK.J. Discovery of potent and selective rhodanine type IKKβ inhibitors by hit-to-lead strategy.Bioorg. Med. Chem. Lett.201222175668567410.1016/j.bmcl.2012.06.088 22858099
    [Google Scholar]
  18. RamkumarK. YarovenkoV.N. NikitinaA.S. ZavarzinI.V. KrayushkinM.M. KovalenkoL.V. EsquedaA. OddeS. NeamatiN. Design, synthesis and structure-activity studies of rhodanine derivatives as HIV-1 integrase inhibitors.Molecules20101563958399210.3390/molecules15063958 20657419
    [Google Scholar]
  19. TaleleT.T. AroraP. KulkarniS.S. PatelM.R. SinghS. ChudayeuM. Kaushik-BasuN. Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase.Bioorg. Med. Chem.201018134630463810.1016/j.bmc.2010.05.030 20627595
    [Google Scholar]
  20. PatelB.A. KrishnanR. KhadtareN. GurukumarK.R. BasuA. AroraP. BhattA. PatelM.R. DanaD. KumarS. Kaushik-BasuN. TaleleT.T. Design and synthesis of l- and d-phenylalanine derived rhodanines with novel C5-arylidenes as inhibitors of HCV NS5B polymerase.Bioorg. Med. Chem.201321113262327110.1016/j.bmc.2013.03.041 23598249
    [Google Scholar]
  21. SingW.T. LeeC.L. YeoS.L. LimS.P. SimM.M. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor.Bioorg. Med. Chem. Lett.2001112919410.1016/S0960‑894X(00)00610‑7 11206478
    [Google Scholar]
  22. El-MiligyM.M.M. HazzaaA.A. El-MessmaryH. NassraR.A. El-HawashS.A.M. New hybrid molecules combining benzothiophene or benzofuran with rhodanine as dual COX-1/2 and 5-LOX inhibitors: Synthesis, biological evaluation and docking study.Bioorg. Chem.20177210211510.1016/j.bioorg.2017.03.012 28390993
    [Google Scholar]
  23. YinL.J. bin Ahmad Kamar, A.K.D.; Fung, G.T.; Liang, C.T.; Avupati, V.R. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives.Biomed. Pharmacother.202214511240610.1016/j.biopha.2021.112406 34785416
    [Google Scholar]
  24. NitscheC. SchreierV.N. BehnamM.A.M. KumarA. BartenschlagerR. KleinC.D. Thiazolidinone-peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture.J. Med. Chem.201356218389840310.1021/jm400828u 24083834
    [Google Scholar]
  25. KrátkýM. ŠtěpánkováŠ. VorčákováK. VinšováJ. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.Bioorg. Chem.201668232910.1016/j.bioorg.2016.07.004 27428597
    [Google Scholar]
  26. HengS. TieuW. HautmannS. KuanK. PedersenD.S. PietschM. GütschowM. AbellA.D. New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds.Bioorg. Med. Chem.201119247453746310.1016/j.bmc.2011.10.042 22075233
    [Google Scholar]
  27. KhodairA.I. AwadM.K. GessonJ.P. ElshaierY.A.M.M. New N-ribosides and N-mannosides of rhodanine derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling studies.Carbohydr. Res.202048710789410.1016/j.carres.2019.107894 31865252
    [Google Scholar]
  28. TintoriC. IovenittiG. CeresolaE.R. FerrareseR. ZamperiniC. BraiA. PoliG. DreassiE. CagnoV. LemboD. CanducciF. BottaM. Rhodanine derivatives as potent anti-HIV and anti-HSV microbicides.PLoS One2018136e019847810.1371/journal.pone.0198478 29870553
    [Google Scholar]
  29. Ali MuhammadS. RaviS. ThangamaniA. Synthesis and evaluation of some novel N-substituted rhodanines for their anticancer activity.Med. Chem. Res.2016255994100410.1007/s00044‑016‑1545‑7
    [Google Scholar]
  30. FuH. HouX. WangL. DunY. YangX. FangH. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors.Bioorg. Med. Chem. Lett.201525225265526910.1016/j.bmcl.2015.09.051 26421995
    [Google Scholar]
  31. JohnsonS.L. JungD. ForinoM. ChenY. SatterthwaitA. RozanovD.V. StronginA.Y. PellecchiaM. Anthrax lethal factor protease inhibitors: Synthesis, SAR, and structure-based 3D QSAR studies.J. Med. Chem.2006491273010.1021/jm050892j 16392787
    [Google Scholar]
  32. AfifiO.S. ShaabanO.G. Abd El RazikH.A. Shams El-DineS.E.D.A. AshourF.A. El-TombaryA.A. Abu-SerieM.M. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential.Bioorg. Chem.20198782183710.1016/j.bioorg.2019.03.076 30999135
    [Google Scholar]
  33. LinL. LuL. YuanC. WangA. ZhuM. FuX. XingS. The dual inhibition against the activity and expression of tyrosine phosphatase PRL-3 from a rhodanine derivative.Bioorg. Med. Chem. Lett.20214112798110.1016/j.bmcl.2021.127981 33766767
    [Google Scholar]
  34. YangN. RenZ. ZhengJ. FengL. LiD. GaoK. ZhangL. LiuY. ZuoP. 5-(4-hydroxy-3-dimethoxybenzylidene)-rhodanine (RD-1)-improved mitochondrial function prevents anxiety- and depressive-like states induced by chronic corticosterone injections in mice.Neuropharmacology201610558759310.1016/j.neuropharm.2016.02.031 26926430
    [Google Scholar]
  35. MermerA. The importance of rhodanine scaffold in medicinal chemistry: A comprehensive overview.Mini Rev. Med. Chem.202121673878910.2174/1389557521666201217144954 33334286
    [Google Scholar]
  36. TomasićT. MasicL. Rhodanine as a privileged scaffold in drug discovery.Curr. Med. Chem.200916131596162910.2174/092986709788186200 19442136
    [Google Scholar]
  37. LiuJ. WuY. PiaoH. ZhaoX. ZhangW. WangY. LiuM. A comprehensive review on the biological and pharmacological activities of rhodanine based compounds for research and development of drugs.Mini Rev. Med. Chem.2018181194896110.2174/1389557516666160928162724 27697041
    [Google Scholar]
  38. MousaviS.M. ZareiM. HashemiS.A. BabapoorA. AmaniA.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities.Artif. Cells Nanomed. Biotechnol.20194711132114810.1080/21691401.2019.1573824 30942110
    [Google Scholar]
  39. TomašićT. Peterlin MašičL. Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation.Expert Opin. Drug Discov.20127754956010.1517/17460441.2012.688743 22607309
    [Google Scholar]
  40. MaddilaS. GorleS. JonnalagaddaS.B. Drug screening of rhodanine derivatives for antibacterial activity.Expert Opin. Drug Discov.202015220322910.1080/17460441.2020.1696768 31777321
    [Google Scholar]
  41. KaminskyyD. KryshchyshynA. LesykR. Recent developments with rhodanine as a scaffold for drug discovery.Expert Opin. Drug Discov.201712121233125210.1080/17460441.2017.1388370 29019278
    [Google Scholar]
  42. BrownE.D. WrightG.D. Antibacterial drug discovery in the resistance era.Nature2016529758633634310.1038/nature17042 26791724
    [Google Scholar]
  43. CoatesA. HuY. BaxR. PageC. The future challenges facing the development of new antimicrobial drugs.Nat. Rev. Drug Discov.200211189591010.1038/nrd940 12415249
    [Google Scholar]
  44. BurkiT.K. Development of new antibacterial agents: A sense of urgency needed.Lancet Respir. Med.202196e5410.1016/S2213‑2600(21)00230‑7 34000239
    [Google Scholar]
  45. Rodríguez-BañoJ. RossoliniG.M. SchultszC. TacconelliE. MurthyS. OhmagariN. HolmesA. BachmannT. GoossensH. CantonR. RobertsA.P. Henriques-NormarkB. ClancyC.J. HuttnerB. FagerstedtP. LahiriS. KaushicC. HoffmanS.J. WarrenM. ZoubianeG. EssackS. LaxminarayanR. PlantL. Antimicrobial resistance research in a post-pandemic world: Insights on antimicrobial resistance research in the COVID-19 pandemic.J. Glob. Antimicrob. Resist.2021255710.1016/j.jgar.2021.02.013 33662647
    [Google Scholar]
  46. GhoshS. BornmanC. ZaferM.M. Antimicrobial resistance threats in the emerging COVID-19 pandemic: Where do we stand?J. Infect. Public Health202114555556010.1016/j.jiph.2021.02.011 33848884
    [Google Scholar]
  47. TejchmanW. Korona-GlowniakI. KwietniewskiL. ŻesławskaE. NitekW. SuderP. ŻylewskiM. MalmA. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Part II.Saudi Pharm. J.202028441442610.1016/j.jsps.2020.02.002 32273800
    [Google Scholar]
  48. XuL.L. ZhengC.J. SunL.P. MiaoJ. PiaoH.R. Synthesis of novel 1,3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents.Eur. J. Med. Chem.20124817417810.1016/j.ejmech.2011.12.011 22192483
    [Google Scholar]
  49. AbusettaA. AlumairiJ. AlkaabiM.Y. AjeilR.A. ShkaidimA.A. AkramD. PajakJ. GhattasM.A. AtatrehN. AlNeyadiS.S. Design, synthesis, in vitro antibacterial activity, and docking studies of new rhodanine derivatives.Open J. Med. Chem.2020101153410.4236/ojmc.2020.101002
    [Google Scholar]
  50. HorishnyV. KartsevV. GeronikakiA. MatiychukV. PetrouA. GlamoclijaJ. CiricA. SokovicM. 5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)alkancarboxylic acids as antimicrobial agents: Synthesis, biological evaluation, and molecular docking studies.Molecules2020258196410.3390/molecules25081964 32340255
    [Google Scholar]
  51. WuY. DingX. XuS. YangY. ZhangX. WangC. LeiH. ZhaoY. Design and synthesis of biaryloxazolidinone derivatives containing a rhodanine or thiohydantoin moiety as novel antibacterial agents against Gram-positive bacteria.Bioorg. Med. Chem. Lett.201929349650210.1016/j.bmcl.2018.12.012 30553735
    [Google Scholar]
  52. TrotskoN. KosikowskaU. PanethA. WujecM. MalmA. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties.Saudi Pharm. J.201826456857710.1016/j.jsps.2018.01.016 29844729
    [Google Scholar]
  53. TejchmanW. Korona-GlowniakI. MalmA. ZylewskiM. SuderP. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids.Med. Chem. Res.20172661316132410.1007/s00044‑017‑1852‑7 28515623
    [Google Scholar]
  54. SongM.X. LiS.H. PengJ.Y. GuoT.T. XuW.H. XiongS.F. DengX.Q. Synthesis and bioactivity evaluation of n-arylsulfonylindole analogs bearing a rhodanine moiety as antibacterial agents.Molecules201722697010.3390/molecules22060970 28613234
    [Google Scholar]
  55. KrátkýM. VinšováJ. StolaříkováJ. Antimicrobial activity of rhodanine-3-acetic acid derivatives.Bioorg. Med. Chem.20172561839184510.1016/j.bmc.2017.01.045 28196707
    [Google Scholar]
  56. AbdelKhalekA. AshbyC.R.Jr PatelB.A. TaleleT.T. SeleemM.N. In vitro antibacterial activity of rhodanine derivatives against pathogenic clinical isolates.PLoS One20161110e016422710.1371/journal.pone.0164227 27711156
    [Google Scholar]
  57. LiC. LiuJ.C. LiY.R. GouC. ZhangM.L. LiuH.Y. LiX.Z. ZhengC.J. PiaoH.R. Synthesis and antimicrobial evaluation of 5-aryl-1,2,4-triazole-3-thione derivatives containing a rhodanine moiety.Bioorg. Med. Chem. Lett.201525153052305610.1016/j.bmcl.2015.04.081 26048807
    [Google Scholar]
  58. SongM.X. ZhengC.J. DengX.Q. SunL.P. WuY. HongL. LiY.J. LiuY. WeiZ.Y. JinM.J. PiaoH.R. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA).Eur. J. Med. Chem.20136037638510.1016/j.ejmech.2012.12.007 23314051
    [Google Scholar]
  59. GuoM. ZhengC.J. SongM.X. WuY. SunL.P. LiY.J. LiuY. PiaoH.R. Synthesis and biological evaluation of rhodanine derivatives bearing a quinoline moiety as potent antimicrobial agents.Bioorg. Med. Chem. Lett.201323154358436110.1016/j.bmcl.2013.05.082 23787100
    [Google Scholar]
  60. MiaoJ. ZhengC.J. SunL.P. SongM.X. XuL.L. PiaoH.R. Synthesis and potential antibacterial activity of new rhodanine-3-acetic acid derivatives.Med. Chem. Res.20132294125413210.1007/s00044‑012‑0417‑z
    [Google Scholar]
  61. CheJ. ZhengC.J. SongM.X. BiY.J. LiuY. LiY.J. WuY. SunL.P. PiaoH.R. Synthesis and antibacterial evaluation of furan derivatives bearing a rhodanine moiety.Med. Chem. Res.201423142643510.1007/s00044‑013‑0648‑7
    [Google Scholar]
  62. PatelB.A. AshbyC.R.Jr HardejD. TaleleT.T. The synthesis and SAR study of phenylalanine-derived (Z)-5-arylmethylidene rhodanines as anti-methicillin-resistant Staphylococcus aureus (MRSA) compounds.Bioorg. Med. Chem. Lett.201323205523552710.1016/j.bmcl.2013.08.059 24012180
    [Google Scholar]
  63. JinX. ZhengC.J. SongM.X. WuY. SunL.P. LiY.J. YuL.J. PiaoH.R. Synthesis and antimicrobial evaluation of l-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone.Eur. J. Med. Chem.20125620320910.1016/j.ejmech.2012.08.026 22982124
    [Google Scholar]
  64. SongM.X. ZhengC.J. DengX.Q. WangQ. HouS.P. LiuT.T. XingX.L. PiaoH.R. Synthesis and bioactivity evaluation of rhodanine derivatives as potential anti-bacterial agents.Eur. J. Med. Chem.20125440341210.1016/j.ejmech.2012.05.023 22703706
    [Google Scholar]
  65. ZhengC.J. XuL.L. SunL.P. MiaoJ. PiaoH.R. Synthesis and antibacterial activity of novel 1,3-diphenyl-1H-pyrazoles functionalized with phenylalanine-derived rhodanines.Eur. J. Med. Chem.20125811211610.1016/j.ejmech.2012.10.012 23123727
    [Google Scholar]
  66. ZhengC.J. SongM.X. SunL.P. WuY. HongL. PiaoH.R. Synthesis and biological evaluation of 5-aryloxypyrazole derivatives bearing a rhodanine-3-aromatic acid as potential antimicrobial agents.Bioorg. Med. Chem. Lett.201222237024702810.1016/j.bmcl.2012.09.107 23099091
    [Google Scholar]
  67. ChenZ.H. ZhengC.J. SunL.P. PiaoH.R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity.Eur. J. Med. Chem.201045125739574310.1016/j.ejmech.2010.09.031 20889240
    [Google Scholar]
  68. Abou-DobaraM.I. El-SonbatiA.Z. MorganS.M. Influence of substituent effects on spectroscopic properties and antimicrobial activity of 5-(4′-substituted phenylazo)-2-thioxothiazolidinone derivatives.World J. Microbiol. Biotechnol.201329111912610.1007/s11274‑012‑1164‑5 22968655
    [Google Scholar]
  69. LiuH. SunD. DuH. ZhengC. LiJ. PiaoH. LiJ. SunL. Synthesis and biological evaluation of tryptophan-derived rhodanine derivatives as PTP1B inhibitors and anti-bacterial agents.Eur. J. Med. Chem.201917216317310.1016/j.ejmech.2019.03.059 30978561
    [Google Scholar]
  70. ÜngörenŞ.H. AlbayrakS. GünayA. YurtsevenL. YurttaşN. A new method for the preparation of 5-acylidene and 5-imino substituted rhodanine derivatives and their antioxidant and antimicrobial activities.Tetrahedron201571254312432310.1016/j.tet.2015.04.069
    [Google Scholar]
  71. ZhangD. MarkoulidesM.S. StepanovsD. RydzikA.M. El-HusseinA. BonC. KampsJ.J.A.G. UmlandK.D. CollinsP.M. CahillS.T. WangD.Y. von DelftF. BremJ. McDonoughM.A. SchofieldC.J. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases.Bioorg. Med. Chem.201826112928293610.1016/j.bmc.2018.02.043 29655609
    [Google Scholar]
  72. ZingléC. TritschD. Grosdemange-BilliardC. RohmerM. Catechol–rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR).Bioorg. Med. Chem.201422143713371910.1016/j.bmc.2014.05.004 24890653
    [Google Scholar]
  73. BrvarM. PerdihA. HodnikV. RenkoM. AnderluhG. JeralaR. SolmajerT. In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B.Bioorg. Med. Chem.20122082572258010.1016/j.bmc.2012.02.052 22444877
    [Google Scholar]
  74. HamdyR. SolimanS.S.M. AlsaadiA.I. FayedB. HamodaA.M. ElseginyS.A. HusseinyM.I. IbrahimA.S. Design and synthesis of new drugs inhibitors of Candida albicans hyphae and biofilm formation by upregulating the expression of TUP1 transcription repressor gene.Eur. J. Pharm. Sci.202014810532710.1016/j.ejps.2020.105327 32272212
    [Google Scholar]
  75. SubhedarD.D. ShaikhM.H. ShingateB.B. NawaleL. SarkarD. KhedkarV.M. Kalam KhanF.A. SangshettiJ.N. Quinolidene-rhodanine conjugates: Facile synthesis and biological evaluation.Eur. J. Med. Chem.201712538539910.1016/j.ejmech.2016.09.059 27688192
    [Google Scholar]
  76. ChauhanK. SharmaM. SaxenaJ. SinghS.V. TrivediP. SrivastavaK. PuriS.K. SaxenaJ.K. ChaturvediV. ChauhanP.M.S. Synthesis and biological evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents.Eur. J. Med. Chem.20136269370410.1016/j.ejmech.2013.01.017 23454512
    [Google Scholar]
  77. SubhedarD.D. ShaikhM.H. NawaleL. YewareA. SarkarD. KhanF.A.K. SangshettiJ.N. ShingateB.B. Novel tetrazoloquinoline–rhodanine conjugates: Highly efficient synthesis and biological evaluation.Bioorg. Med. Chem. Lett.20162692278228310.1016/j.bmcl.2016.03.045 27013391
    [Google Scholar]
  78. AlegaonS.G. AlagawadiK.R. SonkusareP.V. ChaudharyS.M. DadweD.H. ShahA.S. Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents.Bioorg. Med. Chem. Lett.20122251917192110.1016/j.bmcl.2012.01.052 22325950
    [Google Scholar]
  79. ShaikhM.S. KanhedA.M. ChandrasekaranB. PalkarM.B. AgrawalN. LherbetC. HampannavarG.A. KarpoormathR. Discovery of novel N-methyl carbazole tethered rhodanine derivatives as direct inhibitors of Mycobacterium tuberculosis InhA.Bioorg. Med. Chem. Lett.201929162338234410.1016/j.bmcl.2019.06.015 31227345
    [Google Scholar]
  80. MoriM. DeodatoD. KasulaM. FerrarisD.M. SannaA. De LoguA. RizziM. BottaM. Design, synthesis, SAR and biological investigation of 3-(carboxymethyl)rhodanine and aminothiazole inhibitors of Mycobacterium tuberculosis Zmp1.Bioorg. Med. Chem. Lett.201828463764110.1016/j.bmcl.2018.01.031 29395975
    [Google Scholar]
  81. bin Ahmad Kamar, AKD; Ju Yin, L; Tze Liang, C; Tjin Fung, G; Avupati, VR Rhodanine scaffold: A review of antidiabetic potential and structure–activity relationships (SAR).Med. Drug Discov.20221510013110.1016/j.medidd.2022.100131
    [Google Scholar]
  82. ChaurasiyaA. ChawlaA. P. Synthetic strategy of 2-thioxo-4-thiazolidinone with core chemistry and biological importance.Pharmaspire2022140310.56933/Pharmaspire.2022.14212
    [Google Scholar]
  83. YarovenkoV. NikitinaA. ZavarzinI. KrayushkinM. KovalenkoL. A convenient synthesis of n-substituted 2-thioxo-1,3-thiazolidin-4-ones.Synthesis2006200681246124810.1055/s‑2006‑926409
    [Google Scholar]
  84. PanZ. AnW. WuL. FanL. YangG. XuC. A new synthesis strategy for rhodanine and its derivatives.Synlett202132111131113410.1055/a‑1485‑5925
    [Google Scholar]
  85. BrownF.C. BradsherC.K. MorganE.C. TetenbaumM. WilderP. Jr Some 3-substituted rhodanines.J. Am. Chem. Soc.195678238438810.1021/ja01583a037
    [Google Scholar]
  86. AryanasabF. ShokriA. SaidiM.R. A simple approach to the synthesis of 3-substituted rhodanines and thiazolidine-2,4-diones.Sci. Iran.2013206
    [Google Scholar]
  87. AlizadehA. RostamniaS. ZohrehN. HosseinpourR. A simple and effective approach to the synthesis of rhodanine derivatives via three-component reactions in water.Tetrahedron Lett.200950141533153510.1016/j.tetlet.2008.12.107
    [Google Scholar]
  88. AziziN. HasaniM. KhajehM. EdrisiM. A straightforward and sustainable one-pot, four-component synthesis of rhodanine derivatives.Tetrahedron Lett.201556101189119210.1016/j.tetlet.2015.01.102
    [Google Scholar]
  89. SinghS.J. ChauhanS.M.S. Potassium carbonate catalyzed one pot four-component synthesis of rhodanine derivatives.Tetrahedron Lett.201354202484248810.1016/j.tetlet.2013.03.004
    [Google Scholar]
  90. NitscheC. KleinC.D. Aqueous microwave-assisted one-pot synthesis of N-substituted rhodanines.Tetrahedron Lett.201253395197520110.1016/j.tetlet.2012.07.002
    [Google Scholar]
  91. RadiM. BottaL. CasaluceG. BernardiniM. BottaM. Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives.J. Comb. Chem.201012120020510.1021/cc9001789 20028090
    [Google Scholar]
  92. LiangY. TangM.L. HuoZ. ZhangC. SunX. A concise approach to n-substituted rhodanines through a base-assisted one-pot coupling and cyclization process.Molecules2020255113810.3390/molecules25051138 32143323
    [Google Scholar]
  93. ArafaW.A.A. FareedM.F. RabehS.A. ShakerR.M. Ultrasound mediated green synthesis of rhodanine derivatives: Synthesis, chemical behavior, and antibacterial activity.Phosphorus Sulfur Silicon Relat. Elem.201619181129113610.1080/10426507.2016.1146276
    [Google Scholar]
  94. KarmakarR. MukhopadhyayC. Ultrasonication under catalyst-free condition: an advanced synthetic technique toward the green synthesis of bioactive heterocycles. In: Green Synthetic Approaches for Biologically Relevant Heterocycles. Advanced Synthetic Techniques2021110.1016/B978‑0‑12‑820586‑0.00014‑5
    [Google Scholar]
  95. KumarD. NarwalS. SandhuJ.S. Catalyst-free synthesis of highly biologically active 5-arylidene rhodanine and 2,4-thiazolidinedione derivatives using aldonitrones in polyethylene glycol.Int. J. Med. Chem.201320131410.1155/2013/273534 25374689
    [Google Scholar]
  96. BaharfarR. AzimiR. BarzegarS. MohseniM. Efficient synthesis of rhodanine-based amides via passerini reaction using tetramethylguanidine-functionalized silica nanoparticles as reusable catalyst.J. Braz. Chem. Soc.201526710.5935/0103‑5053.20150108
    [Google Scholar]
  97. HesseS. Synthesis of 5-arylidenerhodanines in L-proline-based deep eutectic solvent.Beilstein J. Org. Chem.2023191537154410.3762/bjoc.19.110 37822921
    [Google Scholar]
  98. LeiX. FengJ. GuoQ. XuC. ShiJ. Base-Promoted formal [3 + 2] cycloaddition of α-halohydroxamates with carbon disulfide to synthesize polysubstituted rhodanines.Org. Lett.202224152837284110.1021/acs.orglett.2c00736 35394789
    [Google Scholar]
  99. TissaouiK. RaouafiN. BoujlelK. Electrogenerated base-promoted synthesis of N -benzylic rhodanine and carbamodithioate derivatives.J. Sulfur Chem.2010311414810.1080/17415990903191752
    [Google Scholar]
  100. MendgenT. SteuerC. KleinC.D. Privileged scaffolds or promiscuous binders: A comparative study on rhodanines and related heterocycles in medicinal chemistry.J. Med. Chem.201255274375310.1021/jm201243p 22077389
    [Google Scholar]
  101. TangS.Q. LeeY.Y.I. PackiarajD.S. HoH.K. ChaiC.L.L. Systematic evaluation of the metabolism and toxicity of thiazolidinone and imidazolidinone heterocycles.Chem. Res. Toxicol.201528102019203310.1021/acs.chemrestox.5b00247 26401548
    [Google Scholar]
  102. ZeigerE. AndersonB. HaworthS. LawlorT. MortelmansK. SpeckW. Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals.Environ. Mutagen.198799Suppl.10.1002/em.2860090603
    [Google Scholar]
  103. SahaS. NewL.S. HoH.K. ChuiW.K. ChanE.C.Y. Investigation of the role of the thiazolidinedione ring of troglitazone in inducing hepatotoxicity.Toxicol. Lett.2010192214114910.1016/j.toxlet.2009.10.014 19854250
    [Google Scholar]
/content/journals/aia/10.2174/0122113525295259240815073809
Loading
/content/journals/aia/10.2174/0122113525295259240815073809
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antibacterial; antifungal; antimicrobial; antimycobacterial; Rhodanine; thiazolidinone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test