Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes. Adenoviruses are non-enveloped viruses that can efficiently infect a wide range of cells, including tumor cells, while exhibiting a favorable safety profile, making them suitable candidates for clinical applications. Adenoviral vectors possess the unique ability to package large segments of therapeutic genes, allowing for diverse treatment approaches, including oncolytic virotherapy, which selectively targets and destroys tumor cells while stimulating robust immune responses. By engineering adenoviruses to express tumor suppressor genes such as p53, researchers can restore critical apoptotic pathways often disrupted in cervical cancer. Furthermore, genetic modifications to capsid proteins can enhance the targeting of tumor cells and reduce the immunogenicity associated with these viral vectors. Additionally, adenoviral vectors can serve as delivery systems for therapeutic vaccines against HPV oncogenes E6 and E7, promoting effective immune responses and potentially preventing disease progression. The combination of adenoviral therapy with immune checkpoint inhibitors offers a novel approach to overcoming the immunosuppressive tumor microenvironment, enhancing overall antitumor immunity. Overall, this review highlights the significant advancements in adenoviral therapy for cervical cancer, emphasizing the need for further research to optimize these strategies and translate preclinical successes into effective clinical applications. By harnessing the full potential of adenoviral vectors, we can improve treatment options for patients who have cervical cancer, paving the way for more personalized and effective therapeutic interventions.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206338559241112060553
2025-01-27
2025-07-09
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. D’OriaO. BoganiG. CuccuI. D’AugeT.G. Di DonatoV. CasertaD. GianniniA. Pharmacotherapy for the treatment of recurrent cervical cancer: an update of the literature.Expert Opin. Pharmacother.202325111110.1080/14656566.2023.229832938159033
    [Google Scholar]
  3. CohenP.A. JhingranA. OakninA. DennyL. Cervical cancer.Lancet20193931016716918210.1016/S0140‑6736(18)32470‑X30638582
    [Google Scholar]
  4. FukuharaH. InoY. TodoT. Oncolytic virus therapy: A new era of cancer treatment at dawn.Cancer Sci.2016107101373137910.1111/cas.1302727486853
    [Google Scholar]
  5. BahreyniA. MohamudY. LuoH. Oncolytic virus-based combination therapy in breast cancer.Cancer Lett.202458521663410.1016/j.canlet.2024.21663438309616
    [Google Scholar]
  6. BlumingA. ZieglerJ. Regression of Burkitt’s lymphoma in association with measles infection.Lancet1971298771510510610.1016/S0140‑6736(71)92086‑14103972
    [Google Scholar]
  7. MacedoN. MillerD.M. HaqR. KaufmanH.L. Clinical landscape of oncolytic virus research in 2020.J. Immunother. Cancer202082e00148610.1136/jitc‑2020‑00148633046622
    [Google Scholar]
  8. SahaB. ParksR.J. Recent advances in novel antiviral therapies against human adenovirus.Microorganisms202089128410.3390/microorganisms809128432842697
    [Google Scholar]
  9. YangC. ZhuC. QianY. DengJ. ZhangB. ZhuR. WangF. SunY. ChenD. GuoQ. ZhouY. YuL. CaoL. ZhaoL. Application of human adenovirus genotyping by phylogenetic analysis in an outbreak to identify nosocomial infection.Virol. Sin.202136339340110.1007/s12250‑020‑00299‑y33001388
    [Google Scholar]
  10. MarelliG. HowellsA. LemoineN.R. WangY. Oncolytic viral therapy and the immune system: a double-edged sword against cancer.Front. Immunol.2018986610.3389/fimmu.2018.0086629755464
    [Google Scholar]
  11. Garcia-MoureM. Martinez-VélezN. Patiño-GarcíaA. AlonsoM.M. Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope.J. Bone Oncol.20179414710.1016/j.jbo.2016.12.00129226089
    [Google Scholar]
  12. ZengM. ZhangW. LiY. YuL. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner.Biomark. Res.20241213610.1186/s40364‑024‑00581‑138528632
    [Google Scholar]
  13. KreppelF. HagedornC. Capsid and genome modification strategies to reduce the immunogenicity of adenoviral vectors.Int. J. Mol. Sci.2021225241710.3390/ijms2205241733670859
    [Google Scholar]
  14. LeeJ.Y. HongJ.W. ThambiT. YoonA.R. ChoiJ.W. LiY. BuiQ.N. LeeD.S. YunC.O. Optimizing active tumor targeting biocompatible polymers for efficient systemic delivery of adenovirus.Cells2021108189610.3390/cells1008189634440666
    [Google Scholar]
  15. BlissC.M. Hulin-CurtisS.L. WilliamsM. MaruškováM. DaviesJ.A. StatkuteE. BakerA.T. StackL. KerstetterL. Kerr-JonesL.E. MilwardK.F. RussellG. GeorgeS.J. BadderL.M. StantonR.J. CoughlanL. HumphreysI.R. ParkerA.L. A pseudotyped adenovirus serotype 5 vector with serotype 49 fiber knob is an effective vector for vaccine and gene therapy applications.Mol. Ther. Methods Clin. Dev.202432310130810.1016/j.omtm.2024.10130839206304
    [Google Scholar]
  16. SyyamA. NawazA. IjazA. SajjadU. FazilA. IrfanS. MuzaffarA. ShahidM. IdreesM. MalikK. AfzalS. Adenovirus vector system: construction, history and therapeutic applications.Biotechniques202273629730510.2144/btn‑2022‑005136475496
    [Google Scholar]
  17. WeklakD. PembaurD. KoukouG. JönssonF. HagedornC. KreppelF. Genetic and chemical capsid modifications of adenovirus vectors to modulate vector–host interactions.Viruses2021137130010.3390/v1307130034372506
    [Google Scholar]
  18. JavidH. OryaniM.A. RezagholinejadN. EsparhamA. TajaldiniM. Karimi-ShahriM. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin–RGD interactions.Cancer Med.2024132e680010.1002/cam4.680038349028
    [Google Scholar]
  19. KleijnA. KloezemanJ. Treffers-WesterlakenE. FulciG. LeenstraS. DirvenC. DebetsR. LamfersM. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity.PLoS One201495e9749510.1371/journal.pone.009749524866126
    [Google Scholar]
  20. Montaño-SamaniegoM. Bravo-EstupiñanD.M. Méndez-GuerreroO. Alarcón-HernándezE. Ibáñez-HernándezM. Strategies for targeting gene therapy in cancer cells with tumor-specific promoters.Front. Oncol.20201060538010.3389/fonc.2020.60538033381459
    [Google Scholar]
  21. LongM. LinF. WangX. ChenX. LiuL. ZhangH. DongK. Adenovirus-mediated anti-AEG-1 ScFv expression driven by stathmin promoter inhibits tumor growth in cervical cancer.Cancer Cell Int.20202017910.1186/s12935‑020‑1159‑532190003
    [Google Scholar]
  22. AlfanoA. CafferataE.G.A. GangemiM. NicolaC.A. MalneroC.M. BermudezI. LopezM.V. RíosG.D. RotondaroC. CuneoN. CurielD.T. PodhajcerO.L. LopezM.V. In vitro and in vivo efficacy of a stroma-targeted, tumor microenvironment responsive oncolytic adenovirus in different preclinical models of cancer.Int. J. Mol. Sci.20232412999210.3390/ijms2412999237373140
    [Google Scholar]
  23. LimH.Y. AhnM. ChungH.C. GardnerT.A. KaoC. LeeS.J. KimS.J. Tumor-specific gene therapy for uterine cervical cancer using MN/CA9-directed replication-competent adenovirus.Cancer Gene Ther.200411853253810.1038/sj.cgt.770073215167900
    [Google Scholar]
  24. LeeJ.J. KimS. YeomY.I.L. HeoD.S. Enhanced specificity of the p53 family proteins-based adenoviral gene therapy in uterine cervical cancer cells with E2F1-responsive promoters.Cancer Biol. Ther.20065111502151010.4161/cbt.5.11.330017012841
    [Google Scholar]
  25. HsuK-F. WuC-L. HuangS-C. HsiehJ-L. HuangY-S. ChenY-F. ShenM-R. ChungW-J. ChouC-Y. ShiauA-L. Conditionally replicating E1B-deleted adenovirus driven by the squamous cell carcinoma antigen 2 promoter for uterine cervical cancer therapy.Cancer Gene Ther.200815852653410.1038/cgt.2008.3718497852
    [Google Scholar]
  26. NakajimaR. ZhaoL. ZhouY. ShirasawaM. UchidaA. MurakawaH. FikriyantiM. IwanagaR. BradfordA.P. ArakiK. WaritaT. OhtaniK. Deregulated E2F activity as a cancer-cell specific therapeutic tool.Genes (Basel)202314239310.3390/genes1402039336833320
    [Google Scholar]
  27. ÇuburuN. KhanS. ThompsonC.D. KimR. VellingaJ. ZahnR. LowyD.R. ScheperG. SchillerJ.T. Adenovirus vector‐based prime‐boost vaccination via heterologous routes induces cervicovaginal CD8 + T cell responses against HPV16 oncoproteins.Int. J. Cancer201814271467147910.1002/ijc.3116629159802
    [Google Scholar]
  28. WangN. LiX. LiuX. BianM. HouY. ZhouY. LiY. XuF. TangH. LiN. LiuQ. Clinical Efficacy and Safety of AdV-tk Gene Therapy for Patients with Cervical Squamous Intraepithelial Lesion: A Prospective Study.Hum. Gene Ther.20233419-201033104010.1089/hum.2023.06637542389
    [Google Scholar]
  29. HaoY. GuoL. AbudulaA. SaidoulaW. GuoX. Proliferation inhibition and apoptosis enhancement of human cervical cancer cells by ultrasound-targeted microbubble destruction delivered double suicide genes.Int. J. Clin. Exp. Med.20147125330533525664039
    [Google Scholar]
  30. UmemuraY. OrringerD. JunckL. VarelaM.L. WestM.E.J. FaisalS.M. CombaA. HethJ. SagherO. LeungD. MammoserA. Hervey-JumperS. ZamlerD. YadavV.N. DunnP. Al-HolouW. HollonT. KimM.M. WahlD.R. Camelo-PiraguaS. LiebermanA.P. VennetiS. McKeeverP. LawrenceT. KurokawaR. SagherK. AltshulerD. ZhaoL. MuraszkoK. CastroM.G. LowensteinP.R. Combined cytotoxic and immune-stimulatory gene therapy for primary adult high-grade glioma: a phase 1, first-in-human trial.Lancet Oncol.20232491042105210.1016/S1470‑2045(23)00347‑937657463
    [Google Scholar]
  31. LiX. LeY. ZhangZ. NianX. LiuB. YangX. Viral vector-based gene therapy.Int. J. Mol. Sci.2023249773610.3390/ijms2409773637175441
    [Google Scholar]
  32. HamadaK. AlemanyR. ZhangW.W. HittelmanW.N. LotanR. RothJ.A. MitchellM.F. Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer.Cancer Res.19965613304730548674061
    [Google Scholar]
  33. HuhJ.J. WolfJ.K. FightmasterD.L. LotanR. FollenM. Transduction of adenovirus-mediated wild-type p53 after radiotherapy in human cervical cancer cells.Gynecol. Oncol.200389224325010.1016/S0090‑8258(03)00054‑412713987
    [Google Scholar]
  34. GuoY. ChenJ. ZhangX. FangM. XuM. ZhangL. RaoE. XinY. Recombinant human adenovirus-p53 therapy for the treatment of cervical cancer: a meta-analysis.Front. Oncol.20211174868110.3389/fonc.2021.74868134733786
    [Google Scholar]
  35. DuanY. BaiH. LiX. WangD. WangY. CaoM. ZhangN. ChenH. WangY. Oncolytic adenovirus H101 synergizes with radiation in cervical cancer cells.Curr. Cancer Drug Targets202121761963010.2174/156800962166621030810354133687882
    [Google Scholar]
  36. XiaoT. FanJ.K. HuangH.L. GuJ.F. LiL.Y. LiuX.Y. VEGI-armed oncolytic adenovirus inhibits tumor neovascularization and directly induces mitochondria-mediated cancer cell apoptosis.Cell Res.201020336737810.1038/cr.2009.12619918267
    [Google Scholar]
  37. GöttigL. JummerS. StaehlerL. GroitlP. KarimiM. BlanchetteP. KosulinK. BrantonP.E. SchreinerS. The human adenovirus PI3K-Akt activator E4orf1 is targeted by the tumor suppressor p53.J. Virol.2024984e01701-2310.1128/jvi.01701‑2338451084
    [Google Scholar]
  38. GuF. XuF. PanZ. ShiL. YuJ. SongF. HuangS. SunM. An integrative pan-cancer analysis illustrating the key role of LRP11 in cervical cancer.Medicine (Baltimore)202310211e3320110.1097/MD.000000000003320136930084
    [Google Scholar]
  39. KobayashiO. TaguchiA. NakajimaT. IkedaY. SaitoK. KawanaK. Immunotherapy that leverages HPV-specific immune responses for precancer lesions of cervical cancer.Taiwan. J. Obstet. Gynecol.2024631222810.1016/j.tjog.2023.10.00238216264
    [Google Scholar]
  40. MeiS. PengS. VongE.G. ZhanJ. A dual-functional oncolytic adenovirus ZD55-aPD-L1 scFv armed with PD-L1 inhibitor potentiates its antitumor activity.Int. Immunopharmacol.202412811157910.1016/j.intimp.2024.11157938278066
    [Google Scholar]
  41. YangY. XuW. PengD. WangH. ZhangX. WangH. XiaoF. ZhuY. JiY. GulukotaK. HelsethD.L.Jr MangoldK.A. SullivanM. KaulK. WangE. PrabhakarB.S. LiJ. WuX. WangL. SethP. An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: a novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy.Hum. Gene Ther.20193091117113210.1089/hum.2019.05931126191
    [Google Scholar]
  42. ClubbJ.H.A. KudlingT.V. HeiniöC. BasnetS. PakolaS. Cervera CV. SantosJ.M. QuixabeiraD.C.A. HavunenR. SorsaS. ZhengV. SaloT. BäckL. AroK. TulokasS. LoimuV. HemminkiA. Adenovirus encoding tumor necrosis factor alpha and interleukin 2 induces a tertiary lymphoid structure signature in immune checkpoint inhibitor refractory head and neck cancer.Front. Immunol.20221379425110.3389/fimmu.2022.79425135355980
    [Google Scholar]
  43. BelcaidZ. BerrevoetsC. ChoiJ. van BeelenE. StavrakakiE. PiersonT. KloezemanJ. RoutkevitchD. van der KaaijM. van der PloegA. MathiosD. SleijferS. DirvenC. LimM. DebetsR. LamfersM.L.M. Low-dose oncolytic adenovirus therapy overcomes tumor-induced immune suppression and sensitizes intracranial gliomas to anti-PD-1 therapy.Neurooncol. Adv.202021vdaa01110.1093/noajnl/vdaa01132642679
    [Google Scholar]
  44. LiuY. TuveS. PerssonJ. BeyerI. YumulR. LiZ.Y. TragoolpuaK. HellströmK-E. RofflerS. LieberA. Adenovirus-mediated intratumoral expression of immunostimulatory proteins in combination with systemic Treg inactivation induces tumor-destructive immune responses in mouse models.Cancer Gene Ther.201118640741810.1038/cgt.2011.821394107
    [Google Scholar]
  45. ZhangH. XieW. ZhangY. DongX. LiuC. YiJ. ZhangS. WenC. ZhengL. WangH. Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model.Cancer Gene Ther.202229545646510.1038/s41417‑021‑00389‑334561555
    [Google Scholar]
  46. DuT. ShiG. LiY.M. ZhangJ.F. TianH.W. WeiY.Q. DengH. YuD.C. Tumor-specific oncolytic adenoviruses expressing granulocyte macrophage colony-stimulating factor or anti-CTLA4 antibody for the treatment of cancers.Cancer Gene Ther.201421834034810.1038/cgt.2014.3425034886
    [Google Scholar]
  47. HanX. GaoZ. ChengY. WuS. ChenJ. ZhangW. A therapeutic DNA vaccine targeting HPV16 E7 in combination with anti-PD-1/PD-L1 enhanced tumor regression and cytotoxic immune responses.Int. J. Mol. Sci.202324201546910.3390/ijms24201546937895145
    [Google Scholar]
  48. WanB. QinL. MaW. WangH. Construction and immune effect of an HPV16/18/58 trivalent therapeutic adenovirus vector vaccine.Infect. Agent. Cancer2022171510.1186/s13027‑022‑00417‑335197089
    [Google Scholar]
  49. BoilesenD.R. NeckermannP. WillertT. MüllerM.D. SchrödelS. PertlC. ThirionC. AsbachB. WagnerR. HolstP.J. Efficacy and synergy with cisplatin of an adenovirus vectored therapeutic E1E2E6E7 vaccine against hpv genome–positive C3 Cancers in Mice.Cancer Immunol. Res.202311226127510.1158/2326‑6066.CIR‑22‑017436534088
    [Google Scholar]
  50. GoradelN.H. NegahdariB. MohajelN. MalekshahiZ.V. ShiraziM.M.A. ArashkiaA. Heterologous administration of HPV16 E7 epitope-loaded nanocomplexes inhibits tumor growth in mouse model.Int. Immunopharmacol.2021101Pt B10829810.1016/j.intimp.2021.10829834739928
    [Google Scholar]
  51. ChanJ.D. LaiJ. SlaneyC.Y. KalliesA. BeavisP.A. DarcyP.K. Cellular networks controlling T cell persistence in adoptive cell therapy.Nat. Rev. Immunol.2021211276978410.1038/s41577‑021‑00539‑633879873
    [Google Scholar]
  52. ZhengJ. HuangJ. MaW. YangW. HuB.J.C.M. The antitumor activity of CAR-T-PD1 cells enhanced by HPV16mE7-pulsed and SOCS1-silenced dcs in cervical cancer models.Cancer Manag. Res.20211360456053
    [Google Scholar]
  53. SuiX. XiX.J.A.C. MCT1 gene silencing enhances the immune effect of dendritic cells on cervical cancer cells.Adv. Clin. Exp. Med.2024337739749
    [Google Scholar]
  54. ZhangH. HanW.J. ZhangZ.L. The importance of tumor necrosis factor-α-induced protein-8 like-2 in the pathogenesis of cervical cancer and preeclampsia via regulation of cell invasion.Tohoku J. Exp. Med.2022257318119110.1620/tjem.2022.J02635418534
    [Google Scholar]
  55. HuangQ. CaiW.Q. HanZ.W. WangM.Y. ZhouY. ChengJ.T. ZhangY. WangY.Y. XinQ. WangX.W. PengX.C. XiangY. FangS.X. MaZ.W. XinH.Y. CuiS.Z. XinH.W. Bispecific T cell engagers and their synergistic tumor immunotherapy with oncolytic viruses.Am. J. Cancer Res.20211162430245534249409
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206338559241112060553
Loading
/content/journals/acamc/10.2174/0118715206338559241112060553
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adenovirus; Cervical cancer; immunotherapy; p53; tissue specificity; vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test