Skip to content
2000
image of Antibody Drug Conjugates (ADCs): Shaping the Future of Precision Oncology

Abstract

Antibody-drug conjugates (ADCs) are a groundbreaking advancement in targeted cancer therapy, combining the precision of monoclonal antibodies with the potency of cytotoxic drugs. This review first outlines the components of ADCs and their mechanisms of action before providing a comprehensive overview of the current state of ADC technology. It covers both FDA-approved ADCs and those in various stages of clinical development, as well as future research directions. The review also explores recent innovations, such as bispecific antibodies and pro-body-drug conjugates, which offer promising new strategies for improving efficacy and minimizing off-target effects. The review emphasizes the need for ongoing research to optimize ADC design and develop novel approaches to enhance their therapeutic potential.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206348204241128063329
2025-01-06
2025-04-02
Loading full text...

Full text loading...

References

  1. Guerra-Martín M.D. Tejedor-Bueno M.S. Correa-Casado M. Effectiveness of complementary therapies in cancer patients: A systematic review. Int. J. Environ. Res. Public Health 2021 18 3 1017 10.3390/ijerph18031017 33498883
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Global cancer burden grows amid growing need for services. Available from: https://www.who.int/es/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed 2024-10-08).
  4. Lindley C. McCune J.S. Thomason T.E. Lauder D. Sauls A. Adkins S. Sawyer W.T. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer Pract. 1999 7 2 59 65 10.1046/j.1523‑5394.1999.07205.x 10352062
    [Google Scholar]
  5. Kaur R. Bhardwaj A. Gupta S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023 50 11 9663 9676 10.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  6. Targeted therapy to treat cancer. Available from: https://www.cancer.gov/espanol/cancer/tratamiento/tipos/terapia-dirigida (accessed 2024-10-08).
  7. Singh A.P. Guo L. Verma A. Wong G.G.L. Thurber G.M. Shah D.K. Antibody coadministration as a strategy to overcome binding-site barrier for ADCs: A quantitative investigation. AAPS J. 2020 22 2 28 10.1208/s12248‑019‑0387‑x 31938899
    [Google Scholar]
  8. Jin Y. Schladetsch M.A. Huang X. Balunas M.J. Wiemer A.J. Stepping forward in antibody-drug conjugate development. Pharmacol. Ther. 2022 229 107917 10.1016/j.pharmthera.2021.107917 34171334
    [Google Scholar]
  9. Yaghoubi S. Karimi M.H. Lotfinia M. Gharibi T. Mahi-Birjand M. Kavi E. Hosseini F. Sineh Sepehr K. Khatami M. Bagheri N. Abdollahpour-Alitappeh M. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. J. Cell. Physiol. 2020 235 1 31 64 10.1002/jcp.28967 31215038
    [Google Scholar]
  10. Peters C. Brown S. Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 2015 35 4 e00225 10.1042/BSR20150089 26182432
    [Google Scholar]
  11. Fu Z. Li S. Han S. Shi C. Zhang Y. Antibody drug conjugate: The “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 2022 7 1 93 10.1038/s41392‑022‑00947‑7 35318309
    [Google Scholar]
  12. Li Y. Su J. Tan S. Luo Y. Zhang L. Research progress of novel antibody-drug conjugates in cancer treatment. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2024 49 2 296 304 10.11817/J.ISSN.1672‑7347.2024.230418 38755726
    [Google Scholar]
  13. Anticuerpos dirigidos - Cancer Research Institute. Available from: https://www.cancerresearch.org/es/treatment-types/targeted-antibodies (accessed 2024-10-08).
  14. Alley S.C. Okeley N.M. Senter P.D. Antibody–drug conjugates: Targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 2010 14 4 529 537 10.1016/j.cbpa.2010.06.170 20643572
    [Google Scholar]
  15. Damelin M. Zhong W. Myers J. Sapra P. Evolving strategies for target selection for antibody-drug conjugates. Pharm. Res. 2015 32 11 3494 3507 10.1007/s11095‑015‑1624‑3 25585957
    [Google Scholar]
  16. Andersen M.H. Tumor microenvironment antigens. Semin. Immunopathol. 2023 45 2 253 264 10.1007/s00281‑022‑00966‑0 36175673
    [Google Scholar]
  17. Chen S. Antibody-Drug Conjugates and Cellular Metabolic Dynamics Springer 2023 10.1007/978‑981‑19‑5638‑6
    [Google Scholar]
  18. Do M. Wu C.C.N. Sonavane P.R. Juarez E.F. Adams S.R. Ross J. Rodriguez y Baena A. Patel C. Mesirov J.P. Carson D.A. Advani S.J. Willert K. A FZD7-specific antibody–drug conjugate induces ovarian tumor regression in preclinical models. Mol. Cancer Ther. 2022 21 1 113 124 10.1158/1535‑7163.MCT‑21‑0548 34667113
    [Google Scholar]
  19. Chang F.L. Lee C.C. Tsai K.C. Lin T.Y. Chiang C.W. Pan S.L. Lee Y.C. An auristatin-based antibody-drug conjugate targeting EphA2 in pancreatic cancer treatment. Biochem. Biophys. Res. Commun. 2023 688 149214 10.1016/j.bbrc.2023.149214 37951154
    [Google Scholar]
  20. Shinmi D. Nakano R. Mitamura K. Suzuki-Imaizumi M. Iwano J. Isoda Y. Enokizono J. Shiraishi Y. Arakawa E. Tomizuka K. Masuda K. Novel anticarcinoembryonic antigen antibody–drug conjugate has antitumor activity in the existence of soluble antigen. Cancer Med. 2017 6 4 798 808 10.1002/cam4.1003 28211613
    [Google Scholar]
  21. Birrer M.J. Moore K.N. Betella I. Bates R.C. Antibody-drug conjugate-based therapeutics: State of the science. J. Natl. Cancer Inst. 2019 111 6 538 549 10.1093/jnci/djz035 30859213
    [Google Scholar]
  22. Liang K. Khan M.S. Kalim M. Zhan J. The internalization and intracellular trafficking of ADCs. Antibody-Drug Conjugates and Cellular Metabolic Dynamics Springer Singapore 2023 35 44 10.1007/978‑981‑19‑5638‑6_4
    [Google Scholar]
  23. Samantasinghar A. Sunildutt N.P. Ahmed F. Soomro A.M. Salih A.R.C. Parihar P. Memon F.H. Kim K.H. Kang I.S. Choi K.H. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed. Pharmacother. 2023 161 114408 10.1016/j.biopha.2023.114408 36841027
    [Google Scholar]
  24. Trail P.A. Dubowchik G.M. Lowinger T.B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol. Ther. 2018 181 126 142 10.1016/j.pharmthera.2017.07.013 28757155
    [Google Scholar]
  25. Ducry L. Stump B. Antibody-drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 2010 21 1 5 13 10.1021/bc9002019 19769391
    [Google Scholar]
  26. Joubert N. Denevault-Sabourin C. Bryden F. Viaud-Massuard M.C. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur. J. Med. Chem. 2017 142 393 415 10.1016/j.ejmech.2017.08.049 28911823
    [Google Scholar]
  27. Matsumura Y. Cancer stromal targeting therapy to overcome the pitfall of EPR effect. Adv. Drug Deliv. Rev. 2020 154-155 142 150 10.1016/j.addr.2020.07.003 32652119
    [Google Scholar]
  28. Wang Y.J. Li Y.Y. Liu X.Y. Lu X.L. Cao X. Jiao B.H. Marine antibody–drug conjugates: Design strategies and research progress. Mar. Drugs 2017 15 1 18 10.3390/md15010018 28098746
    [Google Scholar]
  29. Waldmann T. A. Monoclonal antibodies in diagnosis and therapy. Science 1991 252 5013 1657 1662 10.1126/science.2047874
    [Google Scholar]
  30. Wang B. Yang C. Jin X. Du Q. Wu H. Dall’Acqua W. Mazor Y. Regulation of antibody-mediated complement-dependent cytotoxicity by modulating the intrinsic affinity and binding valency of IgG for target antigen. MAbs 2020 12 1 1690959 10.1080/19420862.2019.1690959 31829766
    [Google Scholar]
  31. Yu J. Song Y. Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J. Hematol. Oncol. 2020 13 1 45 10.1186/s13045‑020‑00876‑4 32370812
    [Google Scholar]
  32. Vidarsson G. Dekkers G. Rispens T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014 5 OCT 520 10.3389/fimmu.2014.00520 25368619
    [Google Scholar]
  33. High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules1 | Cancer Research | American Association for Cancer Research. Available from: https://aacrjournals.org/cancerres/article/61/12/4750/507649/High-Affinity-Restricts-the-Localization-and-Tumor (accessed 2024-07-10).
  34. Fujimori K. Covell D.G. Fletcher J.E. Weinstein J.N. A modeling analysis of monoclonal antibody percolation through tumors: A binding-site barrier. J. Nucl. Med. 1990 31 7 1191 1198 2362198
    [Google Scholar]
  35. Teicher B.A. Morris J. Antibody-drug conjugate targets, drugs, and linkers. Curr. Cancer Drug Targets 2022 22 6 463 529 10.2174/1568009622666220224110538 35209819
    [Google Scholar]
  36. Gorovits B. Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody–drug conjugates driven by mannose receptor uptake. Cancer Immunol. Immunother. 2013 62 2 217 223 10.1007/s00262‑012‑1369‑3 23223907
    [Google Scholar]
  37. Yamazoe S. Kotapati S. Hogan J.M. West S.M. Deng X.A. Diong S.J. Arbanas J. Nguyen T.A. Jashnani A. Gupta D. Rajpal A. Dollinger G. Strop P. Impact of drug conjugation on thermal and metabolic stabilities of aglycosylated and N -glycosylated antibodies. Bioconjug. Chem. 2022 33 4 576 585 10.1021/acs.bioconjchem.1c00572 35344340
    [Google Scholar]
  38. Hayat S. Science A. S.-A. Antibody-drug conjugates: Smart weapons against cancer. Arch. Med. Sci. 2020 16 5 1257 1262 10.5114/aoms.2019.83020
    [Google Scholar]
  39. Kostova V. Désos P. Starck J.B. Kotschy A. The chemistry behind ADCs. Pharmaceuticals 2021 14 5 442 10.3390/ph14050442 34067144
    [Google Scholar]
  40. Tsuchikama K. An Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell 2018 9 1 33 46 10.1007/s13238‑016‑0323‑0 27743348
    [Google Scholar]
  41. Beck A. D’Atri V. Ehkirch A. Fekete S. Hernandez-Alba O. Gahoual R. Leize-Wagner E. François Y. Guillarme D. Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: Present and future. Expert Rev. Proteomics 2019 16 4 337 362 10.1080/14789450.2019.1578215 30706723
    [Google Scholar]
  42. Parit S. Manchare A. Gholap A.D. Mundhe P. Hatvate N. Rojekar S. Patravale V. Antibody-drug conjugates: A promising breakthrough in cancer therapy. Int. J. Pharm. 2024 659 124211 10.1016/j.ijpharm.2024.124211 38750981
    [Google Scholar]
  43. Sheyi R. de la Torre B.G. Albericio F. Linkers: An assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics 2022 14 2 396 10.3390/pharmaceutics14020396 35214128
    [Google Scholar]
  44. Estrela J.M. Ortega A. Obrador E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006 43 2 143 181 10.1080/10408360500523878 16517421
    [Google Scholar]
  45. Lambert J.M. Berkenblit A. Antibody–drug conjugates for cancer treatment. Annu. Rev. Med. 2018 69 1 191 207 10.1146/annurev‑med‑061516‑121357 29414262
    [Google Scholar]
  46. McCombs J.R. Owen S.C. Antibody drug conjugates: Design and selection of linker, payload and conjugation chemistry. AAPS J. 2015 17 2 339 351 10.1208/s12248‑014‑9710‑8 25604608
    [Google Scholar]
  47. Ashman N. Bargh J.D. Spring D.R. Non-internalising antibody–drug conjugates. Chem. Soc. Rev. 2022 51 22 9182 9202 10.1039/D2CS00446A 36322071
    [Google Scholar]
  48. Bargh J.D. Isidro-Llobet A. Parker J.S. Spring D.R. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 2019 48 16 4361 4374 10.1039/C8CS00676H 31294429
    [Google Scholar]
  49. Kovtun Y.V. Goldmacher V.S. Cell killing by antibody–drug conjugates. Cancer Lett. 2007 255 2 232 240 10.1016/j.canlet.2007.04.010 17553616
    [Google Scholar]
  50. Thomas A. Teicher B.A. Hassan R. Antibody–drug conjugates for cancer therapy. Lancet Oncol. 2016 17 6 e254 e262 10.1016/S1470‑2045(16)30030‑4 27299281
    [Google Scholar]
  51. Hafeez U. Parakh S. Gan H.K. Scott A.M. Antibody–drug conjugates for cancer therapy. Molecules 2020 25 20 4764 10.3390/molecules25204764 33081383
    [Google Scholar]
  52. Mach J.P. Carrel S. Forni M. Ritschard J. Donath A. Alberto P. Tumor localization of radio-labeled antibodies against carcinoembryonic antigen in patients with carcinoma: A critical evaluation. N. Engl. J. Med. 1980 303 1 5 10 10.1056/NEJM198007033030102 7189578
    [Google Scholar]
  53. Teicher B.A. Chari R.V.J. Antibody conjugate therapeutics: Challenges and potential. Clin. Cancer Res. 2011 17 20 6389 6397 10.1158/1078‑0432.CCR‑11‑1417 22003066
    [Google Scholar]
  54. Ponziani S. Di Vittorio G. Pitari G. Cimini A.M. Ardini M. Gentile R. Iacobelli S. Sala G. Capone E. Flavell D.J. Ippoliti R. Giansanti F. Antibody-drug conjugates: The new frontier of chemotherapy. Int. J. Mol. Sci. 2020 21 15 5510 10.3390/ijms21155510 32752132
    [Google Scholar]
  55. Drago J.Z. Modi S. Chandarlapaty S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 2021 18 6 327 344 10.1038/s41571‑021‑00470‑8 33558752
    [Google Scholar]
  56. Chis A.A. Dobrea C.M. Arseniu A.M. Frum A. Rus L.L. Cormos G. Georgescu C. Morgovan C. Butuca A. Gligor F.G. Vonica-Tincu A.L. Antibody–drug conjugates—evolution and perspectives. Int. J. Mol. Sci. 2024 25 13 6969 10.3390/ijms25136969 39000079
    [Google Scholar]
  57. Chen H. Lin Z. Arnst K. Miller D. Li W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules 2017 22 8 1281 10.3390/molecules22081281 28763044
    [Google Scholar]
  58. Dan N. Setua S. Kashyap V. Khan S. Jaggi M. Yallapu M. Chauhan S. Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications. Pharmaceuticals 2018 11 2 32 10.3390/ph11020032 29642542
    [Google Scholar]
  59. Gogia P. Ashraf H. Bhasin S. Xu Y. Antibody–drug conjugates: A review of approved drugs and their clinical level of evidence. Cancers 2023 15 15 3886 10.3390/cancers15153886 37568702
    [Google Scholar]
  60. Damle N. Frost P. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr. Opin. Pharmacol. 2003 3 4 386 390 10.1016/S1471‑4892(03)00083‑3 12901947
    [Google Scholar]
  61. Hartley J.A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin. Investig. Drugs 2011 20 6 733 744 10.1517/13543784.2011.573477 21457108
    [Google Scholar]
  62. Su Z. Xiao D. Xie F. Liu L. Wang Y. Fan S. Zhou X. Li S. Antibody–drug conjugates: Recent advances in linker chemistry. Acta Pharm. Sin. B 2021 11 12 3889 3907 10.1016/j.apsb.2021.03.042 35024314
    [Google Scholar]
  63. Li M. Zhao X. Yu C. Wang L. Antibody-drug conjugate overview: A state-of-the-art manufacturing process and control strategy. Pharm. Res. 2024 41 3 419 440 10.1007/s11095‑023‑03649‑z 38366236
    [Google Scholar]
  64. Junutula J.R. Raab H. Clark S. Bhakta S. Leipold D.D. Weir S. Chen Y. Simpson M. Tsai S.P. Dennis M.S. Lu Y. Meng Y.G. Ng C. Yang J. Lee C.C. Duenas E. Gorrell J. Katta V. Kim A. McDorman K. Flagella K. Venook R. Ross S. Spencer S.D. Lee Wong W. Lowman H.B. Vandlen R. Sliwkowski M.X. Scheller R.H. Polakis P. Mallet W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008 26 8 925 932 10.1038/nbt.1480 18641636
    [Google Scholar]
  65. Wang S. Li Y. Mei J. Wu S. Ying G. Yi Y. Precision engineering of antibodies: A review of modification and design in the Fab region. Int. J. Biol. Macromol. 2024 275 Pt 2 133730 10.1016/j.ijbiomac.2024.133730 38986973
    [Google Scholar]
  66. Adhikari P. Zacharias N. Ohri R. Sadowsky J. Site-specific conjugation to cys-engineered THIOMAB™ antibodies. Methods Mol. Biol. 2020 2078 51 69 10.1007/978‑1‑4939‑9929‑3_4 31643049
    [Google Scholar]
  67. Axup J.Y. Bajjuri K.M. Ritland M. Hutchins B.M. Kim C.H. Kazane S.A. Halder R. Forsyth J.S. Santidrian A.F. Stafin K. Lu Y. Tran H. Seller A.J. Biroc S.L. Szydlik A. Pinkstaff J.K. Tian F. Sinha S.C. Felding-Habermann B. Smider V.V. Schultz P.G. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 2012 109 40 16101 16106 10.1073/pnas.1211023109 22988081
    [Google Scholar]
  68. Okeley N.M. Toki B.E. Zhang X. Jeffrey S.C. Burke P.J. Alley S.C. Senter P.D. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjug. Chem. 2013 24 10 1650 1655 10.1021/bc4002695 24050213
    [Google Scholar]
  69. Yamazaki S. Matsuda Y. Tag‐free enzymatic modification for antibody−drug conjugate production. ChemistrySelect 2022 7 48 e202203753 10.1002/slct.202203753
    [Google Scholar]
  70. Lyon R.P. Bovee T.D. Doronina S.O. Burke P.J. Hunter J.H. Neff-LaFord H.D. Jonas M. Anderson M.E. Setter J.R. Senter P.D. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 2015 33 7 733 735 10.1038/nbt.3212 26076429
    [Google Scholar]
  71. Strop P. Delaria K. Foletti D. Witt J.M. Hasa-Moreno A. Poulsen K. Casas M.G. Dorywalska M. Farias S. Pios A. Lui V. Dushin R. Zhou D. Navaratnam T. Tran T.T. Sutton J. Lindquist K.C. Han B. Liu S.H. Shelton D.L. Pons J. Rajpal A. Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat. Biotechnol. 2015 33 7 694 696 10.1038/nbt.3274
    [Google Scholar]
  72. Hamblett K.J. Senter P.D. Chace D.F. Sun M.M.C. Lenox J. Cerveny C.G. Kissler K.M. Bernhardt S.X. Kopcha A.K. Zabinski R.F. Meyer D.L. Francisco J.A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 2004 10 20 7063 7070 10.1158/1078‑0432.CCR‑04‑0789 15501986
    [Google Scholar]
  73. Duerr C. Friess W. Antibody-drug conjugates- stability and formulation. Eur. J. Pharm. Biopharm. 2019 139 168 176 10.1016/j.ejpb.2019.03.021 30940541
    [Google Scholar]
  74. Riccardi F. Dal Bo M. Macor P. Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front. Pharmacol. 2023 14 1274088 10.3389/fphar.2023.1274088 37790810
    [Google Scholar]
  75. Udofa E. Sankholkar D. Mitragotri S. Zhao Z. Antibody drug conjugates in the clinic. Bioeng. Transl. Med. 2024 e10677 e10677 10.1002/btm2.10677
    [Google Scholar]
  76. Tarantino P. Carmagnani Pestana R. Corti C. Modi S. Bardia A. Tolaney S.M. Cortes J. Soria J.C. Curigliano G. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 2022 72 2 165 182 10.3322/caac.21705 34767258
    [Google Scholar]
  77. Thurber G. Schmidt M. Wittrup K. Factors determining antibody distribution in tumors. Trends Pharmacol. Sci. 2008 29 2 57 61 10.1016/j.tips.2007.11.004 18179828
    [Google Scholar]
  78. Nejadmoghaddam M.R. Minai-Tehrani A. Ghahremanzadeh R. Mahmoudi M. Dinarvand R. Zarnani A.H. Antibody-drug conjugates: Possibilities and challenges. Avicenna J. Med. Biotechnol. 2019 11 1 3 23 30800238
    [Google Scholar]
  79. Takakura Y. Takahashi Y. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation. J. Control. Release 2022 350 486 493 10.1016/j.jconrel.2022.05.063 36029894
    [Google Scholar]
  80. Shinde V.R. Revi N. Murugappan S. Singh S.P. Rengan A.K. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagn. Photodyn. Ther. 2022 39 102915 10.1016/j.pdpdt.2022.102915 35597441
    [Google Scholar]
  81. Bander N.H. Antibody-drug conjugate target selection: Critical factors. Methods Mol. Biol. 2013 1045 29 40 10.1007/978‑1‑62703‑541‑5_2 23913139
    [Google Scholar]
  82. Giddabasappa A. Gupta V.R. Norberg R. Gupta P. Spilker M.E. Wentland J. Rago B. Eswaraka J. Leal M. Sapra P. Biodistribution and targeting of anti-5T4 antibody–drug conjugate using fluorescence molecular tomography. Mol. Cancer Ther. 2016 15 10 2530 2540 10.1158/1535‑7163.MCT‑15‑1012 27466353
    [Google Scholar]
  83. Wichmann C.W. Burvenich I.J.G. Guo N. Rigopoulos A. McDonald A. Cao D. O’Keefe G.J. Gong S.J. Gan H.K. Scott F.E. Pore N. Coats S. Scott A.M. Preclinical radiolabeling, in vivo biodistribution and positron emission tomography of a novel pyrrolobenzodiazepine (PBD)-based antibody drug conjugate targeting ASCT2. Nucl. Med. Biol. 2023 122-123 108366 10.1016/j.nucmedbio.2023.108366 37473513
    [Google Scholar]
  84. Alley S.C. Zhang X. Okeley N.M. Anderson M. Law C.L. Senter P.D. Benjamin D.R. The pharmacologic basis for antibody-auristatin conjugate activity. J. Pharmacol. Exp. Ther. 2009 330 3 932 938 10.1124/jpet.109.155549 19498104
    [Google Scholar]
  85. Wei Q. Yang T. Zhu J. Zhang Z. Yang L. Zhang Y. Hu C. Chen J. Wang J. Tian X. Shimura T. Fang J. Ying J. Fan M. Guo P. Cheng X. Spatiotemporal quantification of HER2-targeting antibody–drug conjugate bystander activity and enhancement of solid tumor penetration. Clin. Cancer Res. 2024 30 5 984 997 10.1158/1078‑0432.CCR‑23‑1725 38113039
    [Google Scholar]
  86. Tarantino P. Ricciuti B. Pradhan S.M. Tolaney S.M. Optimizing the safety of antibody–drug conjugates for patients with solid tumours. Nat. Rev. Clin. Oncol. 2023 20 8 558 576 10.1038/s41571‑023‑00783‑w 37296177
    [Google Scholar]
  87. Maas B.M. Cao Y. A minimal physiologically based pharmacokinetic model to investigate FcRn-mediated monoclonal antibody salvage: Effects of K on, K off, endosome trafficking, and animal species. MAbs 2018 10 8 1322 1331 10.1080/19420862.2018.1506648 30130450
    [Google Scholar]
  88. Redman J.M. Hill E.M. AlDeghaither D. Weiner L.M. Mechanisms of action of therapeutic antibodies for cancer. Mol. Immunol. 2015 67 2 2 Pt A 28 45 10.1016/j.molimm.2015.04.002 25911943
    [Google Scholar]
  89. Narvekar A. Pardeshi A. Jain R. Dandekar P. ADCC enhancement: A conundrum or a boon to mAb therapy? Biologicals 2022 79 10 18 10.1016/j.biologicals.2022.08.006 36085129
    [Google Scholar]
  90. Conner S.D. Schmid S.L. Regulated portals of entry into the cell. Nature 2003 422 6927 37 44 10.1038/nature01451 12621426
    [Google Scholar]
  91. Chalouni C. Doll S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res. 2018 37 1 20 10.1186/s13046‑017‑0667‑1 29409507
    [Google Scholar]
  92. Staudacher A.H. Li Y. Liapis V. Hou J.J.C. Chin D. Dolezal O. Adams T.E. van Berkel P.H. Brown M.P. APOMAB antibody–drug conjugates targeting dead tumor cells are effective in vivo. Mol. Cancer Ther. 2019 18 2 335 345 10.1158/1535‑7163.MCT‑18‑0842 30413648
    [Google Scholar]
  93. Staudacher A.H. Brown M.P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br. J. Cancer 2017 117 12 1736 1742 10.1038/bjc.2017.367 29065110
    [Google Scholar]
  94. Kalim M. Chen J. Wang S. Lin C. Ullah S. Liang K. Ding Q. Chen S. Zhan J.B. Intracellular trafficking of new anticancer therapeutics: Antibody–drug conjugates. Drug Des. Devel. Ther. 2017 11 2265 2276 10.2147/DDDT.S135571 28814834
    [Google Scholar]
  95. Wang Y. Tian Z. Thirumalai D. Zhang X. Neonatal Fc receptor (FcRn): A novel target for therapeutic antibodies and antibody engineering. J. Drug Target. 2014 22 4 269 278 10.3109/1061186X.2013.875030 24404896
    [Google Scholar]
  96. Chari R.V.J. Miller M.L. Widdison W.C. Antibody-drug conjugates: An emerging concept in cancer therapy. Angew. Chem. Int. Ed. 2014 53 15 3796 3827 10.1002/anie.201307628 24677743
    [Google Scholar]
  97. Najminejad Z. Dehghani F. Mirzaei Y. Mer A.H. Saghi S.A. Abdolvahab M.H. Bagheri N. Meyfour A. Jafari A. Jahandideh S. Gharibi T. Amirkhani Z. Delam H. Mashatan N. Shahsavarani H. Abdollahpour-Alitappeh M. Clinical perspective: Antibody-drug conjugates for the treatment of HER2-positive breast cancer. Mol. Ther. 2023 31 7 1874 1903 10.1016/j.ymthe.2023.03.019 36950736
    [Google Scholar]
  98. Kovtun Y.V. Audette C.A. Ye Y. Xie H. Ruberti M.F. Phinney S.J. Leece B.A. Chittenden T. Blättler W.A. Goldmacher V.S. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006 66 6 3214 3221 10.1158/0008‑5472.CAN‑05‑3973 16540673
    [Google Scholar]
  99. Kesireddy M. Kothapalli S.R. Gundepalli S.G. Asif S. A review of the current FDA-approved antibody-drug conjugates: Landmark clinical trials and indications. Pharmaceut. Med. 2024 38 1 39 54 10.1007/s40290‑023‑00505‑8 38019416
    [Google Scholar]
  100. Tong J.T.W. Harris P.W.R. Brimble M.A. Kavianinia I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules 2021 26 19 5847 10.3390/molecules26195847 34641391
    [Google Scholar]
  101. Junttila T.T. Li G. Parsons K. Phillips G.L. Sliwkowski M.X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. 2011 128 2 347 356 10.1007/s10549‑010‑1090‑x 20730488
    [Google Scholar]
  102. Turshudzhyan A. The role of ado-trastuzumab emtansine in current clinical practice. J. Oncol. Pharm. Pract. 2021 27 1 150 155 10.1177/1078155220951862 32838683
    [Google Scholar]
  103. Nguyen X. Hooper M. Borlagdan J.P. Palumbo A. A review of fam-trastuzumab deruxtecan-nxki in HER2-positive breast cancer. Ann. Pharmacother. 2021 55 11 1410 1418 10.1177/1060028021998320 33629601
    [Google Scholar]
  104. Shafique M.A. Haseeb A. Siddiq M.A. Mussarat A. Rangwala H.S. Mustafa M.S. Current and emerging treatments for Urothelial carcinoma: A focus on enfortumab vedotin. Cancer Manag. Res. 2023 15 699 706 10.2147/CMAR.S418009 37485038
    [Google Scholar]
  105. Syed Y.Y. Sacituzumab govitecan: First approval. Drugs 2020 80 10 1019 1025 10.1007/s40265‑020‑01337‑5 32529410
    [Google Scholar]
  106. Markham A. Tisotumab vedotin: First approval. Drugs 2021 81 18 2141 2147 10.1007/s40265‑021‑01633‑8 34748188
    [Google Scholar]
  107. Tisotumab vedotin marketing authorization application validated by european medicines agency for treatment of recurrent or metastatic cervical cancer - genmab a/s. Available from: https://ir.genmab.com/news-releases/news-release-details/tisotumab-vedotin-marketing-authorization-application-validated/
  108. Tisotumab vedotin marketing authorization application validated by european medicines agency for treatment of recurrent or metastatic cervical cancer | pfizer. Available from: https://www.pfizer.com/news/announcements/tisotumab-vedotin-marketing-authorization-application-validated-european
  109. Heo Y.A. Mirvetuximab soravtansine: First approval. Drugs 2023 83 3 265 273 10.1007/s40265‑023‑01834‑3 36656533
    [Google Scholar]
  110. Immunogen announces european medicines agency acceptance of marketing authorization application for mirvetuximab soravtansine in platinum-resistant ovarian cancer. Available from: https://investor.immunogen.com/news-releases/news-release-details/immunogen-announces-european-medicines-agency-acceptance
  111. Deeks E.D. Disitamab vedotin: First approval. Drugs 2021 81 16 1929 1935 10.1007/s40265‑021‑01614‑x 34661865
    [Google Scholar]
  112. RemeGen Voluntary announcement-nmpa approves ind applications for disitamab vedotin or in combination with toripalimab or sequential chemotherapy for treatment of breast cancer patients and disitamab vedotin in combination with toripalim. Available from: https://www.remegen.com/index.php?v=show&cid=113&id=1087
  113. RemeGen Voluntary announcement-nmpa approves ind application for disitamab vedotin in combination with radiotherapy in the treatment of patients with advanced solid tumors. Available from: https://www.remegen.com/index.php?v=show&cid=113&id=1131
  114. RemeGen Voluntary announcement-nmpa has approved ind application for disitamab vedotin for injection, given intravenously, in combination with gemcitabine hydrochloride for injection, given intravesically, for treatment of NMIBC. Available from: https://www.remegen.com/index.php?v=show&cid=113&id=1024
  115. Miyazaki N.L. Furusawa A. Choyke P.L. Kobayashi H. Review of RM-1929 near-infrared photoimmunotherapy clinical efficacy for unresectable and/or recurrent head and neck squamous cell carcinoma. Cancers 2023 15 21 5117 10.3390/cancers15215117 37958293
    [Google Scholar]
  116. Jen E.Y. Ko C.W. Lee J.E. Del Valle P.L. Aydanian A. Jewell C. Norsworthy K.J. Przepiorka D. Nie L. Liu J. Sheth C.M. Shapiro M. Farrell A.T. Pazdur R. FDA approval: Gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin. Cancer Res. 2018 24 14 3242 3246 10.1158/1078‑0432.CCR‑17‑3179 29476018
    [Google Scholar]
  117. Van Der Weyden C. Dickinson M. Whisstock J. Prince H.M. Brentuximab vedotin in T-cell lymphoma. Expert Rev. Hematol. 2019 12 1 5 19 10.1080/17474086.2019.1558399 30526166
    [Google Scholar]
  118. Lamb Y.N. Inotuzumab ozogamicin: First global approval. Drugs 2017 77 14 1603 1610 10.1007/s40265‑017‑0802‑5 28819740
    [Google Scholar]
  119. Lin A.Y. Dinner S.N. Moxetumomab pasudotox for hairy cell leukemia: Preclinical development to FDA approval. Blood Adv. 2019 3 19 2905 2910 10.1182/bloodadvances.2019000507 31594764
    [Google Scholar]
  120. Dhillon S. Moxetumomab pasudotox: First global approval. Drugs 2018 78 16 1763 1767 10.1007/s40265‑018‑1000‑9 30357593
    [Google Scholar]
  121. AstraZeneca will withdraw leukemia drug lumoxiti from US market. Available from: https://www.empr.com/home/news/safety-alerts-and-recalls/astrazeneca-will-withdraw-leukemia-drug-lumoxiti-from-us-market/
  122. Hairy cell leukemia drug moxetumomab pasudotox-tdfk to be withdrawn in the united states market. Available from: https://www.cancernetwork.com/view/hairy-cell-leukemia-drug-moxetumomab-pasudotox-tdfk-to-be-withdrawn-in-the-united-states-market
  123. Deeks E.D. Polatuzumab vedotin: First global approval. Drugs 2019 79 13 1467 1475 10.1007/s40265‑019‑01175‑0 31352604
    [Google Scholar]
  124. Markham A. Belantamab mafodotin: First approval. Drugs 2020 80 15 1607 1613 10.1007/s40265‑020‑01404‑x 32936437
    [Google Scholar]
  125. Lee A. Loncastuximab tesirine: First approval. Drugs 2021 81 10 1229 1233 10.1007/s40265‑021‑01550‑w 34143407
    [Google Scholar]
  126. Home. Available from: https://clinicaltrials.gov/
  127. Study details | A prospective, multi-center, phase 4 study to assess the safety of trastuzumab deruxtecan, an anti-her2-antibody drug conjugate in indian patients with unresectable or metastatic her2-positive breast cancer who have received a prior anti-her2-based regimen. Available from: https://clinicaltrials.gov/study/NCT06429761?term=NCT06429761&rank=1
  128. Study details | Study of brentuximab vedotin in participants with relapsed or refractory systemic anaplastic large cell lymphoma. Available from: https://clinicaltrials.gov/study/NCT01909934?term=NCT01909934&rank=1
  129. Metrangolo V. Engelholm L.H. Antibody–drug conjugates: The dynamic evolution from conventional to next-generation constructs. Cancers 2024 16 2 447 10.3390/cancers16020447 38275888
    [Google Scholar]
  130. Beck A. Goetsch L. Dumontet C. Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 2017 16 5 315 337 10.1038/nrd.2016.268 28303026
    [Google Scholar]
  131. Grünewald J. Jin Y. Vance J. Read J. Wang X. Wan Y. Zhou H. Ou W. Klock H.E. Peters E.C. Uno T. Brock A. Geierstanger B.H. Optimization of an enzymatic antibody–drug conjugation approach based on coenzyme a analogs. Bioconjug. Chem. 2017 28 7 1906 1915 10.1021/acs.bioconjchem.7b00236 28590752
    [Google Scholar]
  132. Dorywalska M. Strop P. Melton-Witt J.A. Hasa-Moreno A. Farias S.E. Galindo Casas M. Delaria K. Lui V. Poulsen K. Loo C. Krimm S. Bolton G. Moine L. Dushin R. Tran T.T. Liu S.H. Rickert M. Foletti D. Shelton D.L. Pons J. Rajpal A. Effect of attachment site on stability of cleavable antibody drug conjugates. Bioconjug. Chem. 2015 26 4 650 659 10.1021/bc5005747 25643134
    [Google Scholar]
  133. De Cecco M. Galbraith D.N. McDermott L.L. What makes a good antibody–drug conjugate? Expert Opin. Biol. Ther. 2021 21 7 841 847 10.1080/14712598.2021.1880562 33605810
    [Google Scholar]
  134. Dagogo-Jack I. Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018 15 2 81 94 10.1038/nrclinonc.2017.166 29115304
    [Google Scholar]
  135. Maruani A. Bispecifics and antibody–drug conjugates: A positive synergy. Drug Discov. Today. Technol. 2018 30 55 61 10.1016/j.ddtec.2018.09.003 30553521
    [Google Scholar]
  136. Shim H. Bispecific antibodies and antibody–drug conjugates for cancer therapy: Technological considerations. Biomolecules 2020 10 3 360 10.3390/biom10030360 32111076
    [Google Scholar]
  137. Deonarain M. Yahioglu G. Stamati I. Pomowski A. Clarke J. Edwards B. Diez-Posada S. Stewart A. Small-format drug conjugates: A viable alternative to adcs for solid tumours? Antibodies 2018 7 2 16 10.3390/antib7020016 31544868
    [Google Scholar]
  138. Li J.Y. Perry S.R. Muniz-Medina V. Wang X. Wetzel L.K. Rebelatto M.C. Masson Hinrichs M.J. Bezabeh B.Z. Fleming R.L. Dimasi N. Feng H. Toader D. Yuan A.Q. Xu L. Lin J. Gao C. Wu H. Dixit R. Osbourn J.K. Coats S.R. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for her2-targeted therapy. Cancer Cell 2019 35 6 948 949 10.1016/j.ccell.2019.05.010 31185215
    [Google Scholar]
  139. Hamblett K. Barnscher S. Davies R. Abstract P6-17-13: ZW49, a HER2 Targeted Biparatopic Antibody Drug Conjugate for the Treatment of HER2 Expressing Cancers. AACRKJ Hamblett, SD Barnscher, RH Davies, PW Hammond, A Hernandez, GR WickmanCancer Research 2019
    [Google Scholar]
  140. Patel M. Lee J-S. De Miguel M.J. Burns T. Falcon Gonzalez A. Kim T.W. Krebs M.G. Prenen H. Shacham Shmueli E. Desai J. Lorusso P. Sacher A. Choi Y. Dharia N. Lin M.T. Mandlekar S. Royer-Joo S. Schutzman J.L. Garralda E. 459MO phase ia study to evaluate GDC-6036 monotherapy in patients with solid tumors with a KRAS G12C mutation. Ann. Oncol. 2022 33 S749 10.1016/j.annonc.2022.07.588
    [Google Scholar]
  141. Aggarwal C. Azzoli C. G. Spira A. I. Solomon B. J. Le X. Rolfo C. Planchard D. Felip E. Wu Y.-L. Ahn M.-J. Seiwert T. Y. Goto K. Azaro A. Lissa D. Hamid O. McGrath L. Maudsley R. EGRET: A first-in-human study of the novel antibody-drug conjugate (ADC) AZD9592 as monotherapy or combined with other anticancer agents in patients (pts) with advanced solid tumors. J. Clin. Oncol. 2023 41 TPS3156 10.1200/JCO.2023.41.16_suppl.TPS3156
    [Google Scholar]
  142. Andreev J. Thambi N. Perez Bay A.E. Delfino F. Martin J. Kelly M.P. Kirshner J.R. Rafique A. Kunz A. Nittoli T. MacDonald D. Daly C. Olson W. Thurston G. Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther. 2017 16 4 681 693 10.1158/1535‑7163.MCT‑16‑0658 28108597
    [Google Scholar]
  143. de Goeij B.E.C.G. Vink T. ten Napel H. Breij E.C.W. Satijn D. Wubbolts R. Miao D. Parren P.W.H.I. Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63. Mol. Cancer Ther. 2016 15 11 2688 2697 10.1158/1535‑7163.MCT‑16‑0364 27559142
    [Google Scholar]
  144. Wu L. Seung E. Xu L. Rao E. Lord D. M. Wei R. R. Cortez-Retamozo V. Ospina B. Posternak V. Ulinski G. Piepenhagen P. Francesconi E. El-Murr N. Beil C. Kirby P. Li A. Fretland J. Vicente R. Deng G. Dabdoubi T. Cameron B. Bertrand T. Ferrari P. Pouzieux S. Lemoine C. Prades C. Park A. Qiu H. Song Z. Zhang B. Sun F. Chiron M. Rao S. Radošević K. Yang Z. Y. Nabel G. J. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat. Cancer 2019 1 1 86 98 10.1038/s43018‑019‑0004‑z
    [Google Scholar]
  145. Castoldi R. Ecker V. Wiehle L. Majety M. Busl-Schuller R. Asmussen M. Nopora A. Jucknischke U. Osl F. Kobold S. Scheuer W. Venturi M. Klein C. Niederfellner G. Sustmann C. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013 32 50 5593 5601 10.1038/onc.2013.245 23812422
    [Google Scholar]
  146. Tolcher A.W. Antibody drug conjugates: Lessons from 20 years of clinical experience. Ann. Oncol. 2016 27 12 2168 2172 10.1093/annonc/mdw424 27733376
    [Google Scholar]
  147. Lutterbuese R. Raum T. Kischel R. Hoffmann P. Mangold S. Rattel B. Friedrich M. Thomas O. Lorenczewski G. Rau D. Schaller E. Herrmann I. Wolf A. Urbig T. Baeuerle P.A. Kufer P. T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc. Natl. Acad. Sci. USA 2010 107 28 12605 12610 10.1073/pnas.1000976107 20616015
    [Google Scholar]
  148. Gu Y. Wang Z. Wang Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm. Sin. B 2024 14 5 1965 1986 10.1016/j.apsb.2024.01.009 38799638
    [Google Scholar]
  149. Hong Y. Nam S.M. Moon A. Antibody–drug conjugates and bispecific antibodies targeting cancers: Applications of click chemistry. Arch. Pharm. Res. 2023 46 3 131 148 10.1007/s12272‑023‑01433‑6 36877356
    [Google Scholar]
  150. Waller D.G. George C.F. Prodrugs. Br. J. Clin. Pharmacol. 1989 28 5 497 507 10.1111/j.1365‑2125.1989.tb03535.x 2686738
    [Google Scholar]
  151. Polu K.R. Lowman H.B. Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin. Biol. Ther. 2014 14 8 1049 1053 10.1517/14712598.2014.920814 24845630
    [Google Scholar]
  152. Liu Y. Nguyen A.W. Maynard J.A. Engineering antibodies for conditional activity in the solid tumor microenvironment. Curr. Opin. Biotechnol. 2022 78 102809 10.1016/j.copbio.2022.102809 36182870
    [Google Scholar]
  153. Lucchi R. Bentanachs J. Oller-Salvia B. The masking game: Design of activatable antibodies and mimetics for selective therapeutics and cell control. ACS Cent. Sci. 2021 7 5 724 738 10.1021/acscentsci.0c01448 34079893
    [Google Scholar]
  154. Oberoi H.K. Garralda E. Unmasking new promises: Expanding the antigen landscape for antibody–drug conjugates. Clin. Cancer Res. 2021 27 16 4459 4461 10.1158/1078‑0432.CCR‑21‑1353 34135020
    [Google Scholar]
  155. Liu X. Tian X. Hao X. Zhang H. Wang K. Wei Z. Wei X. Li Y. Sui J. A cross-reactive pH-dependent EGFR antibody with improved tumor selectivity and penetration obtained by structure-guided engineering. Mol. Ther. Oncolytics 2022 27 256 269 10.1016/j.omto.2022.11.001 36458200
    [Google Scholar]
  156. Sulea T. Rohani N. Baardsnes J. Corbeil C.R. Deprez C. Cepero-Donates Y. Robert A. Schrag J.D. Parat M. Duchesne M. Jaramillo M.L. Purisima E.O. Zwaagstra J.C. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs 2020 12 1 1682866 10.1080/19420862.2019.1682866 31777319
    [Google Scholar]
  157. Tsuchikama K. Anami Y. Ha S.Y.Y. Yamazaki C.M. Exploring the next generation of antibody–drug conjugates. Nat. Rev. Clin. Oncol. 2024 21 3 203 223 10.1038/s41571‑023‑00850‑2 38191923
    [Google Scholar]
  158. Trang V.H. Zhang X. Yumul R.C. Zeng W. Stone I.J. Wo S.W. Dominguez M.M. Cochran J.H. Simmons J.K. Ryan M.C. Lyon R.P. Senter P.D. Levengood M.R. A coiled-coil masking domain for selective activation of therapeutic antibodies. Nat. Biotechnol. 2019 37 7 761 765 10.1038/s41587‑019‑0135‑x 31133742
    [Google Scholar]
  159. Panchal A. Seto P. Wall R. Hillier B.J. Zhu Y. Krakow J. Datt A. Pongo E. Bagheri A. Chen T.H.T. Degenhardt J.D. Culp P.A. Dettling D.E. Vinogradova M.V. May C. DuBridge R.B. COBRA™: A highly potent conditionally active T cell engager engineered for the treatment of solid tumors. MAbs 2020 12 1 1792130 10.1080/19420862.2020.1792130 32684124
    [Google Scholar]
  160. Kang J. Sun W. Khare P. Karimi M. Engineering a HER2-specific antibody-drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nat. Biotechnol. 2019 37 5 523 526
    [Google Scholar]
  161. Lee P.S. Macdonald K.G. Massi E. Chew P.V. Bee C. Perkins P. Chau B. Thudium K. Lohre J. Nandi P. Deyanova E.G. Barman I. Gudmundsson O. Dollinger G. Sproul T. Engelhardt J.J. Strop P. Rajpal A. Improved therapeutic index of an acidic pH-selective antibody. MAbs 2022 14 1 2024642 10.1080/19420862.2021.2024642
    [Google Scholar]
  162. Chang H.W. Frey G. Liu H. Xing C. Steinman L. Boyle W.J. Short J.M. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proc. Natl. Acad. Sci. USA 2021 118 9 e2020606118 10.1073/pnas.2020606118 33627407
    [Google Scholar]
  163. Rautio J. Meanwell N.A. Di L. Hageman M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018 17 8 559 587 10.1038/nrd.2018.46 29700501
    [Google Scholar]
  164. Edupuganti V.V.S.R. Tyndall J.D.A. Gamble A.B. Self-immolative linkers in prodrugs and antibody drug conjugates in cancer treatment. Recent Patents Anticancer Drug Discov. 2021 16 4 479 497 10.2174/1574892816666210509001139 33966624
    [Google Scholar]
  165. Tian H. Yu L. Zhang M. He J. Sun X. Ni P. Dextran-doxorubicin prodrug nanoparticles conjugated with CD147 monoclonal antibody for targeted drug delivery in hepatoma therapy. Colloids Surf. B Biointerfaces 2023 228 113400 10.1016/j.colsurfb.2023.113400 37331192
    [Google Scholar]
  166. Lin F. Chen L. Zhang H. Ching Ngai W.S. Zeng X. Lin J. Chen P.R. Bioorthogonal prodrug–antibody conjugates for on-target and on-demand chemotherapy. CCS Chem. 2019 1 2 226 236 10.31635/ccschem.019.20180038
    [Google Scholar]
  167. Santi D.V. Ashley G.W. Cabel L. Bidard F.C. Could a long-acting prodrug of SN-38 be efficacious in sacituzumab govitecan-resistant tumors? BioDrugs 2024 38 2 171 176 10.1007/s40259‑024‑00643‑8 38236523
    [Google Scholar]
  168. Szot C. Saha S. Zhang X.M. Zhu Z. Hilton M.B. Morris K. Seaman S. Dunleavey J.M. Hsu K.S. Yu G.J. Morris H. Swing D.A. Haines D.C. Wang Y. Hwang J. Feng Y. Welsch D. DeCrescenzo G. Chaudhary A. Zudaire E. Dimitrov D.S. St Croix B. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release. J. Clin. Invest. 2018 128 7 2927 2943 10.1172/JCI120481 29863500
    [Google Scholar]
  169. Emens L. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol. Res. 2015 3 5 436 443
    [Google Scholar]
  170. Amouzegar A. Chelvanambi M. Filderman J. Storkus W. Luke J. STING agonists as cancer therapeutics. Cancers 2021 13 11 2695 10.3390/cancers13112695 34070756
    [Google Scholar]
  171. Wang Y. Zhang S. Li H. Wang H. Zhang T. Hutchinson M.R. Yin H. Wang X. Small-molecule modulators of toll-like receptors. Acc. Chem. Res. 2020 53 5 1046 1055 10.1021/acs.accounts.9b00631 32233400
    [Google Scholar]
  172. Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int. Immunopharmacol. 2020 89 Pt B 107087 10.1016/j.intimp.2020.107087 33075714
    [Google Scholar]
  173. Su T. Zhang Y. Valerie K. Wang X.Y. Lin S. Zhu G. STING activation in cancer immunotherapy. Theranostics 2019 9 25 7759 7771 10.7150/thno.37574 31695799
    [Google Scholar]
  174. Fu C. Tong W. Yu L. Miao Y. Wei Q. Yu Z. Chen B. Wei M. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside? Pharmacol. Res. 2024 203 107160 10.1016/j.phrs.2024.107160 38547937
    [Google Scholar]
  175. Urban-Wojciuk Z. Khan M.M. Oyler B.L. Fåhraeus R. Marek-Trzonkowska N. Nita-Lazar A. Hupp T.R. Goodlett D.R. The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 2019 10 OCT 2388 10.3389/fimmu.2019.02388 31695691
    [Google Scholar]
  176. He L. Wang L. Wang Z. Li T. Chen H. Zhang Y. Hu Z. Dimitrov D.S. Du J. Liao X. Immune modulating antibody–drug conjugate (IM-ADC) for cancer immunotherapy. J. Med. Chem. 2021 64 21 15716 15726 10.1021/acs.jmedchem.1c00961 34730979
    [Google Scholar]
  177. Duvall J.R. Thomas J.D. Bukhalid R.A. Catcott K.C. Bentley K.W. Collins S.D. Eitas T. Jones B.D. Kelleher E.W. Lancaster K. Protopopova M. Ray S.S. Ter-Ovanesyan E. Xu L. Yang L. Zurita J. Damelin M. Toader D. Lowinger T.B. Discovery and optimization of a STING agonist platform for application in antibody drug conjugates. J. Med. Chem. 2023 66 15 10715 10733 10.1021/acs.jmedchem.3c00907 37486969
    [Google Scholar]
  178. Wu Y. Fang Y. Wei Q. Shi H. Tan H. Deng Y. Zeng Z. Qiu J. Chen C. Sun L. Chen Z.J. Tumor-targeted delivery of a STING agonist improves cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2022 119 49 e2214278119 10.1073/pnas.2214278119 36442099
    [Google Scholar]
  179. AACR Annual Meeting 2022 - First-in-human study of TAK-500, a novel STING agonist immune stimulating antibody conjugate (ISAC), alone and in combination with pembrolizumab in patients with select advanced solid tumors. 2022 Available from: https://cattendee.abstractsonline.com/meeting/10517/Presentation/20324
  180. Diamond J. R. Henry J. T. Falchook G. S. Olszanski A. J. Singh H. Leonard E. J. Gregory R. C. Appleman V. A. Gibbs J. Harbison C. Li C. Sapiro J. M. Yoneyama T. Parent A. A. Chung V. Phase 1a/1b study design of the novel STING agonist, immune-stimulating antibody-conjugate (ISAC) TAK-500, with or without pembrolizumab in patients with advanced solid tumors. J. Clin. Oncol. 2022 40 TPS2690 10.1200/JCO.2022.40.16_suppl.TPS2690
    [Google Scholar]
  181. Ramanjulu J. Pesiridis G. Yang J. Nature N.C. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 2019 570 7761 E53
    [Google Scholar]
  182. Mersana therapeutics announces FDA has lifted clinical hold on phase 1 clinical trial of XMT-2056 - Mersana therapeutics. Available from: https://ir.mersana.com/news-releases/news-release-details/mersana-therapeutics-announces-fda-has-lifted-clinical-hold
  183. Duvall J. Bukhalid R. Cetinbas N. Res K. C.-C. XMT-2056, a HER2-targeted immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity. 2022 Available from: https://www.mersana.com/xmt-2056-a-her2-targeted-immunosynthen-sting-agonist-antibody-drug-conjugate-binds-a-novel-epitope-of-her2-and-shows-increased-anti-tumor-activity-in-combination-with-trastuzumab-and-pertuzumab/
  184. Duvall J. Bukhalid R. Cetinbas N. XMT-2056, a Well-Tolerated, Immunosynthen-Based STING-Agonist Antibody-Drug Conjugate Which Induces Anti-Tumor Immune Activity Lowinger Mersana Therapeutics, Inc. Cambridge, MA 2021
    [Google Scholar]
  185. Li X. Pu W. Zheng Q. Ai M. Chen S. Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer 2022 21 1 99 10.1186/s12943‑021‑01434‑3 35410300
    [Google Scholar]
  186. Liu Z. Zhang Y. Xiang Y. Kang X. Small-molecule PROTACs for cancer immunotherapy. Molecules 2022 27 17 5439 10.3390/molecules27175439 36080223
    [Google Scholar]
  187. Poongavanam V. Kihlberg J. PROTAC cell permeability and oral bioavailability: A journey into uncharted territory. Future Med. Chem. 2022 14 3 123 126 10.4155/fmc‑2021‑0208 34583518
    [Google Scholar]
  188. Yokoo H. Naito M. Demizu Y. Investigating the cell permeability of proteolysis-targeting chimeras (PROTACs). Expert Opin. Drug Discov. 2023 18 4 357 361 10.1080/17460441.2023.2187047 36908022
    [Google Scholar]
  189. Pillow T.H. Adhikari P. Blake R.A. Chen J. Del Rosario G. Deshmukh G. Figueroa I. Gascoigne K.E. Kamath A.V. Kaufman S. Kleinheinz T. Kozak K.R. Latifi B. Leipold D.D. Sing Li C. Li R. Mulvihill M.M. O’Donohue A. Rowntree R.K. Sadowsky J.D. Wai J. Wang X. Wu C. Xu Z. Yao H. Yu S.F. Zhang D. Zang R. Zhang H. Zhou H. Zhu X. Dragovich P.S. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem 2020 15 1 17 25 10.1002/cmdc.201900497 31674143
    [Google Scholar]
  190. Dragovich P.S. Pillow T.H. Blake R.A. Sadowsky J.D. Adaligil E. Adhikari P. Bhakta S. Blaquiere N. Chen J. dela Cruz-Chuh J. Gascoigne K.E. Hartman S.J. He M. Kaufman S. Kleinheinz T. Kozak K.R. Liu L. Liu L. Liu Q. Lu Y. Meng F. Mulvihill M.M. O’Donohue A. Rowntree R.K. Staben L.R. Staben S.T. Wai J. Wang J. Wei B. Wilson C. Xin J. Xu Z. Yao H. Zhang D. Zhang H. Zhou H. Zhu X. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: Exploration of antibody linker, payload loading, and payload molecular properties. J. Med. Chem. 2021 64 5 2534 2575 10.1021/acs.jmedchem.0c01845 33596065
    [Google Scholar]
  191. Maneiro M. Forte N. Shchepinova M.M. Kounde C.S. Chudasama V. Baker J.R. Tate E.W. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem. Biol. 2020 15 6 1306 1312 10.1021/acschembio.0c00285 32338867
    [Google Scholar]
  192. Dragovich P. Adhikari P. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg. Med. Chem. Lett. 2020 Feb 15 30 4 126907
    [Google Scholar]
  193. Dragovich P.S. Degrader-antibody conjugates. Chem. Soc. Rev. 2022 51 10 3886 3897 10.1039/D2CS00141A 35506708
    [Google Scholar]
  194. AACR Annual Meeting 2022 - ORM-5029: A first-in-class targeted protein degradation therapy using antibody neodegrader conjugate (AnDC) for HER2-expressing breast cancer. Available from: https://cattendee.abstractsonline.com/meeting/10517/Presentation/15093
  195. Conilh L. Sadilkova L. Viricel W. Dumontet C. Payload diversification: A key step in the development of antibody–drug conjugates. J. Hematol. Oncol. 2023 16 1 3 10.1186/s13045‑022‑01397‑y 36650546
    [Google Scholar]
  196. Hurvitz S. A. Hamilton E. P. Spira A. I. Pohlmann P. R. Giordano A. Clifton K. Anderson B. D. Dutta S. Mangipudi U. Saini S. Palacino J. Karunaratne T. Greensmith D. Christensen O. Wilks S. A phase 1, first-in-human, open label, escalation and expansion study of ORM-5029, a highly potent GSPT1 degrader targeting HER2, in patients with HER2-expressing advanced solid tumors. J. Clin. Oncol. 2023 41 TPS1114 10.1200/JCO.2023.41.16_suppl.TPS1114
    [Google Scholar]
  197. Marusyk A. Janiszewska M. Intratumor heterogeneity: The rosetta stone of therapy resistance. Cancer Cell 2020 37 4 471 484 10.1016/j.ccell.2020.03.007
    [Google Scholar]
  198. Plana D. Palmer A.C. Sorger P.K. Independent drug action in combination therapy: Implications for precision oncology. Cancer Discov. 2022 12 3 606 624 10.1158/2159‑8290.CD‑21‑0212 34983746
    [Google Scholar]
  199. Levengood M.R. Zhang X. Hunter J.H. Emmerton K.K. Miyamoto J.B. Lewis T.S. Senter P.D. Orthogonal cysteine protection enables homogeneous multi‐drug antibody–drug conjugates. Angew. Chem. Int. Ed. 2017 56 3 733 737 10.1002/anie.201608292 27966822
    [Google Scholar]
  200. Walker J.A. Bohn J.J. Ledesma F. Sorkin M.R. Kabaria S.R. Thornlow D.N. Alabi C.A. Substrate design enables heterobifunctional, dual “click” antibody modification via microbial transglutaminase. Bioconjug. Chem. 2019 30 9 2452 2457 10.1021/acs.bioconjchem.9b00522 31409067
    [Google Scholar]
  201. Dickgiesser S. Deweid L. Kellner R. Kolmar H. Rasche N. Site-specific antibody–drug conjugation using microbial transglutaminase. Methods Mol. Biol. 2019 2012 135 149 10.1007/978‑1‑4939‑9546‑2_8 31161507
    [Google Scholar]
  202. Yamazaki C.M. Yamaguchi A. Anami Y. Xiong W. Otani Y. Lee J. Ueno N.T. Zhang N. An Z. Tsuchikama K. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat. Commun. 2021 12 1 3528 10.1038/s41467‑021‑23793‑7 34112795
    [Google Scholar]
  203. Mckertish C.M. Kayser V. A Novel dual-payload adc for the treatment of HER2+ breast and colon cancer. Pharmaceutics 2023 15 8 2020 10.3390/pharmaceutics15082020 37631234
    [Google Scholar]
  204. Yuan R. Moreira D. Smith J. Li X. Cheng C. Yu A. Hallam T. Bedard K. Next-generation immunostimulatory antibody-drug conjugate (iadc) combines direct tumor killing and innate immune stimulation to provide protective anti-tumor immunity. 2022 Available from: https://www.sutrobio.com/wp-content/uploads/2022/06/Sutro-FOCIS-2022-Poster-FINAL.pdf
    [Google Scholar]
  205. Nilchan N. Li X. Pedzisa L. Nanna A.R. Roush W.R. Rader C. Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib. Ther. 2019 2 4 71 78 10.1093/abt/tbz009 31930187
    [Google Scholar]
  206. Kumar A. Kinneer K. Masterson L. Ezeadi E. Howard P. Wu H. Gao C. Dimasi N. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg. Med. Chem. Lett. 2018 28 23-24 3617 3621 10.1016/j.bmcl.2018.10.043 30389292
    [Google Scholar]
  207. Jin S. Sun Y. Liang X. Gu X. Ning J. Xu Y. Chen S. Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther. 2022 7 1 39 10.1038/s41392‑021‑00868‑x 35132063
    [Google Scholar]
  208. Tsumura R. Manabe S. Takashima H. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. J. Control Release 2018 284 49 56
    [Google Scholar]
  209. Dahlén E. Veitonmäki N. Norlén P. Bispecific antibodies in cancer immunotherapy. Ther. Adv. Vaccines Immunother. 2018 6 1 3 17 10.1177/2515135518763280 29998217
    [Google Scholar]
  210. Autio K.A. Boni V. Humphrey R.W. Naing A. Probody therapeutics: An emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin. Cancer Res. 2020 26 5 984 989 10.1158/1078‑0432.CCR‑19‑1457 31601568
    [Google Scholar]
  211. Nicolò E. Giugliano F. Ascione L. Tarantino P. Corti C. Tolaney S.M. Cristofanilli M. Curigliano G. Combining antibody-drug conjugates with immunotherapy in solid tumors: Current landscape and future perspectives. Cancer Treat. Rev. 2022 106 102395 10.1016/j.ctrv.2022.102395 35468539
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206348204241128063329
Loading
/content/journals/acamc/10.2174/0118715206348204241128063329
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: mechanisms of action ; antibody ; ADCs ; FDA-approved drugs ; oncology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test