Skip to content
2000
image of Precision Therapy for Prostate Cancer: Advancements in Polymeric Nanocarrier Systems

Abstract

Introduction

Prostate cancer is a major worldwide health concern, and existing treatments often face challenges such as drug resistance, systemic toxicity, and insufficient targeting. Polymeric nanocarriers are currently employed as sophisticated tools in the field of oncology, offering the possibility to augment the administration and efficacy of anticancer therapies. In order to effectively eradicate prostate cancer, this review delves into the function of polymeric nanocarriers.

Methods

Databases such as PubMed, ScienceDirect, and Google Scholar were utilized to do a comprehensive literature assessment. For this search, we used terms like “polymeric nanocarriers,” “prostate cancer,” “drug delivery,” and “nanotechnology.”

Results

Studies have shown that polymeric nanocarriers greatly improve the delivery and effectiveness of treatments for prostate cancer. Nanocarriers enhance the solubility, stability, and bioavailability of drugs, resulting in improved therapeutic effects. Functionalization using targeting ligands, such as folic acid and prostate-specific membrane antigen (PSMA) antibodies, has demonstrated the ability to enhance targeted specificity, resulting in a decrease in off-target effects and systemic toxicity. Polymeric nanocarriers facilitate precise and prolonged drug delivery, leading to elevated drug levels in tumor tissues.

Conclusion

Polymeric nanocarriers are a notable breakthrough in the management of prostate cancer, providing precise medication administration, decreased toxicity, and improved therapy effectiveness. However, additional study is necessary to enhance the design of nanocarriers, evaluate their long-term safety, and enable their use in clinical applications. Continued interdisciplinary research and collaboration are essential for addressing current obstacles and maximizing the promise of polymeric nanocarriers in the treatment of prostate cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206360906241223120425
2025-01-30
2025-03-26
Loading full text...

Full text loading...

References

  1. Schatten H. Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv. Exp. Med. Biol. 2018 1095 1 14 10.1007/978‑3‑319‑95693‑0_1 30229546
    [Google Scholar]
  2. Li J. Zhang Q. Polymeric nanomedicines for prostate cancer treatment: Progress and perspectives. J. Nanobiotechnology 2023 21 125
    [Google Scholar]
  3. Deshmukh R. Singh V. Harwansh R.K. Agrawal R. Garg A. Singh S. Elossaily G.M. Ansari M.N. Ali N. Prajapati B.G. Emerging trends of nanomedicines in the management of prostate cancer: Perspectives and potential applications. Pharmaceutics 2024 16 3 297 10.3390/pharmaceutics16030297 38543191
    [Google Scholar]
  4. Uhr A. Glick L. Gomella L.G. An overview of biomarkers in the diagnosis and management of prostate cancer. Can. J. Urol. 2020 27 S3 24 27 32875999
    [Google Scholar]
  5. Habib A. Jaffar G. Khalid M.S. Hussain Z. Zainab S.W. Ashraf Z. Haroon A. Javed R. Khalid B. Habib P. Risk factors associated with prostate cancer. J. Drug Deliv. Ther. 2021 11 2 188 193 10.22270/jddt.v11i2.4758
    [Google Scholar]
  6. Sayegh N. Swami U. Agarwal N. Recent advances in the management of metastatic prostate cancer. JCO Oncol. Pract. 2022 18 1 45 55 10.1200/OP.21.00206 34473525
    [Google Scholar]
  7. Sekhoacha M. Riet K. Motloung P. Gumenku L. Adegoke A. Mashele S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules 2022 27 17 5730 10.3390/molecules27175730 36080493
    [Google Scholar]
  8. Gupta S. Prostate cancer chemoprevention: Models, limitations and potential (Review). Int. J. Oncol. 2004 25 4 1133 1148 15375566
    [Google Scholar]
  9. Pirtskhalaishvili G. Hrebinko R.L. Nelson J.B. The treatment of prostate cancer: An overview of current options. Cancer Pract. 2001 9 6 295 306 10.1111/j.1523‑5394.2001.96009.pp.x 11879332
    [Google Scholar]
  10. Litwin M.S. Tan H.J. The diagnosis and treatment of prostate cancer: A review. JAMA 2017 317 24 2532 2542 10.1001/jama.2017.7248 28655021
    [Google Scholar]
  11. Hurwitz M.D. Chemotherapy and radiation for prostate cancer. Transl. Androl. Urol. 2018 7 3 390 398 10.21037/tau.2018.03.07 30050799
    [Google Scholar]
  12. Gupta S. Gupta P.K. Dharanivasan G. Verma R.S. Current prospects and challenges of nanomedicine delivery in prostate cancer therapy. Nanomedicine 2017 12 23 2675 2692 10.2217/nnm‑2017‑0236 29098929
    [Google Scholar]
  13. Upadhyay T.K. Ali M.I. Khan F. Goel H. Mathur M. Goyal K. Moin S. Pandey P. Tanwar P. Sharangi A.B. Gautam S.D.C. Kapdi J.K. Patel K.I. Patel M.V. Parmar A.M. Kamal M.A. Nanoparticles mediated target-specific drug delivery in prostate cancer: An in-depth review. Curr. Med. Chem. 2022 29 24 4170 4184 10.2174/0929867329666211221112312 34939536
    [Google Scholar]
  14. Adekiya T.A. Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat. Res. Commun. 2023 37 100778 10.1016/j.ctarc.2023.100778 37992539
    [Google Scholar]
  15. Cifuentes-Rius A. Butler L.M. Voelcker N.H. Precision nanomedicines for prostate cancer. Nanomedicine 2018 13 8 803 807 10.2217/nnm‑2018‑0034 29485327
    [Google Scholar]
  16. Cohen L. Livney Y.D. Assaraf Y.G. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist. Updat. 2021 56 100762 10.1016/j.drup.2021.100762 33857756
    [Google Scholar]
  17. Sun W. Deng Y. Zhao M. Jiang Y. Gou J. Wang Y. Yin T. Zhang Y. He H. Tang X. Targeting therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies. J. Control. Release 2021 333 41 64 10.1016/j.jconrel.2021.01.010 33450321
    [Google Scholar]
  18. Shahrukh S. Jain N. Shah S. Famta P. Srinivasarao D.A. Khatri D.K. Asthana A. Singh S.B. Raghuvanshi R.S. Srivastava S. Aptamer guided nanomedicine strategies in prostate cancer: Targeting and diagnosis. J. Drug Deliv. Sci. Technol. 2023 85 104593 10.1016/j.jddst.2023.104593
    [Google Scholar]
  19. Choksi A.U. Khan A.I. Lokeshwar S.D. Segal D. Weiss R.M. Martin D.T. Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy. Am. J. Clin. Exp. Urol. 2022 10 3 142 153 35874285
    [Google Scholar]
  20. Sasikumar A. Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J. Control. Release 2017 260 111 123 10.1016/j.jconrel.2017.06.001 28583444
    [Google Scholar]
  21. Ashrafizadeh M. Aghamiri S. Tan S.C. Zarrabi A. Sharifi E. Rabiee N. Kadumudi F.B. Pirouz A.D. Delfi M. Byrappa K. Thakur V.K. Sharath Kumar K.S. Girish Y.R. Zandsalimi F. Zare E.N. Orive G. Tay F. Hushmandi K. Kumar A.P. Karaman C. Karimi-Maleh H. Mostafavi E. Makvandi P. Wang Y. Nanotechnological approaches in prostate cancer therapy: Integration of engineering and biology. Nano Today 2022 45 101532 10.1016/j.nantod.2022.101532
    [Google Scholar]
  22. Vicente-Ruiz S. Serrano-Martí A. Armiñán A. Vicent M.J. Nanomedicine for the treatment of advanced prostate cancer. Adv. Ther. 2021 4 1 2000136 10.1002/adtp.202000136
    [Google Scholar]
  23. Hema S. Thambiraj S. Shankaran D.R. Nanoformulations for targeted drug delivery to prostate cancer: An overview. J. Nanosci. Nanotechnol. 2018 18 8 5171 5191 10.1166/jnn.2018.15420 29458568
    [Google Scholar]
  24. Khanam A. Singh G. Narwal S. Chopra B. Dhingra A.K. A review on novel applications of nanotechnology in the management of prostate cancer. Curr. Drug Deliv. 2024 21 9 1161 1179 10.2174/0115672018180695230925113521 37888818
    [Google Scholar]
  25. Cherian A.M. Nair S.V. Lakshmanan V.K. The role of nanotechnology in prostate cancer theranostic applications. J. Nanosci. Nanotechnol. 2014 14 1 841 852 10.1166/jnn.2014.9052 24730302
    [Google Scholar]
  26. Pranav Laskar P. Jaggi M. Chauhan S.C. Yallapu M.M. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J. Adv. Res. 2023 51 197 217 10.1016/j.jare.2022.11.001 36368516
    [Google Scholar]
  27. Panda P.K. Saraf S. Tiwari A. Verma A. Raikwar S. Jain A. Jain S.K. Novel strategies for targeting prostate cancer. Curr. Drug Deliv. 2019 16 8 712 727 10.2174/1567201816666190821143805 31433757
    [Google Scholar]
  28. He L. Liu J. Li S. Feng X. Wang C. Zhuang X. Ding J. Chen X. Polymer nanoplatforms at work in prostate cancer therapy. Adv. Ther. 2019 2 4 1800122 10.1002/adtp.201800122
    [Google Scholar]
  29. Aaron L. Franco O.E. Hayward S.W. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia. Urol. Clin. North Am. 2016 43 3 279 288 10.1016/j.ucl.2016.04.012 27476121
    [Google Scholar]
  30. Cunha G.R. Vezina C.M. Isaacson D. Ricke W.A. Timms B.G. Cao M. Franco O. Baskin L.S. Development of the human prostate. Differentiation 2018 103 24 45 10.1016/j.diff.2018.08.005 30224091
    [Google Scholar]
  31. Sharma M. Gupta S. Dhole B. Kumar A. Sharma M. Gupta S. Dhole B. Kumar A. The prostate gland. Basics of Human Andrology: A Textbook. Springer 2017 17 35 10.1007/978‑981‑10‑3695‑8_2
    [Google Scholar]
  32. Verze P. Cai T. Lorenzetti S. The role of the prostate in male fertility, health and disease. Nat. Rev. Urol. 2016 13 7 379 386 10.1038/nrurol.2016.89 27245504
    [Google Scholar]
  33. Amin M. Khalid A. Tazeen N. Yasoob M. Zonal anatomy of prostate. Ann King Edward Med Univ 2010 16 3 138
    [Google Scholar]
  34. Ali A. Du Feu A. Oliveira P. Choudhury A. Bristow R.G. Baena E. Prostate zones and cancer: Lost in transition? Nat. Rev. Urol. 2022 19 2 101 115 10.1038/s41585‑021‑00524‑7 34667303
    [Google Scholar]
  35. Wang G. Zhao D. Spring D.J. DePinho R.A. Genetics and biology of prostate cancer. Genes Dev. 2018 32 17-18 1105 1140 10.1101/gad.315739.118 30181359
    [Google Scholar]
  36. Bergengren O. Pekala K.R. Matsoukas K. Fainberg J. Mungovan S.F. Bratt O. Bray F. Brawley O. Luckenbaugh A.N. Mucci L. Morgan T.M. Carlsson S.V. 2022 update on prostate cancer epidemiology and risk factors—A systematic review. Eur. Urol. 2023 84 2 191 206 10.1016/j.eururo.2023.04.021 37202314
    [Google Scholar]
  37. Zhang Y. Zhou C.K. Rencsok E.M. Fall K. Lotan T.L. Loda M. Giunchi F. Platz E.A. De Marzo A.M. Mucci L.A. Fiorentino M. Ebot E.M. A prospective study of intraprostatic inflammation, focal atrophy, and progression to lethal prostate cancer. Cancer Epidemiol. Biomarkers Prev. 2019 28 12 2047 2054 10.1158/1055‑9965.EPI‑19‑0713 31533941
    [Google Scholar]
  38. Trabzonlu L. Kulac I. Zheng Q. Hicks J.L. Haffner M.C. Nelson W.G. Sfanos K.S. Ertunc O. Lotan T.L. Heaphy C.M. Meeker A.K. Yegnasubramanian S. De Marzo A.M. Molecular pathology of high-grade prostatic intraepithelial neoplasia: Challenges and opportunities. Cold Spring Harb. Perspect. Med. 2019 9 4 a030403 10.1101/cshperspect.a030403 30082453
    [Google Scholar]
  39. Brandão A. Paulo P. Teixeira M.R. Hereditary predisposition to prostate cancer: From genetics to clinical implications. Int. J. Mol. Sci. 2020 21 14 5036 10.3390/ijms21145036 32708810
    [Google Scholar]
  40. Beebe-Dimmer J.L. Kapron A.L. Fraser A.M. Smith K.R. Cooney K.A. Risk of prostate cancer associated with familial and hereditary cancer syndromes. J. Clin. Oncol. 2020 38 16 1807 1813 10.1200/JCO.19.02808 32208047
    [Google Scholar]
  41. Gandhi J. Afridi A. Vatsia S. Joshi G. Joshi G. Kaplan S.A. Smith N.L. Khan S.A. The molecular biology of prostate cancer: Current understanding and clinical implications. Prostate Cancer Prostatic Dis. 2018 21 1 22 36 10.1038/s41391‑017‑0023‑8 29282359
    [Google Scholar]
  42. Oczkowski M. Dziendzikowska K. Pasternak-Winiarska A. Włodarek D. Gromadzka-Ostrowska J. Dietary factors and prostate cancer development, progression, and reduction. Nutrients 2021 13 2 496 10.3390/nu13020496 33546190
    [Google Scholar]
  43. Matsushita M. Fujita K. Nonomura N. Influence of diet and nutrition on prostate cancer. Int. J. Mol. Sci. 2020 21 4 1447 10.3390/ijms21041447 32093338
    [Google Scholar]
  44. Barsouk A. Padala S.A. Vakiti A. Mohammed A. Saginala K. Thandra K.C. Rawla P. Barsouk A. Epidemiology, staging and management of prostate cancer. Med. Sci. 2020 8 3 28 10.3390/medsci8030028 32698438
    [Google Scholar]
  45. Rawla P. Epidemiology of prostate cancer. World J. Oncol. 2019 10 2 63 89 10.14740/wjon1191 31068988
    [Google Scholar]
  46. Pernar C.H. Ebot E.M. Wilson K.M. Mucci L.A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med. 2018 8 12 a030361 10.1101/cshperspect.a030361 29311132
    [Google Scholar]
  47. Škara L. Huđek Turković A. Pezelj I. Vrtarić A. Sinčić N. Krušlin B. Ulamec M. Prostate cancer—Focus on cholesterol. Cancers 2021 13 18 4696 10.3390/cancers13184696 34572923
    [Google Scholar]
  48. Rotshild V. Rabkin N. Matok I. The risk for prostate cancer with calcium channel blockers: A systematic review, meta-analysis, and meta-regression. Ann. Pharmacother. 2023 57 1 16 28 10.1177/10600280221098121 35645169
    [Google Scholar]
  49. Hirshburg J.M. Kelsey P.A. Therrien C.A. Gavino A.C. Reichenberg J.S. Adverse effects and safety of 5-alpha reductase inhibitors (finasteride, dutasteride): A systematic review. J. Clin. Aesthet. Dermatol. 2016 9 7 56 62 27672412
    [Google Scholar]
  50. Allott E.H. Masko E.M. Freedland S.J. Obesity and prostate cancer: Weighing the evidence. Eur. Urol. 2013 63 5 800 809 10.1016/j.eururo.2012.11.013 23219374
    [Google Scholar]
  51. Maekawa S. Takata R. Obara W. Molecular mechanisms of prostate cancer development in the precision medicine era: A comprehensive review. Cancers 2024 16 3 523 10.3390/cancers16030523 38339274
    [Google Scholar]
  52. Porkka K.P. Visakorpi T. Molecular mechanisms of prostate cancer. Eur. Urol. 2004 45 6 683 691 10.1016/j.eururo.2004.01.012 15149739
    [Google Scholar]
  53. De Marzo A.M. DeWeese T.L. Platz E.A. Meeker A.K. Nakayama M. Epstein J.I. Isaacs W.B. Nelson W.G. Pathological and molecular mechanisms of prostate carcinogenesis: Implications for diagnosis, detection, prevention, and treatment. J. Cell. Biochem. 2004 91 3 459 477 10.1002/jcb.10747 14755677
    [Google Scholar]
  54. Packer J.R. Maitland N.J. The molecular and cellular origin of human prostate cancer. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 6 6 Pt A 1238 1260 10.1016/j.bbamcr.2016.02.016 26921821
    [Google Scholar]
  55. Shtivelman E. Beer T.M. Evans C.P. Molecular pathways and targets in prostate cancer. Oncotarget 2014 5 17 7217 7259 10.18632/oncotarget.2406 25277175
    [Google Scholar]
  56. Testa U. Castelli G. Pelosi E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines 2019 6 3 82 10.3390/medicines6030082 31366128
    [Google Scholar]
  57. Fay E.K. Graff J.N. Immunotherapy in prostate cancer. Cancers 2020 12 7 1752 10.3390/cancers12071752 32630247
    [Google Scholar]
  58. Chen F. Zhao X. Prostate cancer: Current treatment and prevention strategies. Iran. Red Crescent Med. J. 2013 15 4 279 284 10.5812/ircmj.6499 24082997
    [Google Scholar]
  59. Weiner A.B. Kundu S.D. Prostate cancer. Med. Clin. North Am. 2018 102 2 215 229 10.1016/j.mcna.2017.10.001 29406054
    [Google Scholar]
  60. Aragon-Ching J.B. Nader R. El Amm J. Role of chemotherapy in prostate cancer. Asian J. Androl. 2018 20 3 221 229 10.4103/aja.aja_40_17 29063869
    [Google Scholar]
  61. Canil C.M. Tannock I.F. Is there a role for chemotherapy in prostate cancer? Br. J. Cancer 2004 91 6 1005 1011 10.1038/sj.bjc.6601850 15150548
    [Google Scholar]
  62. Walczak J.R. Carducci M.A. Pharmacological treatments for prostate cancer. Expert Opin. Investig. Drugs 2002 11 12 1737 1748 10.1517/13543784.11.12.1737 12457434
    [Google Scholar]
  63. Silvestri I. Cattarino S. Giantulli S. Nazzari C. Collalti G. Sciarra A. A perspective of immunotherapy for prostate cancer. Cancers 2016 8 7 64 10.3390/cancers8070064 27399780
    [Google Scholar]
  64. Nilsson S. Norlén B.J. Widmark A. A systematic overview of radiation therapy effects in prostate cancer. Acta Oncol. 2004 43 4 316 381 10.1080/02841860410030661 15303499
    [Google Scholar]
  65. Avramović N. Mandić B. Savić-Radojević A. Simić T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics 2020 12 4 298 10.3390/pharmaceutics12040298 32218326
    [Google Scholar]
  66. Yousefi Rizi H.A. Shin D.H. Yousefi Rizi S. Polymeric nanoparticles in cancer chemotherapy: A narrative review. Iran. J. Public Health 2022 51 2 226 239 10.18502/ijph.v51i2.8677 35866132
    [Google Scholar]
  67. Guo X. Wang L. Wei X. Zhou S. Polymer-Based drug delivery systems for cancer treatment. J. Polym. Sci. A Polym. Chem. 2016 54 22 3525 3550 10.1002/pola.28252
    [Google Scholar]
  68. Alsuraifi A. Curtis A. Lamprou D.A. Hoskins C. Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics 2018 10 3 136 10.3390/pharmaceutics10030136 30131473
    [Google Scholar]
  69. Nagavarma B.V. Yadav H.K. Ayaz A.V. Vasudha L.S. Shivakumar H.G. Different techniques for preparation of polymeric nanoparticles-A review. Asian J. Pharm. Clin. Res. 2012 5 3 16 23
    [Google Scholar]
  70. Castro K.C. Costa J.M. Campos M.G.N. Drug-loaded polymeric nanoparticles: A review. Int. J. Polym. Mater. 2022 71 1 1 13 10.1080/00914037.2020.1798436
    [Google Scholar]
  71. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  72. Idrees H. Zaidi S.Z.J. Sabir A. Khan R.U. Zhang X. Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020 10 10 1970 10.3390/nano10101970 33027891
    [Google Scholar]
  73. Tong X. Pan W. Su T. Zhang M. Dong W. Qi X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym. 2020 148 104501 10.1016/j.reactfunctpolym.2020.104501
    [Google Scholar]
  74. Crucho C.I.C. Barros M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017 80 771 784 10.1016/j.msec.2017.06.004 28866227
    [Google Scholar]
  75. Barani M. Sabir F. Rahdar A. Arshad R. Kyzas G.Z. Nanotreatment and nanodiagnosis of prostate cancer: Recent updates. Nanomaterials 2020 10 9 1696 10.3390/nano10091696 32872181
    [Google Scholar]
  76. Essa D. Kondiah P.P.D. Kumar P. Choonara Y.E. Design of chitosan-coated, quercetin-loaded PLGA nanoparticles for enhanced PSMA-specific activity on LnCap prostate cancer cells. Biomedicines 2023 11 4 1201 10.3390/biomedicines11041201 37189819
    [Google Scholar]
  77. Adekiya T.A. Moore M. Thomas M. Lake G. Hudson T. Adesina S.K. Preparation, optimization, and in-vitro evaluation of brusatol- and docetaxel-loaded nanoparticles for the treatment of prostate cancer. Pharmaceutics 2024 16 1 114 10.3390/pharmaceutics16010114 38258124
    [Google Scholar]
  78. Anwer M.K. Ali E.A. Iqbal M. Ahmed M.M. Aldawsari M.F. Saqr A.A. Alalaiwe A. Soliman G.A. Development of chitosan-coated PLGA-based nanoparticles for improved oral olaparib delivery: In vitro characterization, and in vivo pharmacokinetic studies. Processes 2022 10 7 1329 10.3390/pr10071329
    [Google Scholar]
  79. Li Z. Huang J. Du T. Lai Y. Li K. Luo M.L. Zhu D. Wu J. Huang H. Targeting the Rac1 pathway for improved prostate cancer therapy using polymeric nanoparticles to deliver of NSC23766. Chin. Chem. Lett. 2022 33 5 2496 2500 10.1016/j.cclet.2021.11.078
    [Google Scholar]
  80. Goswami A. Patel N. Bhatt V. Raval M. Kundariya M. Sheth N. Lycopene loaded polymeric nanoparticles for prostate cancer treatment: Formulation, optimization using Box-behnken design and cytotoxicity studies. J. Drug Deliv. Sci. Technol. 2022 67 102930 10.1016/j.jddst.2021.102930
    [Google Scholar]
  81. Fang Y. Lin S. Yang F. Situ J. Lin S. Luo Y. Aptamer-conjugated multifunctional polymeric nanoparticles as cancer-targeted, MRI-ultrasensitive drug delivery systems for treatment of castration-resistant prostate cancer. BioMed Res. Int. 2020 2020 1 12 10.1155/2020/9186583 32420382
    [Google Scholar]
  82. Raspantini G.L. Luiz M.T. Abriata J.P. Eloy J.O. Vaidergorn M.M. Emery F.S. Marchetti J.M. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization. Colloids Surf. A Physicochem. Eng. Asp. 2021 627 127144 10.1016/j.colsurfa.2021.127144
    [Google Scholar]
  83. Tao Y. Dai C. Xie Z. You X. Li K. Wu J. Huang H. Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chin. Chem. Lett. 2024 35 8 109170 10.1016/j.cclet.2023.109170
    [Google Scholar]
  84. Conte R. Valentino A. Di Cristo F. Peluso G. Cerruti P. Di Salle A. Calarco A. Cationic polymer nanoparticles-mediated delivery of miR-124 impairs tumorigenicity of prostate cancer cells. Int. J. Mol. Sci. 2020 21 3 869 10.3390/ijms21030869 32013257
    [Google Scholar]
  85. Ribeiro A.F. Santos J.F. Mattos R.R. Barros E.G.O. Nasciutti L.E. Cabral L.M. Sousa V.P.D. Characterization and in vitro antitumor activity of polymeric nanoparticles loaded with Uncaria tomentosa extract. An. Acad. Bras. Cienc. 2020 92 1 e20190336 10.1590/0001‑3765202020190336 32321026
    [Google Scholar]
  86. Murar M. Pujals S. Albertazzi L. Multivalent effect of peptide functionalized polymeric nanoparticles towards selective prostate cancer targeting. Nanoscale Adv. 2023 5 5 1378 1385 10.1039/D2NA00601D 36866255
    [Google Scholar]
  87. Jin G.W. Rejinold N.S. Choy J.H. Multifunctional polymeric micelles for cancer therapy. Polymers 2022 14 22 4839 10.3390/polym14224839 36432965
    [Google Scholar]
  88. Ghosh B. Biswas S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release 2021 332 127 147 10.1016/j.jconrel.2021.02.016 33609621
    [Google Scholar]
  89. Wei H. Cheng S.X. Zhang X.Z. Zhuo R.X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci. 2009 34 9 893 910 10.1016/j.progpolymsci.2009.05.002
    [Google Scholar]
  90. Aliabadi A. Hasannia M. Vakili-Azghandi M. Araste F. Abnous K. Taghdisi S.M. Ramezani M. Alibolandi M. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: Application in drug delivery. J. Mater. Chem. B Mater. Biol. Med. 2023 11 39 9325 9368 10.1039/D3TB01371E 37706425
    [Google Scholar]
  91. Ghezzi M. Pescina S. Padula C. Santi P. Del Favero E. Cantù L. Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021 332 312 336 10.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  92. Long M. Liu X. Huang X. Lu M. Wu X. Weng L. Chen Q. Wang X. Zhu L. Chen Z. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer. J. Control. Release 2021 334 303 317 10.1016/j.jconrel.2021.04.035 33933517
    [Google Scholar]
  93. Barve A. Jain A. Liu H. Zhao Z. Cheng K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater. 2020 113 501 511 10.1016/j.actbio.2020.06.019 32562805
    [Google Scholar]
  94. Alhakamy N.A. Ahmed O.A.A. Fahmy U.A. Md S. Development and in vitro evaluation of 2-methoxyestradiol loaded polymeric micelles for enhancing anticancer activities in prostate cancer. Polymers 2021 13 6 884 10.3390/polym13060884 33805675
    [Google Scholar]
  95. Zhang H. Liu X. Wu F. Qin F. Feng P. Xu T. Li X. Yang L. A novel prostate-specific membrane-antigen (PSMA) targeted micelle-encapsulating wogonin inhibits prostate cancer cell proliferation via inducing intrinsic apoptotic pathway. Int. J. Mol. Sci. 2016 17 5 676 10.3390/ijms17050676 27196894
    [Google Scholar]
  96. Gao Y. Li Y. Li Y. Yuan L. Zhou Y. Li J. Zhao L. Zhang C. Li X. Liu Y. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale 2015 7 2 597 612 10.1039/C4NR05738D 25419788
    [Google Scholar]
  97. Nezir A.E. Bolat Z.B. Ozturk N. Kocak P. Zemheri E. Gulyuz S. Ozkose U.U. Yilmaz O. Vural I. Bozkır A. Sahin F. Telci D. Targeting prostate cancer with docetaxel-loaded peptide 563-conjugated PEtOx-co-PEI30%-b-PCL polymeric micelle nanocarriers. Amino Acids 2023 55 8 1023 1037 10.1007/s00726‑023‑03292‑3 37318626
    [Google Scholar]
  98. Yang R. Chen H. Guo D. Dong Y. Miller D.D. Li W. Mahato R.I. Polymeric micellar delivery of novel microtubule destabilizer and hedgehog signaling inhibitor for treating chemoresistant prostate cancer. J. Pharmacol. Exp. Ther. 2019 370 3 864 875 10.1124/jpet.119.256628 30996033
    [Google Scholar]
  99. Xu W. Siddiqui I.A. Nihal M. Pilla S. Rosenthal K. Mukhtar H. Gong S. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 2013 34 21 5244 5253 10.1016/j.biomaterials.2013.03.006 23582862
    [Google Scholar]
  100. Gao Y. Zhou Y. Zhao L. Zhang C. Li Y. Li J. Li X. Liu Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 2015 23 127 135 10.1016/j.actbio.2015.05.021 26013038
    [Google Scholar]
  101. Dias A.P. da Silva Santos S. da Silva J.V. Parise-Filho R. Igne Ferreira E. Seoud O.E. Giarolla J. Dendrimers in the context of nanomedicine. Int. J. Pharm. 2020 573 118814 10.1016/j.ijpharm.2019.118814 31759101
    [Google Scholar]
  102. Kesharwani P. Jain K. Jain N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014 39 2 268 307 10.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  103. Sun H.J. Zhang S. Percec V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev. 2015 44 12 3900 3923 10.1039/C4CS00249K 25325787
    [Google Scholar]
  104. Aljamal K. Ramaswamy C. Florence A. Supramolecular structures from dendrons and dendrimers. Adv. Drug Deliv. Rev. 2005 57 15 2238 2270 10.1016/j.addr.2005.09.015 16310885
    [Google Scholar]
  105. Lyu Z. Ding L. Huang A.Y.T. Kao C.L. Peng L. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem. 2019 13 34 48 10.1016/j.mtchem.2019.04.004
    [Google Scholar]
  106. Mandal A.K. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. Int. J. Polym. Mater. 2021 70 4 287 297 10.1080/00914037.2020.1713780
    [Google Scholar]
  107. Yellepeddi V.K. Ghandehari H. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opin. Drug Deliv. 2019 16 10 1051 1061 10.1080/17425247.2019.1656607 31414922
    [Google Scholar]
  108. Ghaffari M. Dehghan G. Abedi-Gaballu F. Kashanian S. Baradaran B. Ezzati Nazhad Dolatabadi J. Losic D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur. J. Pharm. Sci. 2018 122 311 330 10.1016/j.ejps.2018.07.020 30003954
    [Google Scholar]
  109. Li X. Naeem A. Xiao S. Hu L. Zhang J. Zheng Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics 2022 14 6 1292 10.3390/pharmaceutics14061292 35745863
    [Google Scholar]
  110. Szota M. Reczyńska-Kolman K. Pamuła E. Michel O. Kulbacka J. Jachimska B. Poly (Amidoamine) dendrimers as nanocarriers for 5-fluorouracil: effectiveness of complex formation and cytotoxicity studies. Int. J. Mol. Sci. 2021 22 20 11167 10.3390/ijms222011167 34681827
    [Google Scholar]
  111. Seixas N. Ravanello B.B. Morgan I. Kaluđerović G.N. Wessjohann L.A. Chlorambucil conjugated Ugi dendrimers with PAMAM-NH2 core and evaluation of their anticancer activity. Pharmaceutics 2019 11 2 59 10.3390/pharmaceutics11020059 30717083
    [Google Scholar]
  112. Lesniak W. Boinapally S. Lofland G. Jiang Z. Foss C. Behman Azad B. Jablonska A. Garcia M. Brzezinski M. Pomper M. Multimodal, PSMA-targeted, PAMAM dendrimer-drug conjugates for treatment of prostate cancer: Preclinical evaluation. Int. J. Nanomedicine 2024 19 4995 5010 10.2147/IJN.S454128 38832336
    [Google Scholar]
  113. Dong Y. Chen Y. Zhu D. Shi K. Ma C. Zhang W. Rocchi P. Jiang L. Liu X. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J. Control. Release 2020 322 416 425 10.1016/j.jconrel.2020.04.003 32247806
    [Google Scholar]
  114. Dhull A. Wei J. Pulukuri A.J. Rani A. Sharma R. Mesbahi N. Yoon H. Savoy E.A. Xaivong Vi S. Goody K.J. Berkman C.E. Wu B.J. Sharma A. PSMA-targeted dendrimer as an efficient anticancer drug delivery vehicle for prostate cancer. Nanoscale 2024 16 11 5634 5652 10.1039/D3NR06520K 38440933
    [Google Scholar]
  115. Rani A. Pulukuri A.J. Wei J. Dhull A. Dar A.I. Sharma R. Mesbahi N. Savoy E.A. Yoon H. Wu B.J. Berkman C.E. Sharma A. PSMA-targeted 2-deoxyglucose-based dendrimer nanomedicine for the treatment of prostate cancer. Biomacromolecules 2024 25 9 6164 6180 10.1021/acs.biomac.4c00878 39164913
    [Google Scholar]
  116. Tai Z. Ma J. Ding J. Pan H. Chai R. Zhu C. Cui Z. Chen Z. Zhu Q. Aptamer-functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer. Int. J. Nanomedicine 2020 15 10305 10320 10.2147/IJN.S282107 33376323
    [Google Scholar]
  117. Teyhoo M. Hosseini F. Ardestani M.S. Ghorbani M. Synthesis and evaluation of a novel nanosized anionic linear globular dendrimer G2-ciprofloxacin conjugate against prostate cancer. Pak. J. Pharm. Sci. 2020 33 6 2589 2594 33867334
    [Google Scholar]
  118. Almowalad J. Laskar P. Somani S. Meewan J. Tate R.J. Dufès C. Lactoferrin- and dendrimer-bearing gold nanocages for stimulus-free DNA delivery to prostate cancer cells. Int. J. Nanomedicine 2022 17 1409 1421 10.2147/IJN.S347574 35369035
    [Google Scholar]
  119. Chandran S.S. Ray S. Pomper M.G. Denmeade S.R. Mease R.C. Prostate specific membrane antigen (PSMA) targeted nanoparticles for therapy of prostate cancer. US Patent US9422234B2, 2016
  120. Radovic-Moreno A.F. Zhang F. Langer R.S. Farokhzad O.C. Polymer-encapsulated reverse micelles. US Patent US8193334B2, 2012
  121. Gao J. Boothman D. Zhou Y. Bey E. pH-sensitive compositions for delivery of beta lapachone and methods of use. US Patent US9631041B2, 2017
  122. Perumal O.P. Podaralla S.K. Averineni R.K. Polymer conjugated protein micelles. US Patent US8697098B2, 2014
  123. Bobo D. Robinson K.J. Islam J. Thurecht K.J. Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016 33 10 2373 2387 10.1007/s11095‑016‑1958‑5 27299311
    [Google Scholar]
  124. Kaur D. Jain K. Mehra N.K. Kesharwani P. Jain N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res. 2016 18 6 146 10.1007/s11051‑016‑3423‑0
    [Google Scholar]
  125. Behl A. Parmar V.S. Malhotra S. Chhillar A.K. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. Polymer 2020 207 122901 10.1016/j.polymer.2020.122901
    [Google Scholar]
  126. Hou A. Du Y. Su Y. Pang Z. liu S. Xian S. Zhao X. Ma L. Liu B. Wu H. Zhou Z. CuS/Co-Ferrocene-MOF nanocomposites for photothermally enhanced chemodynamic antibacterial therapy. ACS Appl. Nano Mater. 2024 7 9 10998 11007 10.1021/acsanm.4c02067
    [Google Scholar]
  127. Hu T. Xue B. Meng F. Ma L. Du Y. Yu S. Ye R. Li H. Zhang Q. Gu L. Zhou Z. Liang R. Tan C. Preparation of 2D polyaniline/MoO3− x superlattice nanosheets via intercalation‐induced morphological transformation for efficient chemodynamic therapy. Adv. Healthc. Mater. 2023 12 11 2202911 10.1002/adhm.202202911 36603589
    [Google Scholar]
  128. Li M. Zhang Z. Yu Y. Yuan H. Nezamzadeh-Ejhieh A. Liu J. Pan Y. Lan Q. Recent advances in Zn-MOFs and their derivatives for cancer therapeutic applications. Materials Advances 2023 4 21 5050 5093 10.1039/D3MA00545C
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206360906241223120425
Loading
/content/journals/acamc/10.2174/0118715206360906241223120425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test