Skip to content
2000
image of The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications

Abstract

Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206359325241119075640
2025-01-03
2025-04-02
Loading full text...

Full text loading...

References

  1. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  2. Jantrapirom S. Koonrungsesomboon N. Yoshida H. M Candeias M. Pruksakorn D. Lo Piccolo L. Long noncoding RNA-dependent methylation of nonhistone proteins. Wiley Interdiscip. Rev. RNA 2021 12 6 e1661 10.1002/wrna.1661 33913612
    [Google Scholar]
  3. McCabe E.M. Rasmussen T.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin. Cancer Biol. 2021 75 38 48 10.1016/j.semcancer.2020.12.012 33346133
    [Google Scholar]
  4. Herman A.B. Tsitsipatis D. Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell 2022 82 12 2252 2266 10.1016/j.molcel.2022.05.027 35714586
    [Google Scholar]
  5. Nojima T. Proudfoot N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol. 2022 23 6 389 406 10.1038/s41580‑021‑00447‑6 35079163
    [Google Scholar]
  6. Pang B. Wang Q. Ning S. Wu J. Zhang X. Chen Y. Xu S. Landscape of tumor suppressor long noncoding RNAs in breast cancer. J. Exp. Clin. Cancer Res. 2019 38 1 79 10.1186/s13046‑019‑1096‑0 30764831
    [Google Scholar]
  7. Tan Y.T. Lin J.F. Li T. Li J.J. Xu R.H. Ju H.Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. (Lond.) 2021 41 2 109 120 10.1002/cac2.12108 33119215
    [Google Scholar]
  8. Wang W. Min L. Qiu X. Wu X. Liu C. Ma J. Zhang D. Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front. Cell Dev. Biol. 2021 9 645647 10.3389/fcell.2021.645647 34178980
    [Google Scholar]
  9. Zhu X. Jiang S. Wu Z. Liu T. Zhang W. Wu L. Xu L. Shao M. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis. Bioengineered 2021 12 1 578 588 10.1080/21655979.2021.1882133 33517826
    [Google Scholar]
  10. Zhang Y. LncRNA-encoded peptides in cancer. J. Hematol. Oncol. 2024 17 1 66 10.1186/s13045‑024‑01591‑0 39135098
    [Google Scholar]
  11. Yang G. Li Z. Dong L. Zhou F. lncRNA ADAMTS9-AS1 promotes bladder cancer cell invasion, migration, and inhibits apoptosis and autophagy through PI3K/AKT/mTOR signaling pathway. Int. J. Biochem. Cell Biol. 2021 140 106069 10.1016/j.biocel.2021.106069 34428588
    [Google Scholar]
  12. Zhou C. Zhao H. Wang S. Dong C. Yang F. Zhang J. LncRNA ADAMTS9-AS1 knockdown suppresses cell proliferation and migration in glioma via down-regulating Wnt/β-catenin signaling pathway. Bosn. J. Basic Med. Sci. 2021 22 3 395 402 10.17305/bjbms.2021.6199 34923953
    [Google Scholar]
  13. Javanmard A.R. Jahanbakhshi A. Nemati H. Mowla S.J. Soltani B.M. ADAMTS9-AS1 Long Non‑coding RNA Sponges miR‑128 and miR-150 to Regulate Ras/MAPK Signaling Pathway in Glioma. Cell. Mol. Neurobiol. 2023 43 5 2309 2322 10.1007/s10571‑022‑01311‑7 36449154
    [Google Scholar]
  14. Chen J. Cheng L. Zou W. Wang R. Wang X. Chen Z. ADAMTS9-AS1 Constrains Breast Cancer Cell Invasion and Proliferation via Sequestering miR-301b-3p. Front. Cell Dev. Biol. 2021 9 719993 10.3389/fcell.2021.719993 34900984
    [Google Scholar]
  15. Liu W. Luo W. Zhou P. Cheng Y. Qian L. Bioinformatics Analysis and Functional Verification of ADAMTS9-AS1/AS2 in Lung Adenocarcinoma. Front. Oncol. 2021 11 681777 10.3389/fonc.2021.681777 34395250
    [Google Scholar]
  16. Li Z. Yue G. Zhang T. Wu J. Tian X. LncRNA ADAMTS9-AS1 knockdown restricts cell proliferation and EMT in non-small cell lung cancer. Histol. Histopathol. 2021 36 10 1063 1072 10.14670/hh‑18‑347 34085704
    [Google Scholar]
  17. Wang P. Zhang Y. Lv X. Zhou J. Cang S. Song Y. LncRNA ADAMTS9-AS1 inhibits the stemness of lung adenocarcinoma cells by regulating miR-5009-3p/NPNT axis. Genomics 2023 115 3 110596 10.1016/j.ygeno.2023.110596 36870548
    [Google Scholar]
  18. Zhang Z. Li H. Hu Y. Wang F. Long non-coding RNA ADAMTS9-AS1 exacerbates cell proliferation, migration, and invasion via triggering of the PI3K/AKT/mTOR pathway in hepatocellular carcinoma cells. Am. J. Transl. Res. 2020 12 9 5696 5707 33042449
    [Google Scholar]
  19. Li N. Li J. Mi Q. Xie Y. Li P. Wang L. Binang H. Wang Q. Wang Y. Chen Y. Wang Y. Mao H. Du L. Wang C. Long non‐coding RNA ADAMTS9‐AS1 suppresses colorectal cancer by inhibiting the Wnt/β‐catenin signalling pathway and is a potential diagnostic biomarker. J. Cell. Mol. Med. 2020 24 19 11318 11329 10.1111/jcmm.15713 32889785
    [Google Scholar]
  20. Chen W. Tu Q. Yu L. Xu Y. Yu G. Jia B. Cheng Y. Wang Y. LncRNA ADAMTS9-AS1, as prognostic marker, promotes cell proliferation and EMT in colorectal cancer. Hum. Cell 2020 33 4 1133 1141 10.1007/s13577‑020‑00388‑w 32918700
    [Google Scholar]
  21. Wan J. Jiang S. Jiang Y. Ma W. Wang X. He Z. Wang X. Cui R. Data Mining and Expression Analysis of Differential lncRNA ADAMTS9-AS1 in Prostate Cancer. Front. Genet. 2020 10 1377 10.3389/fgene.2019.01377 32153626
    [Google Scholar]
  22. Taheri M. Badrlou E. Hussen B.M. Kashi A.H. Ghafouri-Fard S. Baniahmad A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front. Oncol. 2023 13 1123101 10.3389/fonc.2023.1123101 37025585
    [Google Scholar]
  23. Zhou Z. Wu X. Zhou Y. Yan W. Long non‐coding RNA ADAMTS9‐AS1 inhibits the progression of prostate cancer by modulating the miR‐142‐5p/CCND1 axis. J. Gene Med. 2021 23 5 e3331 10.1002/jgm.3331 33704879
    [Google Scholar]
  24. Fang S. Zhao Y. Hu X. LncRNA ADAMTS9-AS1 Restrains the Aggressive Traits of Breast Carcinoma Cells via Sponging miR-513a-5p. Cancer Manag. Res. 2020 12 10693 10703 10.2147/CMAR.S266575 33149676
    [Google Scholar]
  25. Cai L. Hu X. Ye L. Bai P. Jie Y. Shu K. Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered 2022 13 4 8226 8239 10.1080/21655979.2022.2049470 35311457
    [Google Scholar]
  26. Osmani L. Askin F. Gabrielson E. Li Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin. Cancer Biol. 2018 52 Pt 1 103 109 10.1016/j.semcancer.2017.11.019 29183778
    [Google Scholar]
  27. Imyanitov E.N. Iyevleva A.G. Levchenko E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol. 2021 157 103194 10.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  28. Friedlaender A. Addeo A. Russo A. Gregorc V. Cortinovis D. Rolfo C. Targeted Therapies in Early Stage NSCLC: Hype or Hope? Int. J. Mol. Sci. 2020 21 17 6329 10.3390/ijms21176329 32878298
    [Google Scholar]
  29. Fu K. Xie F. Wang F. Fu L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J. Hematol. Oncol. 2022 15 1 173 10.1186/s13045‑022‑01391‑4 36482474
    [Google Scholar]
  30. Herbst R.S. Morgensztern D. Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018 553 7689 446 454 10.1038/nature25183 29364287
    [Google Scholar]
  31. Bhanvadia S.K. Bladder Cancer Survivorship. Curr. Urol. Rep. 2018 19 12 111 10.1007/s11934‑018‑0860‑6 30414013
    [Google Scholar]
  32. Lenis A.T. Lec P.M. Chamie K. Mshs M. Bladder Cancer. JAMA 2020 324 19 1980 1991 10.1001/jama.2020.17598 33201207
    [Google Scholar]
  33. Dyrskjøt L. Hansel D.E. Efstathiou J.A. Knowles M.A. Galsky M.D. Teoh J. Theodorescu D. Bladder cancer. Nat. Rev. Dis. Primers 2023 9 1 58 10.1038/s41572‑023‑00468‑9 37884563
    [Google Scholar]
  34. Siracusano S. Rizzetto R. Porcaro A.B. Bladder cancer genomics. Urologia 2020 87 2 49 56 10.1177/0391560319899011 31942831
    [Google Scholar]
  35. Dobruch J. Oszczudłowski M. Bladder Cancer: Current Challenges and Future Directions. Medicina (Kaunas) 2021 57 8 749 10.3390/medicina57080749 34440955
    [Google Scholar]
  36. Ding Q. Chen D. Wang W. Chen Y. [Progress in Research on the Cribriform Component in Lung Adenocarcinoma]. Zhongguo Fei Ai Za Zhi 2020 23 7 621 625 10.3779/j.issn.1009‑3419.2020.101.19 32450628
    [Google Scholar]
  37. Barta J.A. Powell C.A. Wisnivesky J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019 85 1 8 10.5334/aogh.2419 30741509
    [Google Scholar]
  38. Zhang Q. Wei T. Yan L. Zhu S. Jin W. Bai Y. Zeng Y. Zhang X. Yin Z. Yang J. Zhang W. Wu M. Zhang Y. Liu L. Hypoxia-Responsive lncRNA AC115619 Encodes a Micropeptide That Suppresses m6A Modifications and Hepatocellular Carcinoma Progression. Cancer Res. 2023 83 15 2496 2512 10.1158/0008‑5472.CAN‑23‑0337 37326474
    [Google Scholar]
  39. Hutchinson B.D. Shroff G.S. Truong M.T. Ko J.P. Spectrum of Lung Adenocarcinoma. Semin. Ultrasound CT MR 2019 40 3 255 264 10.1053/j.sult.2018.11.009 31200873
    [Google Scholar]
  40. Succony L. Rassl D.M. Barker A.P. McCaughan F.M. Rintoul R.C. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat. Rev. 2021 99 102237 10.1016/j.ctrv.2021.102237 34182217
    [Google Scholar]
  41. Inamura K. Clinicopathological Characteristics and Mutations Driving Development of Early Lung Adenocarcinoma: Tumor Initiation and Progression. Int. J. Mol. Sci. 2018 19 4 1259 10.3390/ijms19041259 29690599
    [Google Scholar]
  42. Llovet J.M. Castet F. Heikenwalder M. Maini M.K. Mazzaferro V. Pinato D.J. Pikarsky E. Zhu A.X. Finn R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022 19 3 151 172 10.1038/s41571‑021‑00573‑2 34764464
    [Google Scholar]
  43. Dhanasekaran R. Nault J.C. Roberts L.R. Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology 2019 156 2 492 509 10.1053/j.gastro.2018.11.001 30404026
    [Google Scholar]
  44. Fei M. Guan J. Xue T. Qin L. Tang C. Cui G. Wang Y. Gong H. Feng W. Hypoxia promotes the migration and invasion of human hepatocarcinoma cells through the HIF-1α–IL-8–Akt axis. Cell. Mol. Biol. Lett. 2018 23 1 46 10.1186/s11658‑018‑0100‑6 30258464
    [Google Scholar]
  45. Lou W. Chen J. Ding B. Chen D. Zheng H. Jiang D. Xu L. Bao C. Cao G. Fan W. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation. J. Transl. Med. 2018 16 1 266 10.1186/s12967‑018‑1639‑8 30268144
    [Google Scholar]
  46. Wang Y. Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev. 2023 42 3 629 652 10.1007/s10555‑023‑10084‑4 36729264
    [Google Scholar]
  47. Wang L.M. Englander Z.K. Miller M.L. Bruce J.N. Malignant Glioma. Adv. Exp. Med. Biol. 2023 1405 1 30 10.1007/978‑3‑031‑23705‑8_1 37452933
    [Google Scholar]
  48. Yasinjan F. Xing Y. Geng H. Guo R. Yang L. Liu Z. Wang H. Immunotherapy: a promising approach for glioma treatment. Front. Immunol. 2023 14 1255611 10.3389/fimmu.2023.1255611 37744349
    [Google Scholar]
  49. Gusyatiner O. Hegi M.E. Glioma epigenetics: From subclassification to novel treatment options. Semin. Cancer Biol. 2018 51 50 58 10.1016/j.semcancer.2017.11.010 29170066
    [Google Scholar]
  50. Omuro A. DeAngelis L.M. Glioblastoma and other malignant gliomas: a clinical review. JAMA 2013 310 17 1842 1850 10.1001/jama.2013.280319 24193082
    [Google Scholar]
  51. Campos B. Olsen L.R. Urup T. Poulsen H.S. A comprehensive profile of recurrent glioblastoma. Oncogene 2016 35 45 5819 5825 10.1038/onc.2016.85 27041580
    [Google Scholar]
  52. Klimeck L. Heisser T. Hoffmeister M. Brenner H. Colorectal cancer: A health and economic problem. Best Pract. Res. Clin. Gastroenterol. 2023 66 101839 10.1016/j.bpg.2023.101839 37852707
    [Google Scholar]
  53. Dekker E. Tanis P.J. Vleugels J.L.A. Kasi P.M. Wallace M.B. Colorectal cancer. Lancet 2019 394 10207 1467 1480 10.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  54. Thanikachalam K. Khan G. Colorectal Cancer and Nutrition. Nutrients 2019 11 1 164 10.3390/nu11010164 30646512
    [Google Scholar]
  55. Baidoun F. Elshiwy K. Elkeraie Y. Merjaneh Z. Khoudari G. Sarmini M.T. Gad M. Al-Husseini M. Saad A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2021 22 9 998 1009 10.2174/18735592MTEx9NTk2y 33208072
    [Google Scholar]
  56. Haraldsdottir S. Einarsdottir H.M. Smaradottir A. Gunnlaugsson A. Halfdanarson T.R. [Colorectal cancer - review]. Laeknabladid 2014 100 2 75 82 10.17992/lbl.2014.02.531 24639430
    [Google Scholar]
  57. Gandaglia G. Leni R. Bray F. Fleshner N. Freedland S.J. Kibel A. Stattin P. Van Poppel H. La Vecchia C. Epidemiology and Prevention of Prostate Cancer. Eur. Urol. Oncol. 2021 4 6 877 892 10.1016/j.euo.2021.09.006 34716119
    [Google Scholar]
  58. Sekhoacha M. Riet K. Motloung P. Gumenku L. Adegoke A. Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022 27 17 5730 10.3390/molecules27175730 36080493
    [Google Scholar]
  59. Nguyen-Nielsen M. Borre M. Diagnostic and Therapeutic Strategies for Prostate Cancer. Semin. Nucl. Med. 2016 46 6 484 490 10.1053/j.semnuclmed.2016.07.002 27825428
    [Google Scholar]
  60. Wang Y.A. Sfakianos J. Tewari A.K. Cordon-cardo C. Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene 2020 39 50 7225 7238 10.1038/s41388‑020‑01496‑5 33046797
    [Google Scholar]
  61. Akram M. Iqbal M. Daniyal M. Khan A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017 50 1 33 10.1186/s40659‑017‑0140‑9 28969709
    [Google Scholar]
  62. Kolak A. Kamińska M. Sygit K. Budny A. Surdyka D. Kukiełka-Budny B. Burdan F. Primary and secondary prevention of breast cancer. Ann. Agric. Environ. Med. 2017 24 4 549 553 10.26444/aaem/75943 29284222
    [Google Scholar]
  63. Winters S. Martin C. Murphy D. Shokar N.K. Breast Cancer Epidemiology, Prevention, and Screening. Prog. Mol. Biol. Transl. Sci. 2017 151 1 32 10.1016/bs.pmbts.2017.07.002 29096890
    [Google Scholar]
  64. Lheureux S. Braunstein M. Oza A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019 69 4 280 304 10.3322/caac.21559 31099893
    [Google Scholar]
  65. Sambasivan S. Epithelial ovarian cancer: Review article. Cancer Treat. Res. Commun. 2022 33 100629 10.1016/j.ctarc.2022.100629 36127285
    [Google Scholar]
  66. Arnaoutoglou C. Dampala K. Anthoulakis C. Papanikolaou E.G. Tentas I. Dragoutsos G. Machairiotis N. Zarogoulidis P. Ioannidis A. Matthaios D. Perdikouri E.I. Giannakidis D. Sardeli C. Petousis S. Oikonomou P. Nikolaou C. Charalampidis C. Sapalidis K. Epithelial Ovarian Cancer: A Five Year Review. Medicina (Kaunas) 2023 59 7 1183 10.3390/medicina59071183 37511995
    [Google Scholar]
  67. Shah S. Cheung A. Kutka M. Sheriff M. Boussios S. Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes. Int. J. Environ. Res. Public Health 2022 19 13 8113 10.3390/ijerph19138113 35805770
    [Google Scholar]
  68. Richardson D.L. Eskander R.N. O’Malley D.M. Advances in Ovarian Cancer Care and Unmet Treatment Needs for Patients With Platinum Resistance. JAMA Oncol. 2023 9 6 851 859 10.1001/jamaoncol.2023.0197 37079311
    [Google Scholar]
  69. Yan H. Bu P. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  70. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  71. Toden S. Zumwalt T.J. Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 1 188491 10.1016/j.bbcan.2020.188491 33316377
    [Google Scholar]
  72. Ran Z. Wu S. Ma Z. Chen X. Liu J. Yang J. Advances in exosome biomarkers for cervical cancer. Cancer Med. 2022 11 24 4966 4978 10.1002/cam4.4828 35578572
    [Google Scholar]
  73. Krylova S.V. Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int. J. Mol. Sci. 2023 24 2 1337 10.3390/ijms24021337 36674857
    [Google Scholar]
  74. Dai J. Su Y. Zhong S. Cong L. Liu B. Yang J. Tao Y. He Z. Chen C. Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 2020 5 1 145 10.1038/s41392‑020‑00261‑0 32759948
    [Google Scholar]
  75. Xu Z. Chen Y. Ma L. Chen Y. Liu J. Guo Y. Yu T. Zhang L. Zhu L. Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol. Ther. 2022 30 10 3133 3154 10.1016/j.ymthe.2022.01.046 35405312
    [Google Scholar]
  76. Huang W. Li H. Yu Q. Xiao W. Wang D.O. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J. Exp. Clin. Cancer Res. 2022 41 1 100 10.1186/s13046‑022‑02319‑z 35292092
    [Google Scholar]
  77. Liu Y. Shi M. He X. Cao Y. Liu P. Li F. Zou S. Wen C. Zhan Q. Xu Z. Wang J. Sun B. Shen B. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 2022 15 1 52 10.1186/s13045‑022‑01272‑w 35526050
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206359325241119075640
Loading
/content/journals/acamc/10.2174/0118715206359325241119075640
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gene expression ; cancer ; biomarkers ; therapeutic target ; Long non-coding RNA ; ADAMTS9-AS1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test