Skip to content
2000
image of Heavy Metals Alter the Anti-cancer Potency of Medicinal Plants

Abstract

This review investigates the outcome of heavy metal contamination on the anti-cancer properties of medicinal plants. Heavy metal pollution is a significant environmental concern globally, often found in soil and water due to industrial activities. Therapeutic plants are recognized because of their therapeutic attributes and their ability to absorbing these contaminants. This study examines how heavy metal exposure modifies the chemical composition and efficacy of medicinal plants against cancer cells. Through a comprehensive review of existing literature and experimental analysis, we explore the mechanisms by which heavy metals interact with bioactive compounds in medicinal plants, affecting their anti-cancer potency. Findings reveal intricate interactions among heavy metals and phytochemicals, leading to variations in cytotoxicity against cancer cells. Comprehending these interactions is crucial for optimizing the utilization of medicinal plants in cancer treatment and for developing approaches to alleviate the impacts of heavy metal contamination on their therapeutic potential. The urgency of this issue cannot be overstated, as it directly impacts our ability to effectively treat cancer and preserve our environment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206341220241120132600
2025-01-06
2025-04-02
Loading full text...

Full text loading...

References

  1. Balunas M.J. Kinghorn A.D. Drug discovery from medicinal plants. Life Sci. 2005 78 5 431 441 10.1016/j.lfs.2005.09.012 16198377
    [Google Scholar]
  2. Jain S. Dwivedi J. Jain P.K. Satpathy S. Patra A. Medicinal plants for treatment of cancer: A brief review. Pharmacogn. J. 2016 8 2 87 102 10.5530/pj.2016.2.1
    [Google Scholar]
  3. Shaik B.B. Katari N.K. Jonnalagadda S.B. Role of natural products in developing novel anticancer agents: A perspective. Chem. Biodivers. 2022 19 11 e202200535 10.1002/cbdv.202200535 36347633
    [Google Scholar]
  4. Kordrostami M. Mafakheri M. Heavy metals and phytoremediation in plants. Handbook of Plant and Crop Physiology, Heavy Metals and Phytoremediation in Plants 4th ed CRC Press 2021
    [Google Scholar]
  5. Janadeleh H Kardani M Rad M Salemi M Study of heavy metals effects on plants. Third International Symposium On Environmental and Water Resou rces Engineering Tehran, Iran, July 2015.
    [Google Scholar]
  6. Nasim S.A. Dhir B. Heavy metals alter the potency of medicinal plants. Rev. Environ. Contam. Toxicol. 2010 203 139 149 19957120
    [Google Scholar]
  7. Kaul M.K. Kumar A. Ahuja A. Mir B.A. Suri K.A. Qazi G.N. Production dynamics of Withaferin A in Withania somnifera (L.) Dunal complex. Nat. Prod. Res. 2009 23 14 1304 1311 10.1080/14786410802547440 19735044
    [Google Scholar]
  8. Jagetia G.C. Anticancer activity of Giloe, Tinospora Cordifoila (Willd.) Miers Ex Hook F & Thoms. Int. J. Complement. Altern. Med. 2019 12 2 79 75 10.15406/ijcam.2019.12.00453
    [Google Scholar]
  9. Rathore S. Debnath P. Kumar R. Kuth Saussurea costus (Falc.) Lipsch.: A critically endangered medicinal plant from Himalaya. J. Appl. Res. Med. Aromat. Plants 2021 20 100277 10.1016/j.jarmap.2020.100277
    [Google Scholar]
  10. Baliga M.S. Jimmy R. Thilakchand K.R. Sunitha V. Bhat N.R. Saldanha E. Rao S. Rao P. Arora R. Palatty P.L. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr. Cancer 2013 65 sup1 Suppl. 1 26 35 10.1080/01635581.2013.785010 23682780
    [Google Scholar]
  11. Singh D.B. Maurya A. Rai D. Antibacterial and anticancer activities of turmeric and its active ingredient curcumin, and mechanism of action. Science of Spices and Culinary Herbs - Latest Laboratory, Pre-clinical, and Clinical Studies Bentham Science Publisher 2019 1 74 103 10.2174/9781681087511119010006
    [Google Scholar]
  12. Sanders B. Ray A.M. Goldberg S. Clark T. McDaniel H.R. Atlas S.E. Farooqi A. Konefal J. Lages L.C. Lopez J. Rasul A. Tiozzo E. Woolger J.M. Lewis J.E. Anti-cancer effects of aloe-emodin: A systematic review. J. Clin. Transl. Res. 2017 3 3 283 296 30895270
    [Google Scholar]
  13. Ardalani H. Avan A. Ghayour-Mobarhan M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed. 2017 7 4 285 294 28884079
    [Google Scholar]
  14. Alam M. Ali S. Ahmed S. Elasbali A.M. Adnan M. Islam A. Hassan M.I. Yadav D.K. Therapeutic potential of ursolic acid in cancer and diabetic neuropathy diseases. Int. J. Mol. Sci. 2021 22 22 12162 10.3390/ijms222212162 34830043
    [Google Scholar]
  15. Azadmehr A. Hajiaghaee R. Baradaran B. Haghdoost-Yazdi H. Apoptosis cell death effect of scrophularia variegata on breast cancer cells via mitochondrial intrinsic pathway. Adv. Pharm. Bull. 2015 5 3 443 446 10.15171/apb.2015.060 26504768
    [Google Scholar]
  16. Giri A. Lakshmi Narasu M. Production of podophyllotoxin from Podophyllum hexandrum: A potential natural product for clinically useful anticancer drugs. Cytotechnology 2000 34 1/2 17 26 10.1023/A:1008138230896 19003377
    [Google Scholar]
  17. Wang X. Song Y. Su Y. Tian Q. Li B. Quan J. Deng Y. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Deliv. 2016 23 4 1092 1100 10.3109/10717544.2015.1027015 26024386
    [Google Scholar]
  18. Bao H. Muge Q. Anticancer effect of myristicin on hepatic carcinoma and related molecular mechanism. Pharm. Biol. 2021 59 1 1124 1130 10.1080/13880209.2021.1961825 34410900
    [Google Scholar]
  19. Nian H. Delage B. Pinto J.T. Dashwood R.H. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 2008 29 9 1816 1824 10.1093/carcin/bgn165 18628250
    [Google Scholar]
  20. Fangjun L. Zhijia Y. Tumor suppressive roles of eugenol in human lung cancer cells. Thorac. Cancer 2018 9 1 25 29 10.1111/1759‑7714.12508 29024500
    [Google Scholar]
  21. Zari A.T. Zari T.A. Hakeem K.R. Anticancer properties of eugenol: A review. Molecules 2021 26 23 7407 10.3390/molecules26237407 34885992
    [Google Scholar]
  22. Rather R.A. Bhagat M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol. 2018 6 10 10.3389/fcell.2018.00010 29497610
    [Google Scholar]
  23. Rahmani A. Almatroudi A. Allemailem K. Alwanian W. Alharbi B. Alrumaihi F. Khan A. Almatroodi S. Myricetin: A significant emphasis on its anticancer potential via the modulation of inflammation and signal transduction pathways. Int. J. Mol. Sci. 2023 24 11 9665 10.3390/ijms24119665 37298616
    [Google Scholar]
  24. Cichello S.A. Yao Q. He X.Q. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines. J. Tradit. Complement. Med. 2016 6 2 193 197 10.1016/j.jtcme.2015.01.002 27114944
    [Google Scholar]
  25. Oh J.W. Muthu M. Pushparaj S.S.C. Gopal J. Anticancer therapeutic effects of green tea catechins (GTCs) when integrated with antioxidant natural components. Molecules 2023 28 5 2151 10.3390/molecules28052151 36903395
    [Google Scholar]
  26. Shabani H. Karami M.H. Kolour J. Sayyahi Z. Parvin M.A. Soghala S. Baghini S.S. Mardasi M. Chopani A. Moulavi P. Farkhondeh T. Darroudi M. Kabiri M. Samarghandian S. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches. Biomed. Pharmacother. 2023 165 114972 10.1016/j.biopha.2023.114972 37481931
    [Google Scholar]
  27. Guon T.E. Chung H.S. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Oncol. Lett. 2016 11 4 2463 2470 10.3892/ol.2016.4247 27073499
    [Google Scholar]
  28. Askari Dehno M. Mousavi Harami S.R. Noora M.R. Environmental geochemistry of heavy metals in coral reefs and sediments of Chabahar Bay. Results Eng. 2022 13 100346 10.1016/j.rineng.2022.100346
    [Google Scholar]
  29. Liu C.C. Jean J.S. Nath B. Lee M.K. Hor L.I. Lin K.H. Maity J.P. Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water–sediment interaction and groundwater arsenic enrichment. Appl. Geochem. 2009 24 9 1793 1802 10.1016/j.apgeochem.2009.06.002
    [Google Scholar]
  30. Huff W.D. Owen L.A. Volcanic landforms and hazards. Reference Module in Earth Systems and Environmental Sciences Elsevier 2015 10.1016/B978‑0‑12‑409548‑9.09512‑9
    [Google Scholar]
  31. Sparks D.L. Toxic metals in the environment: The role of surfaces. Elements 2005 1 4 193 197 10.2113/gselements.1.4.193
    [Google Scholar]
  32. Masindi V Mkhonza P Tekere M. Sources of Heavy Metals Pollution. Springer Nature 2021 10.1007/978‑3‑030‑80334‑6_17
    [Google Scholar]
  33. Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008 157 2-3 220 229 10.1016/j.jhazmat.2008.01.024 18291580
    [Google Scholar]
  34. Moffat A.J. Irrigation with treated sewage effluent: management for environmental protection. By A. Feigin, I. Ravina and J. Shalhevet, Berlin: Springer-Verlag, (1991), pp. 224, DM 228.00, ISBN 3-540-50804-X. Exp. Agric. 1992 28 2 241 241 10.1017/S0014479700019773
    [Google Scholar]
  35. Zhong X. Zhou S. Zhu Q. Zhao Q. Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta—A case study of Kunshan City in Jiangsu Province, China. J. Hazard. Mater. 2011 198 13 21 10.1016/j.jhazmat.2011.10.003 22018863
    [Google Scholar]
  36. Bradl H. Kim C. Kramar U. StÜben D. Chapter 2 Interactions of heavy metals. Interface Science and Technology Elsevier 2005 28 164
    [Google Scholar]
  37. Kumari S. Mishra A. Kumari S. Mishra A. Heavy metal contamination. Soil Contamination - Threats and Sustainable Solutions IntechOpen 2021 10.5772/intechopen.93412
    [Google Scholar]
  38. Briffa J. Sinagra E. Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020 6 9 e04691 10.1016/j.heliyon.2020.e04691 32964150
    [Google Scholar]
  39. Vinogradova N. Glukhov A. Chaplygin V. Kumar P. Mandzhieva S. Minkina T. Rajput V.D. The content of heavy metals in medicinal plants in various environmental conditions: A review. Horticulturae 2023 9 2 239 10.3390/horticulturae9020239
    [Google Scholar]
  40. Vasilachi I.C. Stoleru V. Gavrilescu M. Analysis of heavy metal impacts on cereal crop growth and development in contaminated soils. Agriculture 2023 13 10 1983 10.3390/agriculture13101983
    [Google Scholar]
  41. Sachdev S. Ansari S.A. Ansari M.I. Fujita M. Hasanuzzaman M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021 10 2 277 10.3390/antiox10020277 33670123
    [Google Scholar]
  42. Dutta S. Mitra M. Agarwal P. Mahapatra K. De S. Sett U. Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal. Behav. 2018 13 8 1 49 10.1080/15592324.2018.1460048 29621424
    [Google Scholar]
  43. Khan A. Khan S. Khan M.A. Qamar Z. Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. Int. 2015 22 18 13772 13799 10.1007/s11356‑015‑4881‑0 26194234
    [Google Scholar]
  44. Angon P.B. Islam M.S. Kc S. Das A. Anjum N. Poudel A. Suchi S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024 10 7 e28357 10.1016/j.heliyon.2024.e28357 38590838
    [Google Scholar]
  45. Kozieł S. Wojtala D. Szmitka M. Sawka J. Komarnicka U.K. Can Mn coordination compounds be good candidates for medical applications? Front Chem Biol 2024 10.3389/fchbi.2024.1337372
    [Google Scholar]
  46. Abbas G. Murtaza B. Bibi I. Shahid M. Niazi N. Khan M. Amjad M. Hussain M. Natasha Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health 2018 15 1 59 10.3390/ijerph15010059 29301332
    [Google Scholar]
  47. Soni S. Jha A.B. Dubey R.S. Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. Sci. Total Environ. 2024 912 168826 10.1016/j.scitotenv.2023.168826 38042185
    [Google Scholar]
  48. Connolly EL Guerinot ML Iron stress in plants. Genome Biol. 2002 3 8 reviews1024.1 reviews1024.4
    [Google Scholar]
  49. Aqeel U. Aftab T. Khan M.M.A. Naeem M. Excessive copper induces toxicity in Mentha arvensis L. by disturbing growth, photosynthetic machinery, oxidative metabolism and essential oil constituents. Plant Stress 2023 8 100161 10.1016/j.stress.2023.100161
    [Google Scholar]
  50. Sharma A. Kapoor D. Wang J. Shahzad B. Kumar V. Bali A.S. Jasrotia S. Zheng B. Yuan H. Yan D. Chromium bioaccumulation and its impacts on plants: An overview. Plants 2020 9 1 100 10.3390/plants9010100 31941115
    [Google Scholar]
  51. Zulfiqar U. Farooq M. Hussain S. Maqsood M. Hussain M. Ishfaq M. Ahmad M. Anjum M.Z. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage. 2019 250 109557 10.1016/j.jenvman.2019.109557 31545179
    [Google Scholar]
  52. Patra M. Sharma A. Mercury toxicity in plants. Bot. Rev. 2000 66 3 379 422 10.1007/BF02868923
    [Google Scholar]
  53. Hassan M.U. Chattha M.U. Khan I. Chattha M.B. Aamer M. Nawaz M. Ali A. Khan M.A.U. Khan T.A. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ. Sci. Pollut. Res. Int. 2019 26 13 12673 12688 10.1007/s11356‑019‑04892‑x 30924044
    [Google Scholar]
  54. Kaur H. Garg N. Zinc toxicity in plants: A review. Planta 2021 253 6 129 10.1007/s00425‑021‑03642‑z 34043068
    [Google Scholar]
  55. Rascio N. Metal accumulation by some plants growing on zinc-mine deposits. Oikos 1977 29 2 250 253 10.2307/3543610
    [Google Scholar]
  56. Prasad MNV Freitas H Fraenzle S Wuenschmann S Markert B Knowledge explosion in phytotechnologies for environmental solutions. Environ. Pollut. 2010 158 1 18 23
    [Google Scholar]
  57. Milner M.J. Kochian L.V. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann. Bot. 2008 102 1 3 13 10.1093/aob/mcn063 18440996
    [Google Scholar]
  58. Bernal M.P. McGrath S.P. Miller A.J. Baker A.J.M. Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant Soil 1994 164 2 251 259 10.1007/BF00010077
    [Google Scholar]
  59. Krishnamurti G.S.R. Cieslinski G. Huang P.M. Van Rees K.C.J. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Environ. Qual. 1997 26 1 271 277 10.2134/jeq1997.00472425002600010038x
    [Google Scholar]
  60. Whiting S.N. Leake J.R. McGRATH S.P. Baker A.J.M. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 2000 145 2 199 210 10.1046/j.1469‑8137.2000.00570.x
    [Google Scholar]
  61. Williams L.E. Pittman J.K. Hall J.L. Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta Biomembr. 2000 1465 1-2 104 126 10.1016/S0005‑2736(00)00133‑4 10748249
    [Google Scholar]
  62. Rascio N. Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011 180 2 169 181 10.1016/j.plantsci.2010.08.016 21421358
    [Google Scholar]
  63. Sinicropi M.S. Amantea D. Caruso A. Saturnino C. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning. Arch. Toxicol. 2010 84 7 501 520 10.1007/s00204‑010‑0544‑6 20386880
    [Google Scholar]
  64. Grill E. Winnacker E.L. Zenk M.H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. USA 1987 84 2 439 443 10.1073/pnas.84.2.439 16593801
    [Google Scholar]
  65. Yang X. Feng Y. He Z. Stoffella P.J. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Med. Biol. 2005 18 4 339 353 10.1016/j.jtemb.2005.02.007 16028496
    [Google Scholar]
  66. Takáč P. Szabová T. Kozáková Ľ. Benková M. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant Soil Environ. 2009 55 4 167 172 10.17221/21/2009‑PSE
    [Google Scholar]
  67. Saha L. Tiwari J. Bauddh K. Ma Y. Recent developments in microbe–plant-based bioremediation for tackling heavy metal-polluted soils. Front. Microbiol. 2021 12 731723 10.3389/fmicb.2021.731723 35002995
    [Google Scholar]
  68. Chen Y.T. Wang Y. Yeh K.C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 2017 39 66 72 10.1016/j.pbi.2017.06.004 28654805
    [Google Scholar]
  69. Lu H. Sun J. Zhu L. The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci. Rep. 2017 7 1 7130 10.1038/s41598‑017‑07413‑3 28769098
    [Google Scholar]
  70. Bolan N.S. Park J.H. Robinson B. Naidu R. Huh K.Y. Chapter four - Phytostabilization: A green approach to contaminant containment. Advances in Agronomy. Sparks D.L. Academic Press 2011 145 204
    [Google Scholar]
  71. Nedjimi B. Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Appl. Sci. 2021 3 3 286 10.1007/s42452‑021‑04301‑4
    [Google Scholar]
  72. Seregin I.V. Kozhevnikova A.D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ. J. Plant Physiol. 2008 55 1 1 22 10.1134/S1021443708010019
    [Google Scholar]
  73. Peng J.S. Gong J.M. Vacuolar sequestration capacity and long-distance metal transport in plants. Front. Plant Sci. 2014 5 19 10.3389/fpls.2014.00019 24550927
    [Google Scholar]
  74. Yan A. Wang Y. Tan S.N. Mohd Yusof M.L. Ghosh S. Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020 11 359 10.3389/fpls.2020.00359 32425957
    [Google Scholar]
  75. Hlihor R.M. Roșca M. Hagiu-Zaleschi L. Simion I.M. Daraban G.M. Stoleru V. Medicinal plant growth in heavy metals contaminated soils: Responses to metal stress and induced risks to human health. Toxics 2022 10 9 499 10.3390/toxics10090499 36136464
    [Google Scholar]
  76. Sharma J.K. Kumar N. Singh N.P. Santal A.R. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 2023 14 1076876 10.3389/fpls.2023.1076876 36778693
    [Google Scholar]
  77. Hammami H. Alaie E. Dastgheib S.M.M. The ability of Silybum marianum to phytoremediate cadmium and/or diesel oil from the soil. Int. J. Phytoremediation 2018 20 8 756 763 10.1080/15226514.2018.1425664 29775104
    [Google Scholar]
  78. Papadimou S.G. Barbayiannis Ν. Golia E.E. Preliminary investigation of the use of Silybum marianum (L.) Gaertn. as a Cd accumulator in contaminated Mediterranean soils: The relationships among cadmium (Cd) soil fractions and plant Cd content. EuroMediterr. J. Environ. Integr. 2024 9 1 405 417 10.1007/s41207‑023‑00430‑x
    [Google Scholar]
  79. Truong V.L. Jeong W.S. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int. J. Mol. Sci. 2021 22 17 9109 10.3390/ijms22179109 34502017
    [Google Scholar]
  80. FORESTER SC. LAMBERT JD. Antioxidant effects of green tea. Mol. Nutr. Food Res. 2011 55 6 844 854 21538850
    [Google Scholar]
  81. Rai M. Jogee P.S. Agarkar G. dos Santos C.A. Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. Pharm Biol 2016
    [Google Scholar]
  82. Hu Y. Li J. Lou B. Wu R. Wang G. Lu C. Wang H. Pi J. Xu Y. The role of reactive oxygen species in arsenic toxicity. Biomolecules 2020 10 2 240 10.3390/biom10020240 32033297
    [Google Scholar]
  83. Smirnova E. Moniruzzaman M. Chin S. Sureshbabu A. Karthikeyan A. Do K. Min T. A review of the role of curcumin in metal induced toxicity. Antioxidants 2023 12 2 243 10.3390/antiox12020243 36829803
    [Google Scholar]
  84. Hasan M.R. Alotaibi B.S. Althafar Z.M. Mujamammi A.H. Jameela J. An update on the therapeutic anticancer potential of Ocimum sanctum L.: “Elixir of Life”. Molecules 2023 28 3 1193 10.3390/molecules28031193 36770859
    [Google Scholar]
  85. Chen S. Wang Z. Huang Y. O’Barr S.A. Wong R.A. Yeung S. Chow M.S. Ginseng and anticancer drug combination to improve cancer chemotherapy: A critical review. Evid. Based Complement. Alternat. Med. 2014 2014 168940 10.1155/2014/168940 24876866
    [Google Scholar]
  86. Perry N.B. van Klink J.W. Burgess E.J. Parmenter G.A. Alkamide levels in Echinacea purpurea: Effects of processing, drying and storage. Planta Med. 2000 66 1 54 56 10.1055/s‑2000‑11111 10705735
    [Google Scholar]
  87. Zhang J. Luo Y. Hou H. Yu P. Guo J. Wang G. Zinc-enhanced regulation of the Ginkgo biloba L. Response and secondary metabolites. Forests 2024 15 5 759 10.3390/f15050759
    [Google Scholar]
  88. Feng X. Zhang L. Zhu H. Comparative anticancer and antioxidant activities of different ingredients of Ginkgo biloba extract (EGb 761). Planta Med. 2009 75 8 792 796 10.1055/s‑0029‑1185451 19288403
    [Google Scholar]
  89. Malik M.S. Alsantali R.I. Jassas R.S. Alsimaree A.A. Syed R. Alsharif M.A. Kalpana K. Morad M. Althagafi I.I. Ahmed S.A. Journey of anthraquinones as anticancer agents – A systematic review of recent literature. RSC Advances 2021 11 57 35806 35827 10.1039/D1RA05686G 35492773
    [Google Scholar]
  90. Rowinsky E. The vinca alkaloids. Holland-Frei Cancer Medicine. 6th ed BC Decker 2003
    [Google Scholar]
  91. Moudi M. Go R. Yien C.Y.S. Nazre M. Vinca alkaloids. Int. J. Prev. Med. 2013 4 11 1231 1235 24404355
    [Google Scholar]
  92. Kumar D. Singh D.P. Barman S.C. Kumar N. Heavy metal and their regulation in plant system: An overview. Plant Responses to Xenobiotics. Singh A. Prasad S.M. Singh R.P. Singapore Springer 2016 19 38 10.1007/978‑981‑10‑2860‑1_2
    [Google Scholar]
  93. Bañuelos G.S. Ajwa H.A. Trace elements in soils and plants: An overview. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 1999 34 4 951 974 10.1080/10934529909376875
    [Google Scholar]
  94. Mansoor S. Ali A. Kour N. Bornhorst J. AlHarbi K. Rinklebe J. Abd El Moneim D. Ahmad P. Chung Y.S. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants 2023 12 16 3003 10.3390/plants12163003 37631213
    [Google Scholar]
  95. Yang Y. Zhang L. Huang X. Zhou Y. Quan Q. Li Y. Zhu X. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One 2020 15 3 e0228563 10.1371/journal.pone.0228563 32176700
    [Google Scholar]
  96. Tchounwou P.B. Yedjou C.G. Patlolla A.K. Sutton D.J. Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology Springer Basel 2012 10.1007/978‑3‑7643‑8340‑4_6
    [Google Scholar]
  97. Tan K.H. Principles of Soil Chemistry. 4th ed Boca Raton CRC Press 2010 10.1201/9781439894606
    [Google Scholar]
  98. Ginneken L. Meers E. Guisson R. Ruttens A. Elst K. Tack F. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J. Environ. Eng. Landsc. Manag. 2010 15
    [Google Scholar]
  99. Merkl N Schultze-Kraft R Infante C Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 2005 138 1 86 91
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206341220241120132600
Loading
/content/journals/acamc/10.2174/0118715206341220241120132600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test