Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

Prostate cancer is a major worldwide health concern, and existing treatments often face challenges such as drug resistance, systemic toxicity, and insufficient targeting. Polymeric nanocarriers are currently employed as sophisticated tools in the field of oncology, offering the possibility to augment the administration and efficacy of anticancer therapies. In order to effectively eradicate prostate cancer, this review delves into the function of polymeric nanocarriers.

Methods

Databases such as PubMed, ScienceDirect, and Google Scholar were utilized to do a comprehensive literature assessment. For this search, we used terms like “polymeric nanocarriers,” “prostate cancer,” “drug delivery,” and “nanotechnology.”

Results

Studies have shown that polymeric nanocarriers greatly improve the delivery and effectiveness of treatments for prostate cancer. Nanocarriers enhance the solubility, stability, and bioavailability of drugs, resulting in improved therapeutic effects. Functionalization using targeting ligands, such as folic acid and prostate-specific membrane antigen (PSMA) antibodies, has demonstrated the ability to enhance targeted specificity, resulting in a decrease in off-target effects and systemic toxicity. Polymeric nanocarriers facilitate precise and prolonged drug delivery, leading to elevated drug levels in tumor tissues.

Conclusion

Polymeric nanocarriers are a notable breakthrough in the management of prostate cancer, providing precise medication administration, decreased toxicity, and improved therapy effectiveness. However, additional study is necessary to enhance the design of nanocarriers, evaluate their long-term safety, and enable their use in clinical applications. Continued interdisciplinary research and collaboration are essential for addressing current obstacles and maximizing the promise of polymeric nanocarriers in the treatment of prostate cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206360906241223120425
2025-01-30
2025-07-09
Loading full text...

Full text loading...

References

  1. SchattenH. Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies.Adv. Exp. Med. Biol.2018109511410.1007/978‑3‑319‑95693‑0_130229546
    [Google Scholar]
  2. LiJ. ZhangQ. Polymeric nanomedicines for prostate cancer treatment: Progress and perspectives.J. Nanobiotechnology202321125
    [Google Scholar]
  3. DeshmukhR. SinghV. HarwanshR.K. AgrawalR. GargA. SinghS. ElossailyG.M. AnsariM.N. AliN. PrajapatiB.G. Emerging trends of nanomedicines in the management of prostate cancer: Perspectives and potential applications.Pharmaceutics202416329710.3390/pharmaceutics1603029738543191
    [Google Scholar]
  4. UhrA. GlickL. GomellaL.G. An overview of biomarkers in the diagnosis and management of prostate cancer.Can. J. Urol.202027S3242732875999
    [Google Scholar]
  5. HabibA. JaffarG. KhalidM.S. HussainZ. ZainabS.W. AshrafZ. HaroonA. JavedR. KhalidB. HabibP. Risk factors associated with prostate cancer.J. Drug Deliv. Ther.202111218819310.22270/jddt.v11i2.4758
    [Google Scholar]
  6. SayeghN. SwamiU. AgarwalN. Recent advances in the management of metastatic prostate cancer.JCO Oncol. Pract.2022181455510.1200/OP.21.0020634473525
    [Google Scholar]
  7. SekhoachaM. RietK. MotloungP. GumenkuL. AdegokeA. MasheleS. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules20222717573010.3390/molecules2717573036080493
    [Google Scholar]
  8. GuptaS. Prostate cancer chemoprevention: Models, limitations and potential (Review).Int. J. Oncol.20042541133114815375566
    [Google Scholar]
  9. PirtskhalaishviliG. HrebinkoR.L. NelsonJ.B. The treatment of prostate cancer: An overview of current options.Cancer Pract.20019629530610.1111/j.1523‑5394.2001.96009.pp.x11879332
    [Google Scholar]
  10. LitwinM.S. TanH.J. The diagnosis and treatment of prostate cancer: A review.JAMA2017317242532254210.1001/jama.2017.724828655021
    [Google Scholar]
  11. HurwitzM.D. Chemotherapy and radiation for prostate cancer.Transl. Androl. Urol.20187339039810.21037/tau.2018.03.0730050799
    [Google Scholar]
  12. GuptaS. GuptaP.K. DharanivasanG. VermaR.S. Current prospects and challenges of nanomedicine delivery in prostate cancer therapy.Nanomedicine201712232675269210.2217/nnm‑2017‑023629098929
    [Google Scholar]
  13. UpadhyayT.K. AliM.I. KhanF. GoelH. MathurM. GoyalK. MoinS. PandeyP. TanwarP. SharangiA.B. GautamS.D.C. KapdiJ.K. PatelK.I. PatelM.V. ParmarA.M. KamalM.A. Nanoparticles mediated target-specific drug delivery in prostate cancer: An in-depth review.Curr. Med. Chem.202229244170418410.2174/092986732966621122111231234939536
    [Google Scholar]
  14. AdekiyaT.A. OwoseniO. Emerging frontiers in nanomedicine targeted therapy for prostate cancer.Cancer Treat. Res. Commun.20233710077810.1016/j.ctarc.2023.10077837992539
    [Google Scholar]
  15. Cifuentes-RiusA. ButlerL.M. VoelckerN.H. Precision nanomedicines for prostate cancer.Nanomedicine 201813880380710.2217/nnm‑2018‑003429485327
    [Google Scholar]
  16. CohenL. LivneyY.D. AssarafY.G. Targeted nanomedicine modalities for prostate cancer treatment.Drug Resist. Updat.20215610076210.1016/j.drup.2021.10076233857756
    [Google Scholar]
  17. SunW. DengY. ZhaoM. JiangY. GouJ. WangY. YinT. ZhangY. HeH. TangX. Targeting therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies.J. Control. Release2021333416410.1016/j.jconrel.2021.01.01033450321
    [Google Scholar]
  18. ShahrukhS. JainN. ShahS. FamtaP. SrinivasaraoD.A. KhatriD.K. AsthanaA. SinghS.B. RaghuvanshiR.S. SrivastavaS. Aptamer guided nanomedicine strategies in prostate cancer: Targeting and diagnosis.J. Drug Deliv. Sci. Technol.20238510459310.1016/j.jddst.2023.104593
    [Google Scholar]
  19. ChoksiA.U. KhanA.I. LokeshwarS.D. SegalD. WeissR.M. MartinD.T. Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy.Am. J. Clin. Exp. Urol.202210314215335874285
    [Google Scholar]
  20. SasikumarA. KamalasananK. Nanomedicine for prostate cancer using nanoemulsion: A review.J. Control. Release201726011112310.1016/j.jconrel.2017.06.00128583444
    [Google Scholar]
  21. AshrafizadehM. AghamiriS. TanS.C. ZarrabiA. SharifiE. RabieeN. KadumudiF.B. PirouzA.D. DelfiM. ByrappaK. ThakurV.K. Sharath KK.S. GirishY.R. ZandsalimiF. ZareE.N. OriveG. TayF. HushmandiK. KumarA.P. KaramanC. Karimi-MalehH. MostafaviE. MakvandiP. WangY. Nanotechnological approaches in prostate cancer therapy: Integration of engineering and biology.Nano Today20224510153210.1016/j.nantod.2022.101532
    [Google Scholar]
  22. Vicente-RuizS. Serrano-MartíA. ArmiñánA. VicentM.J. Nanomedicine for the treatment of advanced prostate cancer.Adv. Ther.202141200013610.1002/adtp.202000136
    [Google Scholar]
  23. HemaS. ThambirajS. ShankaranD.R. Nanoformulations for targeted drug delivery to prostate cancer: An overview.J. Nanosci. Nanotechnol.20181885171519110.1166/jnn.2018.1542029458568
    [Google Scholar]
  24. KhanamA. SinghG. NarwalS. ChopraB. DhingraA.K. A review on novel applications of nanotechnology in the management of prostate cancer.Curr. Drug Deliv.20242191161117910.2174/011567201818069523092511352137888818
    [Google Scholar]
  25. CherianA.M. NairS.V. LakshmananV.K. The role of nanotechnology in prostate cancer theranostic applications.J. Nanosci. Nanotechnol.201414184185210.1166/jnn.2014.905224730302
    [Google Scholar]
  26. Pranav LaskarP. JaggiM. ChauhanS.C. YallapuM.M. Biomolecule-functionalized nanoformulations for prostate cancer theranostics.J. Adv. Res.20235119721710.1016/j.jare.2022.11.00136368516
    [Google Scholar]
  27. PandaP.K. SarafS. TiwariA. VermaA. RaikwarS. JainA. JainS.K. Novel strategies for targeting prostate cancer.Curr. Drug Deliv.201916871272710.2174/156720181666619082114380531433757
    [Google Scholar]
  28. HeL. LiuJ. LiS. FengX. WangC. ZhuangX. DingJ. ChenX. Polymer nanoplatforms at work in prostate cancer therapy.Adv. Ther. 201924180012210.1002/adtp.201800122
    [Google Scholar]
  29. AaronL. FrancoO.E. HaywardS.W. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia.Urol. Clin. North Am.201643327928810.1016/j.ucl.2016.04.01227476121
    [Google Scholar]
  30. CunhaG.R. VezinaC.M. IsaacsonD. RickeW.A. TimmsB.G. CaoM. FrancoO. BaskinL.S. Development of the human prostate.Differentiation2018103244510.1016/j.diff.2018.08.00530224091
    [Google Scholar]
  31. SharmaM. GuptaS. DholeB. KumarA. The prostate gland.Basics of Human Andrology: A Textbook.Springer2017173510.1007/978‑981‑10‑3695‑8_2
    [Google Scholar]
  32. VerzeP. CaiT. LorenzettiS. The role of the prostate in male fertility, health and disease.Nat. Rev. Urol.201613737938610.1038/nrurol.2016.8927245504
    [Google Scholar]
  33. AminM. KhalidA. TazeenN. YasoobM. Zonal anatomy of prostate.Ann King Edward Med Univ2010163138
    [Google Scholar]
  34. AliA. Du FeuA. OliveiraP. ChoudhuryA. BristowR.G. BaenaE. Prostate zones and cancer: Lost in transition?Nat. Rev. Urol.202219210111510.1038/s41585‑021‑00524‑734667303
    [Google Scholar]
  35. WangG. ZhaoD. SpringD.J. DePinhoR.A. Genetics and biology of prostate cancer.Genes Dev.20183217-181105114010.1101/gad.315739.11830181359
    [Google Scholar]
  36. BergengrenO. PekalaK.R. MatsoukasK. FainbergJ. MungovanS.F. BrattO. BrayF. BrawleyO. LuckenbaughA.N. MucciL. MorganT.M. CarlssonS.V. 2022 update on prostate cancer epidemiology and risk factors—A systematic review.Eur. Urol.202384219120610.1016/j.eururo.2023.04.02137202314
    [Google Scholar]
  37. ZhangY. ZhouC.K. RencsokE.M. FallK. LotanT.L. LodaM. GiunchiF. PlatzE.A. De MarzoA.M. MucciL.A. FiorentinoM. EbotE.M. A prospective study of intraprostatic inflammation, focal atrophy, and progression to lethal prostate cancer.Cancer Epidemiol. Biomarkers Prev.201928122047205410.1158/1055‑9965.EPI‑19‑071331533941
    [Google Scholar]
  38. TrabzonluL. KulacI. ZhengQ. HicksJ.L. HaffnerM.C. NelsonW.G. SfanosK.S. ErtuncO. LotanT.L. HeaphyC.M. MeekerA.K. YegnasubramanianS. De MarzoA.M. Molecular pathology of high-grade prostatic intraepithelial neoplasia: Challenges and opportunities.Cold Spring Harb. Perspect. Med.201994a03040310.1101/cshperspect.a03040330082453
    [Google Scholar]
  39. BrandãoA. PauloP. TeixeiraM.R. Hereditary predisposition to prostate cancer: From genetics to clinical implications.Int. J. Mol. Sci.20202114503610.3390/ijms2114503632708810
    [Google Scholar]
  40. Beebe-DimmerJ.L. KapronA.L. FraserA.M. SmithK.R. CooneyK.A. Risk of prostate cancer associated with familial and hereditary cancer syndromes.J. Clin. Oncol.202038161807181310.1200/JCO.19.0280832208047
    [Google Scholar]
  41. GandhiJ. AfridiA. VatsiaS. JoshiG. JoshiG. KaplanS.A. SmithN.L. KhanS.A. The molecular biology of prostate cancer: Current understanding and clinical implications.Prostate Cancer Prostatic Dis.2018211223610.1038/s41391‑017‑0023‑829282359
    [Google Scholar]
  42. OczkowskiM. DziendzikowskaK. Pasternak-WiniarskaA. WłodarekD. Gromadzka-OstrowskaJ. Dietary factors and prostate cancer development, progression, and reduction.Nutrients202113249610.3390/nu1302049633546190
    [Google Scholar]
  43. MatsushitaM. FujitaK. NonomuraN. Influence of diet and nutrition on prostate cancer.Int. J. Mol. Sci.2020214144710.3390/ijms2104144732093338
    [Google Scholar]
  44. BarsoukA. PadalaS.A. VakitiA. MohammedA. SaginalaK. ThandraK.C. RawlaP. BarsoukA. Epidemiology, staging and management of prostate cancer.Med. Sci.2020832810.3390/medsci803002832698438
    [Google Scholar]
  45. RawlaP. Epidemiology of prostate cancer.World J. Oncol.2019102638910.14740/wjon119131068988
    [Google Scholar]
  46. PernarC.H. EbotE.M. WilsonK.M. MucciL.A. The epidemiology of prostate cancer.Cold Spring Harb. Perspect. Med.2018812a03036110.1101/cshperspect.a03036129311132
    [Google Scholar]
  47. ŠkaraL. Huđek TA. PezeljI. VrtarićA. SinčićN. KrušlinB. UlamecM. Prostate cancer—Focus on cholesterol.Cancers 20211318469610.3390/cancers1318469634572923
    [Google Scholar]
  48. RotshildV. RabkinN. MatokI. The risk for prostate cancer with calcium channel blockers: A systematic review, meta-analysis, and meta-regression.Ann. Pharmacother.2023571162810.1177/1060028022109812135645169
    [Google Scholar]
  49. HirshburgJ.M. KelseyP.A. TherrienC.A. GavinoA.C. ReichenbergJ.S. Adverse effects and safety of 5-alpha reductase inhibitors (finasteride, dutasteride): A systematic review.J. Clin. Aesthet. Dermatol.201697566227672412
    [Google Scholar]
  50. AllottE.H. MaskoE.M. FreedlandS.J. Obesity and prostate cancer: Weighing the evidence.Eur. Urol.201363580080910.1016/j.eururo.2012.11.01323219374
    [Google Scholar]
  51. MaekawaS. TakataR. ObaraW. Molecular mechanisms of prostate cancer development in the precision medicine era: A comprehensive review.Cancers 202416352310.3390/cancers1603052338339274
    [Google Scholar]
  52. PorkkaK.P. VisakorpiT. Molecular mechanisms of prostate cancer.Eur. Urol.200445668369110.1016/j.eururo.2004.01.01215149739
    [Google Scholar]
  53. De MarzoA.M. DeWeeseT.L. PlatzE.A. MeekerA.K. NakayamaM. EpsteinJ.I. IsaacsW.B. NelsonW.G. Pathological and molecular mechanisms of prostate carcinogenesis: Implications for diagnosis, detection, prevention, and treatment.J. Cell. Biochem.200491345947710.1002/jcb.1074714755677
    [Google Scholar]
  54. PackerJ.R. MaitlandN.J. The molecular and cellular origin of human prostate cancer.Biochim. Biophys. Acta Mol. Cell Res.2016186366 Pt A1238126010.1016/j.bbamcr.2016.02.01626921821
    [Google Scholar]
  55. ShtivelmanE. BeerT.M. EvansC.P. Molecular pathways and targets in prostate cancer.Oncotarget20145177217725910.18632/oncotarget.240625277175
    [Google Scholar]
  56. TestaU. CastelliG. PelosiE. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications.Medicines 2019638210.3390/medicines603008231366128
    [Google Scholar]
  57. FayE.K. GraffJ.N. Immunotherapy in prostate cancer.Cancers 2020127175210.3390/cancers1207175232630247
    [Google Scholar]
  58. ChenF. ZhaoX. Prostate cancer: Current treatment and prevention strategies.Iran. Red Crescent Med. J.201315427928410.5812/ircmj.649924082997
    [Google Scholar]
  59. WeinerA.B. KunduS.D. Prostate cancer.Med. Clin. North Am.2018102221522910.1016/j.mcna.2017.10.00129406054
    [Google Scholar]
  60. Aragon-ChingJ.B. NaderR. El AmmJ. Role of chemotherapy in prostate cancer.Asian J. Androl.201820322122910.4103/aja.aja_40_1729063869
    [Google Scholar]
  61. CanilC.M. TannockI.F. Is there a role for chemotherapy in prostate cancer?Br. J. Cancer20049161005101110.1038/sj.bjc.660185015150548
    [Google Scholar]
  62. WalczakJ.R. CarducciM.A. Pharmacological treatments for prostate cancer.Expert Opin. Investig. Drugs200211121737174810.1517/13543784.11.12.173712457434
    [Google Scholar]
  63. SilvestriI. CattarinoS. GiantulliS. NazzariC. CollaltiG. SciarraA. A perspective of immunotherapy for prostate cancer.Cancers 2016876410.3390/cancers807006427399780
    [Google Scholar]
  64. NilssonS. NorlénB.J. WidmarkA. A systematic overview of radiation therapy effects in prostate cancer.Acta Oncol.200443431638110.1080/0284186041003066115303499
    [Google Scholar]
  65. AvramovićN. MandićB. Savić-RadojevićA. SimićT. Polymeric nanocarriers of drug delivery systems in cancer therapy.Pharmaceutics202012429810.3390/pharmaceutics1204029832218326
    [Google Scholar]
  66. Yousefi RH.A. ShinD.H. Yousefi RS. Polymeric nanoparticles in cancer chemotherapy: A narrative review.Iran. J. Public Health202251222623910.18502/ijph.v51i2.867735866132
    [Google Scholar]
  67. GuoX. WangL. WeiX. ZhouS. Polymer-Based drug delivery systems for cancer treatment.J. Polym. Sci. A Polym. Chem.201654223525355010.1002/pola.28252
    [Google Scholar]
  68. AlsuraifiA. CurtisA. LamprouD.A. HoskinsC. Stimuli responsive polymeric systems for cancer therapy.Pharmaceutics201810313610.3390/pharmaceutics1003013630131473
    [Google Scholar]
  69. NagavarmaB.V. YadavH.K. AyazA.V. VasudhaL.S. ShivakumarH.G. Different techniques for preparation of polymeric nanoparticles-A review.Asian J. Pharm. Clin. Res.2012531623
    [Google Scholar]
  70. CastroK.C. CostaJ.M. CamposM.G.N. Drug-loaded polymeric nanoparticles: A review.Int. J. Polym. Mater.202271111310.1080/00914037.2020.1798436
    [Google Scholar]
  71. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  72. IdreesH. ZaidiS.Z.J. SabirA. KhanR.U. ZhangX. HassanS. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications.Nanomaterials 20201010197010.3390/nano1010197033027891
    [Google Scholar]
  73. TongX. PanW. SuT. ZhangM. DongW. QiX. Recent advances in natural polymer-based drug delivery systems.React. Funct. Polym.202014810450110.1016/j.reactfunctpolym.2020.104501
    [Google Scholar]
  74. CruchoC.I.C. BarrosM.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods.Mater. Sci. Eng. C20178077178410.1016/j.msec.2017.06.00428866227
    [Google Scholar]
  75. BaraniM. SabirF. RahdarA. ArshadR. KyzasG.Z. Nanotreatment and nanodiagnosis of prostate cancer: Recent updates.Nanomaterials2020109169610.3390/nano1009169632872181
    [Google Scholar]
  76. EssaD. KondiahP.P.D. KumarP. ChoonaraY.E. Design of chitosan-coated, quercetin-loaded PLGA nanoparticles for enhanced PSMA-specific activity on LnCap prostate cancer cells.Biomedicines2023114120110.3390/biomedicines1104120137189819
    [Google Scholar]
  77. AdekiyaT.A. MooreM. ThomasM. LakeG. HudsonT. AdesinaS.K. Preparation, optimization, and in-vitro evaluation of brusatol- and docetaxel-loaded nanoparticles for the treatment of prostate cancer.Pharmaceutics202416111410.3390/pharmaceutics1601011438258124
    [Google Scholar]
  78. AnwerM.K. AliE.A. IqbalM. AhmedM.M. AldawsariM.F. SaqrA.A. AlalaiweA. SolimanG.A. Development of chitosan-coated PLGA-based nanoparticles for improved oral olaparib delivery: In vitro characterization, and in vivo pharmacokinetic studies.Processes 2022107132910.3390/pr10071329
    [Google Scholar]
  79. LiZ. HuangJ. DuT. LaiY. LiK. LuoM.L. ZhuD. WuJ. HuangH. Targeting the Rac1 pathway for improved prostate cancer therapy using polymeric nanoparticles to deliver of NSC23766.Chin. Chem. Lett.20223352496250010.1016/j.cclet.2021.11.078
    [Google Scholar]
  80. GoswamiA. PatelN. BhattV. RavalM. KundariyaM. ShethN. Lycopene loaded polymeric nanoparticles for prostate cancer treatment: Formulation, optimization using Box-behnken design and cytotoxicity studies.J. Drug Deliv. Sci. Technol.20226710293010.1016/j.jddst.2021.102930
    [Google Scholar]
  81. FangY. LinS. YangF. SituJ. LinS. LuoY. Aptamer-conjugated multifunctional polymeric nanoparticles as cancer-targeted, MRI-ultrasensitive drug delivery systems for treatment of castration-resistant prostate cancer.BioMed Res. Int.2020202011210.1155/2020/918658332420382
    [Google Scholar]
  82. RaspantiniG.L. LuizM.T. AbriataJ.P. EloyJ.O. VaidergornM.M. EmeryF.S. MarchettiJ.M. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization.Colloids Surf. A Physicochem. Eng. Asp.202162712714410.1016/j.colsurfa.2021.127144
    [Google Scholar]
  83. TaoY. DaiC. XieZ. YouX. LiK. WuJ. HuangH. Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer.Chin. Chem. Lett.202435810917010.1016/j.cclet.2023.109170
    [Google Scholar]
  84. ConteR. ValentinoA. Di CristoF. PelusoG. CerrutiP. Di SalleA. CalarcoA. Cationic polymer nanoparticles-mediated delivery of miR-124 impairs tumorigenicity of prostate cancer cells.Int. J. Mol. Sci.202021386910.3390/ijms2103086932013257
    [Google Scholar]
  85. RibeiroA.F. SantosJ.F. MattosR.R. BarrosE.G.O. NasciuttiL.E. CabralL.M. SousaV.P.D. Characterization and in vitro antitumor activity of polymeric nanoparticles loaded with Uncaria tomentosa extract.An. Acad. Bras. Cienc.2020921e2019033610.1590/0001‑376520202019033632321026
    [Google Scholar]
  86. MurarM. PujalsS. AlbertazziL. Multivalent effect of peptide functionalized polymeric nanoparticles towards selective prostate cancer targeting.Nanoscale Adv.2023551378138510.1039/D2NA00601D36866255
    [Google Scholar]
  87. JinG.W. RejinoldN.S. ChoyJ.H. Multifunctional polymeric micelles for cancer therapy.Polymers 20221422483910.3390/polym1422483936432965
    [Google Scholar]
  88. GhoshB. BiswasS. Polymeric micelles in cancer therapy: State of the art.J. Control. Release202133212714710.1016/j.jconrel.2021.02.01633609621
    [Google Scholar]
  89. WeiH. ChengS.X. ZhangX.Z. ZhuoR.X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers.Prog. Polym. Sci.200934989391010.1016/j.progpolymsci.2009.05.002
    [Google Scholar]
  90. AliabadiA. HasanniaM. Vakili-AzghandiM. ArasteF. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: Application in drug delivery.J. Mater. Chem. B Mater. Biol. Med.202311399325936810.1039/D3TB01371E37706425
    [Google Scholar]
  91. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  92. LongM. LiuX. HuangX. LuM. WuX. WengL. ChenQ. WangX. ZhuL. ChenZ. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer.J. Control. Release202133430331710.1016/j.jconrel.2021.04.03533933517
    [Google Scholar]
  93. BarveA. JainA. LiuH. ZhaoZ. ChengK. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy.Acta Biomater.202011350151110.1016/j.actbio.2020.06.01932562805
    [Google Scholar]
  94. AlhakamyN.A. AhmedO.A.A. FahmyU.A. MdS. Development and in vitro evaluation of 2-methoxyestradiol loaded polymeric micelles for enhancing anticancer activities in prostate cancer.Polymers 202113688410.3390/polym1306088433805675
    [Google Scholar]
  95. ZhangH. LiuX. WuF. QinF. FengP. XuT. LiX. YangL. A novel prostate-specific membrane-antigen (PSMA) targeted micelle-encapsulating wogonin inhibits prostate cancer cell proliferation via inducing intrinsic apoptotic pathway.Int. J. Mol. Sci.201617567610.3390/ijms1705067627196894
    [Google Scholar]
  96. GaoY. LiY. LiY. YuanL. ZhouY. LiJ. ZhaoL. ZhangC. LiX. LiuY. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking.Nanoscale20157259761210.1039/C4NR05738D25419788
    [Google Scholar]
  97. NezirA.E. BolatZ.B. OzturkN. KocakP. ZemheriE. GulyuzS. OzkoseU.U. YilmazO. VuralI. BozkırA. SahinF. TelciD. Targeting prostate cancer with docetaxel-loaded peptide 563-conjugated PEtOx-co-PEI30%-b-PCL polymeric micelle nanocarriers.Amino Acids20235581023103710.1007/s00726‑023‑03292‑337318626
    [Google Scholar]
  98. YangR. ChenH. GuoD. DongY. MillerD.D. LiW. MahatoR.I. Polymeric micellar delivery of novel microtubule destabilizer and hedgehog signaling inhibitor for treating chemoresistant prostate cancer.J. Pharmacol. Exp. Ther.2019370386487510.1124/jpet.119.25662830996033
    [Google Scholar]
  99. XuW. SiddiquiI.A. NihalM. PillaS. RosenthalK. MukhtarH. GongS. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer.Biomaterials201334215244525310.1016/j.biomaterials.2013.03.00623582862
    [Google Scholar]
  100. GaoY. ZhouY. ZhaoL. ZhangC. LiY. LiJ. LiX. LiuY. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles.Acta Biomater.20152312713510.1016/j.actbio.2015.05.02126013038
    [Google Scholar]
  101. DiasA.P. da Silva SantosS. da SilvaJ.V. Parise-FilhoR. Igne FerreiraE. SeoudO.E. GiarollaJ. Dendrimers in the context of nanomedicine.Int. J. Pharm.202057311881410.1016/j.ijpharm.2019.11881431759101
    [Google Scholar]
  102. KesharwaniP. JainK. JainN.K. Dendrimer as nanocarrier for drug delivery.Prog. Polym. Sci.201439226830710.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  103. SunH.J. ZhangS. PercecV. From structure to function via complex supramolecular dendrimer systems.Chem. Soc. Rev.201544123900392310.1039/C4CS00249K25325787
    [Google Scholar]
  104. AljamalK. RamaswamyC. FlorenceA. Supramolecular structures from dendrons and dendrimers.Adv. Drug Deliv. Rev.200557152238227010.1016/j.addr.2005.09.01516310885
    [Google Scholar]
  105. LyuZ. DingL. HuangA.Y.T. KaoC.L. PengL. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis.Mater. Today Chem.201913344810.1016/j.mtchem.2019.04.004
    [Google Scholar]
  106. MandalA.K. Dendrimers in targeted drug delivery applications: A review of diseases and cancer.Int. J. Polym. Mater.202170428729710.1080/00914037.2020.1713780
    [Google Scholar]
  107. YellepeddiV.K. GhandehariH. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers.Expert Opin. Drug Deliv.201916101051106110.1080/17425247.2019.165660731414922
    [Google Scholar]
  108. GhaffariM. DehghanG. Abedi-GaballuF. KashanianS. BaradaranB. Ezzati Nazhad DolatabadiJ. LosicD. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting.Eur. J. Pharm. Sci.201812231133010.1016/j.ejps.2018.07.02030003954
    [Google Scholar]
  109. LiX. NaeemA. XiaoS. HuL. ZhangJ. ZhengQ. Safety challenges and application strategies for the use of dendrimers in medicine.Pharmaceutics2022146129210.3390/pharmaceutics1406129235745863
    [Google Scholar]
  110. SzotaM. Reczyńska-KolmanK. PamułaE. MichelO. KulbackaJ. JachimskaB. Poly (Amidoamine) dendrimers as nanocarriers for 5-fluorouracil: effectiveness of complex formation and cytotoxicity studies.Int. J. Mol. Sci.202122201116710.3390/ijms22201116734681827
    [Google Scholar]
  111. SeixasN. RavanelloB.B. MorganI. KaluđerovićG.N. WessjohannL.A. Chlorambucil conjugated Ugi dendrimers with PAMAM-NH2 core and evaluation of their anticancer activity.Pharmaceutics20191125910.3390/pharmaceutics1102005930717083
    [Google Scholar]
  112. LesniakW. BoinapallyS. LoflandG. JiangZ. FossC. Behman AzadB. JablonskaA. GarciaM. BrzezinskiM. PomperM. Multimodal, PSMA-targeted, PAMAM dendrimer-drug conjugates for treatment of prostate cancer: Preclinical evaluation.Int. J. Nanomedicine2024194995501010.2147/IJN.S45412838832336
    [Google Scholar]
  113. DongY. ChenY. ZhuD. ShiK. MaC. ZhangW. RocchiP. JiangL. LiuX. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy.J. Control. Release202032241642510.1016/j.jconrel.2020.04.00332247806
    [Google Scholar]
  114. DhullA. WeiJ. PulukuriA.J. RaniA. SharmaR. MesbahiN. YoonH. SavoyE.A. Xaivong ViS. GoodyK.J. BerkmanC.E. WuB.J. SharmaA. PSMA-targeted dendrimer as an efficient anticancer drug delivery vehicle for prostate cancer.Nanoscale202416115634565210.1039/D3NR06520K38440933
    [Google Scholar]
  115. RaniA. PulukuriA.J. WeiJ. DhullA. DarA.I. SharmaR. MesbahiN. SavoyE.A. YoonH. WuB.J. BerkmanC.E. SharmaA. PSMA-targeted 2-deoxyglucose-based dendrimer nanomedicine for the treatment of prostate cancer.Biomacromolecules20242596164618010.1021/acs.biomac.4c0087839164913
    [Google Scholar]
  116. TaiZ. MaJ. DingJ. PanH. ChaiR. ZhuC. CuiZ. ChenZ. ZhuQ. Aptamer-functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer.Int. J. Nanomedicine202015103051032010.2147/IJN.S28210733376323
    [Google Scholar]
  117. TeyhooM. HosseiniF. ArdestaniM.S. GhorbaniM. Synthesis and evaluation of a novel nanosized anionic linear globular dendrimer G2-ciprofloxacin conjugate against prostate cancer.Pak. J. Pharm. Sci.20203362589259433867334
    [Google Scholar]
  118. AlmowaladJ. LaskarP. SomaniS. MeewanJ. TateR.J. DufèsC. Lactoferrin- and dendrimer-bearing gold nanocages for stimulus-free DNA delivery to prostate cancer cells.Int. J. Nanomedicine2022171409142110.2147/IJN.S34757435369035
    [Google Scholar]
  119. ChandranS.S. RayS. PomperM.G. DenmeadeS.R. MeaseR.C. Prostate specific membrane antigen (PSMA) targeted nanoparticles for therapy of prostate cancer.US Patent US9422234B2,2016
  120. Radovic-MorenoA.F. ZhangF. LangerR.S. FarokhzadO.C. Polymer-encapsulated reverse micelles.US Patent US8193334B2,2012
  121. GaoJ. BoothmanD. ZhouY. BeyE. pH-sensitive compositions for delivery of beta lapachone and methods of use.US Patent US9631041B2,2017
  122. PerumalO.P. PodarallaS.K. AverineniR.K. Polymer conjugated protein micelles.US Patent US8697098B2,2014
  123. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑527299311
    [Google Scholar]
  124. KaurD. JainK. MehraN.K. KesharwaniP. JainN.K. A review on comparative study of PPI and PAMAM dendrimers.J. Nanopart. Res.201618614610.1007/s11051‑016‑3423‑0
    [Google Scholar]
  125. BehlA. ParmarV.S. MalhotraS. ChhillarA.K. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents.Polymer202020712290110.1016/j.polymer.2020.122901
    [Google Scholar]
  126. HouA. DuY. SuY. PangZ. liuS. XianS. ZhaoX. MaL. LiuB. WuH. ZhouZ. CuS/Co-Ferrocene-MOF nanocomposites for photothermally enhanced chemodynamic antibacterial therapy.ACS Appl. Nano Mater.202479109981100710.1021/acsanm.4c02067
    [Google Scholar]
  127. HuT. XueB. MengF. MaL. DuY. YuS. YeR. LiH. ZhangQ. GuL. ZhouZ. LiangR. TanC. Preparation of 2D polyaniline/MoO3− x superlattice nanosheets via intercalation‐induced morphological transformation for efficient chemodynamic therapy.Adv. Healthc. Mater.20231211220291110.1002/adhm.20220291136603589
    [Google Scholar]
  128. LiM. ZhangZ. YuY. YuanH. Nezamzadeh-EjhiehA. LiuJ. PanY. LanQ. Recent advances in Zn-MOFs and their derivatives for cancer therapeutic applications.Materials Advances20234215050509310.1039/D3MA00545C
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206360906241223120425
Loading
/content/journals/acamc/10.2174/0118715206360906241223120425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test