Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206359325241119075640
2025-01-03
2025-07-12
Loading full text...

Full text loading...

References

  1. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.202009045 33464299
    [Google Scholar]
  2. JantrapiromS. KoonrungsesomboonN. YoshidaH. M CandeiasM. PruksakornD. Lo PiccoloL. Long noncoding RNA-dependent methylation of nonhistone proteins.Wiley Interdiscip. Rev. RNA2021126e166110.1002/wrna.1661 33913612
    [Google Scholar]
  3. McCabeE.M. RasmussenT.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions.Semin. Cancer Biol.202175384810.1016/j.semcancer.2020.12.012 33346133
    [Google Scholar]
  4. HermanA.B. TsitsipatisD. GorospeM. Integrated lncRNA function upon genomic and epigenomic regulation.Mol. Cell202282122252226610.1016/j.molcel.2022.05.027 35714586
    [Google Scholar]
  5. NojimaT. ProudfootN.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics.Nat. Rev. Mol. Cell Biol.202223638940610.1038/s41580‑021‑00447‑6 35079163
    [Google Scholar]
  6. PangB. WangQ. NingS. WuJ. ZhangX. ChenY. XuS. Landscape of tumor suppressor long noncoding RNAs in breast cancer.J. Exp. Clin. Cancer Res.20193817910.1186/s13046‑019‑1096‑0 30764831
    [Google Scholar]
  7. TanY.T. LinJ.F. LiT. LiJ.J. XuR.H. JuH.Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer.Cancer Commun. (Lond.)202141210912010.1002/cac2.12108 33119215
    [Google Scholar]
  8. WangW. MinL. QiuX. WuX. LiuC. MaJ. ZhangD. ZhuL. Biological function of long non-coding RNA (LncRNA) xist.Front. Cell Dev. Biol.2021964564710.3389/fcell.2021.645647 34178980
    [Google Scholar]
  9. ZhuX. JiangS. WuZ. LiuT. ZhangW. WuL. XuL. ShaoM. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis.Bioengineered202112157858810.1080/21655979.2021.1882133 33517826
    [Google Scholar]
  10. ZhangY. LncRNA-encoded peptides in cancer.J. Hematol. Oncol.20241716610.1186/s13045‑024‑01591‑0 39135098
    [Google Scholar]
  11. YangG. LiZ. DongL. ZhouF. lncRNA ADAMTS9-AS1 promotes bladder cancer cell invasion, migration, and inhibits apoptosis and autophagy through PI3K/AKT/mTOR signaling pathway.Int. J. Biochem. Cell Biol.202114010606910.1016/j.biocel.2021.106069 34428588
    [Google Scholar]
  12. ZhouC. ZhaoH. WangS. DongC. YangF. ZhangJ. LncRNA ADAMTS9-AS1 knockdown suppresses cell proliferation and migration in glioma via down-regulating Wnt/β-catenin signaling pathway.Bosn. J. Basic Med. Sci.202122339540210.17305/bjbms.2021.6199 34923953
    [Google Scholar]
  13. JavanmardA.R. JahanbakhshiA. NematiH. MowlaS.J. SoltaniB.M. ADAMTS9-AS1 long non coding RNA sponges miR 128 and miR-150 to regulate ras/MAPK signaling pathway in glioma.Cell. Mol. Neurobiol.20234352309232210.1007/s10571‑022‑01311‑7 36449154
    [Google Scholar]
  14. ChenJ. ChengL. ZouW. WangR. WangX. ChenZ. ADAMTS9-AS1 constrains breast cancer cell invasion and proliferation via sequestering miR-301b-3p.Front. Cell Dev. Biol.2021971999310.3389/fcell.2021.719993 34900984
    [Google Scholar]
  15. LiuW. LuoW. ZhouP. ChengY. QianL. Bioinformatics analysis and functional verification of ADAMTS9-AS1/AS2 in lung adenocarcinoma.Front. Oncol.20211168177710.3389/fonc.2021.681777 34395250
    [Google Scholar]
  16. LiZ. YueG. ZhangT. WuJ. TianX. LncRNA ADAMTS9-AS1 knockdown restricts cell proliferation and EMT in non-small cell lung cancer.Histol. Histopathol.202136101063107210.14670/hh‑18‑347 34085704
    [Google Scholar]
  17. WangP. ZhangY. LvX. ZhouJ. CangS. SongY. LncRNA ADAMTS9-AS1 inhibits the stemness of lung adenocarcinoma cells by regulating miR-5009-3p/NPNT axis.Genomics2023115311059610.1016/j.ygeno.2023.110596 36870548
    [Google Scholar]
  18. ZhangZ. LiH. HuY. WangF. Long non-coding RNA ADAMTS9-AS1 exacerbates cell proliferation, migration, and invasion via triggering of the PI3K/AKT/mTOR pathway in hepatocellular carcinoma cells.Am. J. Transl. Res.202012956965707 33042449
    [Google Scholar]
  19. LiN. LiJ. MiQ. XieY. LiP. WangL. BinangH. WangQ. WangY. ChenY. WangY. MaoH. DuL. WangC. Long non‐coding RNA ADAMTS9‐AS1 suppresses colorectal cancer by inhibiting the Wnt/β‐catenin signalling pathway and is a potential diagnostic biomarker.J. Cell. Mol. Med.20202419113181132910.1111/jcmm.15713 32889785
    [Google Scholar]
  20. ChenW. TuQ. YuL. XuY. YuG. JiaB. ChengY. WangY. LncRNA ADAMTS9-AS1, as prognostic marker, promotes cell proliferation and EMT in colorectal cancer.Hum. Cell20203341133114110.1007/s13577‑020‑00388‑w 32918700
    [Google Scholar]
  21. WanJ. JiangS. JiangY. MaW. WangX. HeZ. WangX. CuiR. Data mining and expression analysis of differential lncRNA ADAMTS9-AS1 in prostate cancer.Front. Genet.202010137710.3389/fgene.2019.01377 32153626
    [Google Scholar]
  22. TaheriM. BadrlouE. HussenB.M. KashiA.H. Ghafouri-FardS. BaniahmadA. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer.Front. Oncol.202313112310110.3389/fonc.2023.1123101 37025585
    [Google Scholar]
  23. ZhouZ. WuX. ZhouY. YanW. Long non‐coding RNA ADAMTS9‐AS1 inhibits the progression of prostate cancer by modulating the miR‐142‐5p/CCND1 axis.J. Gene Med.2021235e333110.1002/jgm.3331 33704879
    [Google Scholar]
  24. FangS. ZhaoY. HuX. LncRNA ADAMTS9-AS1 restrains the aggressive traits of breast carcinoma cells via sponging miR-513a-5p.Cancer Manag. Res.202012106931070310.2147/CMAR.S266575 33149676
    [Google Scholar]
  25. CaiL. HuX. YeL. BaiP. JieY. ShuK. Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer.Bioengineered20221348226823910.1080/21655979.2022.2049470 35311457
    [Google Scholar]
  26. OsmaniL. AskinF. GabrielsonE. LiQ.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy.Semin. Cancer Biol.201852Pt 110310910.1016/j.semcancer.2017.11.019 29183778
    [Google Scholar]
  27. ImyanitovE.N. IyevlevaA.G. LevchenkoE.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives.Crit. Rev. Oncol. Hematol.202115710319410.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  28. FriedlaenderA. AddeoA. RussoA. GregorcV. CortinovisD. RolfoC. Targeted therapies in early stage NSCLC: Hype or hope?Int. J. Mol. Sci.20202117632910.3390/ijms21176329 32878298
    [Google Scholar]
  29. FuK. XieF. WangF. FuL. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance.J. Hematol. Oncol.202215117310.1186/s13045‑022‑01391‑4 36482474
    [Google Scholar]
  30. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature25183 29364287
    [Google Scholar]
  31. BhanvadiaS.K. Bladder cancer survivorship.Curr. Urol. Rep.2018191211110.1007/s11934‑018‑0860‑6 30414013
    [Google Scholar]
  32. LenisA.T. LecP.M. ChamieK. MshsM. Bladder cancer.JAMA2020324191980199110.1001/jama.2020.17598 33201207
    [Google Scholar]
  33. DyrskjøtL. HanselD.E. EfstathiouJ.A. KnowlesM.A. GalskyM.D. TeohJ. TheodorescuD. Bladder cancer.Nat. Rev. Dis. Primers2023915810.1038/s41572‑023‑00468‑9 37884563
    [Google Scholar]
  34. SiracusanoS. RizzettoR. PorcaroA.B. Bladder cancer genomics.Urologia2020872495610.1177/0391560319899011 31942831
    [Google Scholar]
  35. DobruchJ. OszczudłowskiM. Bladder cancer: Current challenges and future directions.Medicina (Kaunas)202157874910.3390/medicina57080749 34440955
    [Google Scholar]
  36. DingQ. ChenD. WangW. ChenY. Progress in research on the cribriform component in lung adenocarcinoma.Zhongguo Fei Ai Za Zhi202023762162510.3779/j.issn.1009‑3419.2020.101.19 32450628
    [Google Scholar]
  37. BartaJ.A. PowellC.A. WisniveskyJ.P. Global epidemiology of lung cancer.Ann. Glob. Health2019851810.5334/aogh.2419 30741509
    [Google Scholar]
  38. ZhangQ. WeiT. YanL. ZhuS. JinW. BaiY. ZengY. ZhangX. YinZ. YangJ. ZhangW. WuM. ZhangY. LiuL. Hypoxia-responsive lncRNA AC115619 encodes a micropeptide that suppresses m6A modifications and hepatocellular carcinoma progression.Cancer Res.202383152496251210.1158/0008‑5472.CAN‑23‑0337 37326474
    [Google Scholar]
  39. HutchinsonB.D. ShroffG.S. TruongM.T. KoJ.P. Spectrum of lung adenocarcinoma.Semin. Ultrasound CT MR201940325526410.1053/j.sult.2018.11.009 31200873
    [Google Scholar]
  40. SucconyL. RasslD.M. BarkerA.P. McCaughanF.M. RintoulR.C. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies.Cancer Treat. Rev.20219910223710.1016/j.ctrv.2021.102237 34182217
    [Google Scholar]
  41. InamuraK. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: Tumor initiation and progression.Int. J. Mol. Sci.2018194125910.3390/ijms19041259 29690599
    [Google Scholar]
  42. LlovetJ.M. CastetF. HeikenwalderM. MainiM.K. MazzaferroV. PinatoD.J. PikarskyE. ZhuA.X. FinnR.S. Immunotherapies for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.202219315117210.1038/s41571‑021‑00573‑2 34764464
    [Google Scholar]
  43. DhanasekaranR. NaultJ.C. RobertsL.R. Zucman-RossiJ. Genomic medicine and implications for hepatocellular carcinoma prevention and therapy.Gastroenterology2019156249250910.1053/j.gastro.2018.11.001 30404026
    [Google Scholar]
  44. FeiM. GuanJ. XueT. QinL. TangC. CuiG. WangY. GongH. FengW. Hypoxia promotes the migration and invasion of human hepatocarcinoma cells through the HIF-1α–IL-8–Akt axis.Cell. Mol. Biol. Lett.20182314610.1186/s11658‑018‑0100‑6 30258464
    [Google Scholar]
  45. LouW. ChenJ. DingB. ChenD. ZhengH. JiangD. XuL. BaoC. CaoG. FanW. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation.J. Transl. Med.201816126610.1186/s12967‑018‑1639‑8 30268144
    [Google Scholar]
  46. WangY. DengB. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers.Cancer Metastasis Rev.202342362965210.1007/s10555‑023‑10084‑4 36729264
    [Google Scholar]
  47. WangL.M. EnglanderZ.K. MillerM.L. BruceJ.N. Malignant Glioma.Adv. Exp. Med. Biol.2023140513010.1007/978‑3‑031‑23705‑8_1 37452933
    [Google Scholar]
  48. YasinjanF. XingY. GengH. GuoR. YangL. LiuZ. WangH. Immunotherapy: A promising approach for glioma treatment.Front. Immunol.202314125561110.3389/fimmu.2023.1255611 37744349
    [Google Scholar]
  49. GusyatinerO. HegiM.E. Glioma epigenetics: From subclassification to novel treatment options.Semin. Cancer Biol.201851505810.1016/j.semcancer.2017.11.010 29170066
    [Google Scholar]
  50. OmuroA. DeAngelisL.M. Glioblastoma and other malignant gliomas: A clinical review.JAMA2013310171842185010.1001/jama.2013.280319 24193082
    [Google Scholar]
  51. CamposB. OlsenL.R. UrupT. PoulsenH.S. A comprehensive profile of recurrent glioblastoma.Oncogene201635455819582510.1038/onc.2016.85 27041580
    [Google Scholar]
  52. KlimeckL. HeisserT. HoffmeisterM. BrennerH. Colorectal cancer: A health and economic problem.Best Pract. Res. Clin. Gastroenterol.20236610183910.1016/j.bpg.2023.101839 37852707
    [Google Scholar]
  53. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  54. ThanikachalamK. KhanG. Colorectal cancer and nutrition.Nutrients201911116410.3390/nu11010164 30646512
    [Google Scholar]
  55. BaidounF. ElshiwyK. ElkeraieY. MerjanehZ. KhoudariG. SarminiM.T. GadM. Al-HusseiniM. SaadA. Colorectal] cancer epidemiology: Recent trends and impact on outcomes.Curr. Drug Targets2021229998100910.2174/18735592MTEx9NTk2y 33208072
    [Google Scholar]
  56. HaraldsdottirS. EinarsdottirH.M. SmaradottirA. GunnlaugssonA. HalfdanarsonT.R. Colorectal cancer - review.Laeknabladid20141002758210.17992/lbl.2014.02.531 24639430
    [Google Scholar]
  57. GandagliaG. LeniR. BrayF. FleshnerN. FreedlandS.J. KibelA. StattinP. Van PoppelH. La VecchiaC. Epidemiology and prevention of prostate cancer.Eur. Urol. Oncol.20214687789210.1016/j.euo.2021.09.006 34716119
    [Google Scholar]
  58. SekhoachaM. RietK. MotloungP. GumenkuL. AdegokeA. MasheleS. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules20222717573010.3390/molecules27175730 36080493
    [Google Scholar]
  59. Nguyen-NielsenM. BorreM. Diagnostic and therapeutic strategies for prostate cancer.Semin. Nucl. Med.201646648449010.1053/j.semnuclmed.2016.07.002 27825428
    [Google Scholar]
  60. WangY.A. SfakianosJ. TewariA.K. Cordon-cardoC. KyprianouN. Molecular tracing of prostate cancer lethality.Oncogene202039507225723810.1038/s41388‑020‑01496‑5 33046797
    [Google Scholar]
  61. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.20175013310.1186/s40659‑017‑0140‑9 28969709
    [Google Scholar]
  62. KolakA. KamińskaM. SygitK. BudnyA. SurdykaD. Kukiełka-BudnyB. BurdanF. Primary and secondary prevention of breast cancer.Ann. Agric. Environ. Med.201724454955310.26444/aaem/75943 29284222
    [Google Scholar]
  63. WintersS. MartinC. MurphyD. ShokarN.K. Breast cancer epidemiology, prevention, and screening.Prog. Mol. Biol. Transl. Sci.201715113210.1016/bs.pmbts.2017.07.002 29096890
    [Google Scholar]
  64. LheureuxS. BraunsteinM. OzaA.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine.CA Cancer J. Clin.201969428030410.3322/caac.21559 31099893
    [Google Scholar]
  65. SambasivanS. Epithelial ovarian cancer: Review article.Cancer Treat. Res. Commun.20223310062910.1016/j.ctarc.2022.100629 36127285
    [Google Scholar]
  66. ArnaoutoglouC. DampalaK. AnthoulakisC. PapanikolaouE.G. TentasI. DragoutsosG. MachairiotisN. ZarogoulidisP. IoannidisA. MatthaiosD. PerdikouriE.I. GiannakidisD. SardeliC. PetousisS. OikonomouP. NikolaouC. CharalampidisC. SapalidisK. Epithelial ovarian cancer: A five year review.Medicina (Kaunas)2023597118310.3390/medicina59071183 37511995
    [Google Scholar]
  67. ShahS. CheungA. KutkaM. SheriffM. BoussiosS. Epithelial ovarian cancer: Providing evidence of predisposition genes.Int. J. Environ. Res. Public Health20221913811310.3390/ijerph19138113 35805770
    [Google Scholar]
  68. RichardsonD.L. EskanderR.N. O’MalleyD.M. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance.JAMA Oncol.20239685185910.1001/jamaoncol.2023.0197 37079311
    [Google Scholar]
  69. YanH. BuP. BuP. Non-coding RNA in cancer.Essays Biochem.202165462563910.1042/EBC20200032 33860799
    [Google Scholar]
  70. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  71. TodenS. ZumwaltT.J. GoelA. Non-coding RNAs and potential therapeutic targeting in cancer.Biochim. Biophys. Acta Rev. Cancer20211875118849110.1016/j.bbcan.2020.188491 33316377
    [Google Scholar]
  72. RanZ. WuS. MaZ. ChenX. LiuJ. YangJ. Advances in exosome biomarkers for cervical cancer.Cancer Med.202211244966497810.1002/cam4.4828 35578572
    [Google Scholar]
  73. KrylovaS.V. FengD. The machinery of exosomes: Biogenesis, release, and uptake.Int. J. Mol. Sci.2023242133710.3390/ijms24021337 36674857
    [Google Scholar]
  74. DaiJ. SuY. ZhongS. CongL. LiuB. YangJ. TaoY. HeZ. ChenC. JiangY. Exosomes: key players in cancer and potential therapeutic strategy.Signal Transduct. Target. Ther.20205114510.1038/s41392‑020‑00261‑0 32759948
    [Google Scholar]
  75. XuZ. ChenY. MaL. ChenY. LiuJ. GuoY. YuT. ZhangL. ZhuL. ShuY. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment.Mol. Ther.202230103133315410.1016/j.ymthe.2022.01.046 35405312
    [Google Scholar]
  76. HuangW. LiH. YuQ. XiaoW. WangD.O. LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond.J. Exp. Clin. Cancer Res.202241110010.1186/s13046‑022‑02319‑z 35292092
    [Google Scholar]
  77. LiuY. ShiM. HeX. CaoY. LiuP. LiF. ZouS. WenC. ZhanQ. XuZ. WangJ. SunB. ShenB. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma.J. Hematol. Oncol.20221515210.1186/s13045‑022‑01272‑w 35526050
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206359325241119075640
Loading
/content/journals/acamc/10.2174/0118715206359325241119075640
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ADAMTS9-AS1; biomarkers; cancer; gene expression; Long non-coding RNA; therapeutic target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test