Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

This review investigates the outcome of heavy metal contamination on the anti-cancer properties of medicinal plants. Heavy metal pollution is a significant environmental concern globally, often found in soil and water due to industrial activities. Therapeutic plants are recognized because of their therapeutic attributes and their ability to absorbing these contaminants. This study examines how heavy metal exposure modifies the chemical composition and efficacy of medicinal plants against cancer cells. Through a comprehensive review of existing literature and experimental analysis, we explore the mechanisms by which heavy metals interact with bioactive compounds in medicinal plants, affecting their anti-cancer potency. Findings reveal intricate interactions among heavy metals and phytochemicals, leading to variations in cytotoxicity against cancer cells. Comprehending these interactions is crucial for optimizing the utilization of medicinal plants in cancer treatment and for developing approaches to alleviate the impacts of heavy metal contamination on their therapeutic potential. The urgency of this issue cannot be overstated, as it directly impacts our ability to effectively treat cancer and preserve our environment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206341220241120132600
2025-01-06
2025-06-26
Loading full text...

Full text loading...

References

  1. BalunasM.J. KinghornA.D. Drug discovery from medicinal plants.Life Sci.200578543144110.1016/j.lfs.2005.09.012 16198377
    [Google Scholar]
  2. JainS. DwivediJ. JainP.K. SatpathyS. PatraA. Medicinal plants for treatment of cancer: A brief review.Pharmacogn. J.2016828710210.5530/pj.2016.2.1
    [Google Scholar]
  3. ShaikB.B. KatariN.K. JonnalagaddaS.B. Role of natural products in developing novel anticancer agents: A perspective.Chem. Biodivers.20221911e20220053510.1002/cbdv.202200535 36347633
    [Google Scholar]
  4. KordrostamiM. MafakheriM. Heavy metals and phytoremediation in plants.Handbook of Plant and Crop Physiology, Heavy Metals and Phytoremediation in Plants4th edCRC Press2021
    [Google Scholar]
  5. JanadelehH. KardaniM. RadM. SalemiM. Study of heavy metals effects on plants.Third International Symposium On Environmental and Water Resources EngineeringTehran, Iran, July2015
    [Google Scholar]
  6. NasimS.A. DhirB. Heavy metals alter the potency of medicinal plants.Rev. Environ. Contam. Toxicol.2010203139149 19957120
    [Google Scholar]
  7. KaulM.K. KumarA. AhujaA. MirB.A. SuriK.A. QaziG.N. Production dynamics of Withaferin A in Withania somnifera (L.) Dunal complex.Nat. Prod. Res.200923141304131110.1080/14786410802547440 19735044
    [Google Scholar]
  8. JagetiaG.C. Anticancer activity of Giloe, Tinospora cordifoila (Willd.) Miers Ex Hook F & Thoms.Int. J. Complement. Altern. Med.2019122797510.15406/ijcam.2019.12.00453
    [Google Scholar]
  9. RathoreS. DebnathP. KumarR. Kuth Saussurea costus (Falc.) Lipsch.: A critically endangered medicinal plant from Himalaya.J. Appl. Res. Med. Aromat. Plants20212010027710.1016/j.jarmap.2020.100277
    [Google Scholar]
  10. BaligaM.S. JimmyR. ThilakchandK.R. SunithaV. BhatN.R. SaldanhaE. RaoS. RaoP. AroraR. PalattyP.L. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer.Nutr. Cancer201365Suppl. 1263510.1080/01635581.2013.785010 23682780
    [Google Scholar]
  11. SinghD.B. MauryaA. RaiD. Antibacterial and anticancer activities of turmeric and its active ingredient curcumin, and mechanism of action.Science of Spices and Culinary Herbs - Latest Laboratory, Pre-clinical, and Clinical StudiesBentham Science Publisher201917410310.2174/9781681087511119010006
    [Google Scholar]
  12. SandersB. RayA.M. GoldbergS. ClarkT. McDanielH.R. AtlasS.E. FarooqiA. KonefalJ. LagesL.C. LopezJ. RasulA. TiozzoE. WoolgerJ.M. LewisJ.E. Anti-cancer effects of aloe-emodin: A systematic review.J. Clin. Transl. Res.201733283296 30895270
    [Google Scholar]
  13. ArdalaniH. AvanA. Ghayour-MobarhanM. Podophyllotoxin: A novel potential natural anticancer agent.Avicenna J. Phytomed.201774285294 28884079
    [Google Scholar]
  14. AlamM. AliS. AhmedS. ElasbaliA.M. AdnanM. IslamA. HassanM.I. YadavD.K. Therapeutic potential of ursolic acid in cancer and diabetic neuropathy diseases.Int. J. Mol. Sci.202122221216210.3390/ijms222212162 34830043
    [Google Scholar]
  15. AzadmehrA. HajiaghaeeR. BaradaranB. Haghdoost-YazdiH. Apoptosis cell death effect of Scrophularia variegata on breast cancer cells via mitochondrial intrinsic pathway.Adv. Pharm. Bull.20155344344610.15171/apb.2015.060 26504768
    [Google Scholar]
  16. GiriA. LakshmiN.M. Production of podophyllotoxin from Podophyllum hexandrum: A potential natural product for clinically useful anticancer drugs.Cytotechnology2000341/2172610.1023/A:1008138230896 19003377
    [Google Scholar]
  17. WangX. SongY. SuY. TianQ. LiB. QuanJ. DengY. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine.Drug Deliv.20162341092110010.3109/10717544.2015.1027015 26024386
    [Google Scholar]
  18. BaoH. MugeQ. Anticancer effect of myristicin on hepatic carcinoma and related molecular mechanism.Pharm. Biol.20215911124113010.1080/13880209.2021.1961825 34410900
    [Google Scholar]
  19. NianH. DelageB. PintoJ.T. DashwoodR.H. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter.Carcinogenesis20082991816182410.1093/carcin/bgn165 18628250
    [Google Scholar]
  20. FangjunL. ZhijiaY. Tumor suppressive roles of eugenol in human lung cancer cells.Thorac. Cancer201891252910.1111/1759‑7714.12508 29024500
    [Google Scholar]
  21. ZariA.T. ZariT.A. HakeemK.R. Anticancer properties of eugenol: A review.Molecules20212623740710.3390/molecules26237407 34885992
    [Google Scholar]
  22. RatherR.A. BhagatM. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities.Front. Cell Dev. Biol.201861010.3389/fcell.2018.00010 29497610
    [Google Scholar]
  23. RahmaniA. AlmatroudiA. AllemailemK. AlwanianW. AlharbiB. AlrumaihiF. KhanA. AlmatroodiS. Myricetin: A significant emphasis on its anticancer potential via the modulation of inflammation and signal transduction pathways.Int. J. Mol. Sci.20232411966510.3390/ijms24119665 37298616
    [Google Scholar]
  24. CichelloS.A. YaoQ. HeX.Q. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines.J. Tradit. Complement. Med.20166219319710.1016/j.jtcme.2015.01.002 27114944
    [Google Scholar]
  25. OhJ.W. MuthuM. PushparajS.S.C. GopalJ. Anticancer therapeutic effects of green tea catechins (GTCs) when integrated with antioxidant natural components.Molecules2023285215110.3390/molecules28052151 36903395
    [Google Scholar]
  26. ShabaniH. KaramiM.H. KolourJ. SayyahiZ. ParvinM.A. SoghalaS. BaghiniS.S. MardasiM. ChopaniA. MoulaviP. FarkhondehT. DarroudiM. KabiriM. SamarghandianS. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches.Biomed. Pharmacother.202316511497210.1016/j.biopha.2023.114972 37481931
    [Google Scholar]
  27. GuonT.E. ChungH.S. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells.Oncol. Lett.20161142463247010.3892/ol.2016.4247 27073499
    [Google Scholar]
  28. AskariD.M. MousaviH.S.R. NooraM.R. Environmental geochemistry of heavy metals in coral reefs and sediments of Chabahar Bay.Results Eng.20221310034610.1016/j.rineng.2022.100346
    [Google Scholar]
  29. LiuC.C. JeanJ.S. NathB. LeeM.K. HorL.I. LinK.H. MaityJ.P. Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water–sediment interaction and groundwater arsenic enrichment.Appl. Geochem.20092491793180210.1016/j.apgeochem.2009.06.002
    [Google Scholar]
  30. HuffW.D. OwenL.A. Volcanic landforms and hazards.Reference Module in Earth Systems and Environmental Sciences.Elsevier201510.1016/B978‑0‑12‑409548‑9.09512‑9
    [Google Scholar]
  31. SparksD.L. Toxic metals in the environment: The role of surfaces.Elements20051419319710.2113/gselements.1.4.193
    [Google Scholar]
  32. MasindiV. MkhonzaP. TekereM. Sources of Heavy Metals Pollution.Springer Nature202110.1007/978‑3‑030‑80334‑6_17
    [Google Scholar]
  33. DemirbasA. Heavy metal adsorption onto agro-based waste materials: A review.J. Hazard. Mater.20081572-322022910.1016/j.jhazmat.2008.01.024 18291580
    [Google Scholar]
  34. MoffatA.J. Irrigation with treated sewage effluent: Management for environmental protection. By A. Feigin, I. Ravina and J. Shalhevet, Berlin: Springer-Verlag, (1991), pp. 224, DM 228.00, ISBN 3-540-50804-X.Exp. Agric.199228224124110.1017/S0014479700019773
    [Google Scholar]
  35. ZhongX. ZhouS. ZhuQ. ZhaoQ. Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta—A case study of Kunshan City in Jiangsu Province, China.J. Hazard. Mater.2011198132110.1016/j.jhazmat.2011.10.003 22018863
    [Google Scholar]
  36. BradlH. KimC. KramarU. StÜbenD. Chapter 2: Interactions of heavy metals.Interface Science and TechnologyElsevier200528164
    [Google Scholar]
  37. KumariS. MishraA. KumariS. MishraA. Heavy metal contamination.Soil Contamination - Threats and Sustainable Solutions.IntechOpen202110.5772/intechopen.93412
    [Google Scholar]
  38. BriffaJ. SinagraE. BlundellR. Heavy metal pollution in the environment and their toxicological effects on humans.Heliyon202069e0469110.1016/j.heliyon.2020.e04691 32964150
    [Google Scholar]
  39. VinogradovaN. GlukhovA. ChaplyginV. KumarP. MandzhievaS. MinkinaT. RajputV.D. The content of heavy metals in medicinal plants in various environmental conditions: A review.Horticulturae20239223910.3390/horticulturae9020239
    [Google Scholar]
  40. VasilachiI.C. StoleruV. GavrilescuM. Analysis of heavy metal impacts on cereal crop growth and development in contaminated soils.Agriculture20231310198310.3390/agriculture13101983
    [Google Scholar]
  41. SachdevS. AnsariS.A. AnsariM.I. FujitaM. HasanuzzamanM. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms.Antioxidants202110227710.3390/antiox10020277 33670123
    [Google Scholar]
  42. DuttaS. MitraM. AgarwalP. MahapatraK. DeS. SettU. RoyS. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability.Plant Signal. Behav.201813814910.1080/15592324.2018.1460048 29621424
    [Google Scholar]
  43. KhanA. KhanS. KhanM.A. QamarZ. WaqasM. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review.Environ. Sci. Pollut. Res. Int.20152218137721379910.1007/s11356‑015‑4881‑0 26194234
    [Google Scholar]
  44. AngonP.B. IslamM.S. KcS. DasA. AnjumN. PoudelA. SuchiS.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain.Heliyon2024107e2835710.1016/j.heliyon.2024.e28357 38590838
    [Google Scholar]
  45. KoziełS. WojtalaD. SzmitkaM. SawkaJ. KomarnickaU.K. Can Mn coordination compounds be good candidates for medical applications?Front Chem Biol2024310.3389/fchbi.2024.1337372
    [Google Scholar]
  46. AbbasG. MurtazaB. BibiI. ShahidM. NiaziN. KhanM. AmjadM. HussainM. Natasha. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects.Int. J. Environ. Res. Public Health20181515910.3390/ijerph15010059 29301332
    [Google Scholar]
  47. SoniS. JhaA.B. DubeyR.S. SharmaP. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles.Sci. Total Environ.202491216882610.1016/j.scitotenv.2023.168826 38042185
    [Google Scholar]
  48. ConnollyEL GuerinotML Iron stress in plants.Genome Biol.200238reviews1024.1-reviews1024.4
    [Google Scholar]
  49. AqeelU. AftabT. KhanM.M.A. NaeemM. Excessive copper induces toxicity in Mentha arvensis L. by disturbing growth, photosynthetic machinery, oxidative metabolism and essential oil constituents.Plant Stress2023810016110.1016/j.stress.2023.100161
    [Google Scholar]
  50. SharmaA. KapoorD. WangJ. ShahzadB. KumarV. BaliA.S. JasrotiaS. ZhengB. YuanH. YanD. Chromium bioaccumulation and its impacts on plants: An overview.Plants20209110010.3390/plants9010100 31941115
    [Google Scholar]
  51. ZulfiqarU. FarooqM. HussainS. MaqsoodM. HussainM. IshfaqM. AhmadM. AnjumM.Z. Lead toxicity in plants: Impacts and remediation.J. Environ. Manage.201925010955710.1016/j.jenvman.2019.109557 31545179
    [Google Scholar]
  52. PatraM. SharmaA. Mercury toxicity in plants.Bot. Rev.200066337942210.1007/BF02868923
    [Google Scholar]
  53. HassanM.U. ChatthaM.U. KhanI. ChatthaM.B. AamerM. NawazM. AliA. KhanM.A.U. KhanT.A. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review.Environ. Sci. Pollut. Res. Int.20192613126731268810.1007/s11356‑019‑04892‑x 30924044
    [Google Scholar]
  54. KaurH. GargN. Zinc toxicity in plants: A review.Planta2021253612910.1007/s00425‑021‑03642‑z 34043068
    [Google Scholar]
  55. RascioN. Metal accumulation by some plants growing on zinc-mine deposits.Oikos197729225025310.2307/3543610
    [Google Scholar]
  56. PrasadM.N.V. FreitasH. FraenzleS. WuenschmannS. MarkertB. Knowledge explosion in phytotechnologies for environmental solutions.Environ. Pollut.201015811823
    [Google Scholar]
  57. MilnerM.J. KochianL.V. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.Ann. Bot.2008102131310.1093/aob/mcn063 18440996
    [Google Scholar]
  58. BernalM.P. McGrathS.P. MillerA.J. BakerA.J.M. Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus.Plant Soil1994164225125910.1007/BF00010077
    [Google Scholar]
  59. KrishnamurtiG.S.R. CieslinskiG. HuangP.M. Van ReesK.C.J. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability.J. Environ. Qual.199726127127710.2134/jeq1997.00472425002600010038x
    [Google Scholar]
  60. WhitingS.N. LeakeJ.R. McGRATH, S.P.; Baker, A.J.M. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens.New Phytol.2000145219921010.1046/j.1469‑8137.2000.00570.x
    [Google Scholar]
  61. WilliamsL.E. PittmanJ.K. HallJ.L. Emerging mechanisms for heavy metal transport in plants.Biochim. Biophys. Acta Biomembr.200014651-210412610.1016/S0005‑2736(00)00133‑4 10748249
    [Google Scholar]
  62. RascioN. Navari-IzzoF. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?Plant Sci.2011180216918110.1016/j.plantsci.2010.08.016 21421358
    [Google Scholar]
  63. SinicropiM.S. AmanteaD. CarusoA. SaturninoC. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning.Arch. Toxicol.201084750152010.1007/s00204‑010‑0544‑6 20386880
    [Google Scholar]
  64. GrillE. WinnackerE.L. ZenkM.H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins.Proc. Natl. Acad. Sci. USA198784243944310.1073/pnas.84.2.439 16593801
    [Google Scholar]
  65. YangX. FengY. HeZ. StoffellaP.J. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.J. Trace Elem. Med. Biol.200518433935310.1016/j.jtemb.2005.02.007 16028496
    [Google Scholar]
  66. TakáčP. SzabováT. KozákováĽ. BenkováM. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR.Plant Soil Environ.200955416717210.17221/21/2009‑PSE
    [Google Scholar]
  67. SahaL. TiwariJ. BauddhK. MaY. Recent developments in microbe–plant-based bioremediation for tackling heavy metal-polluted soils.Front. Microbiol.20211273172310.3389/fmicb.2021.731723 35002995
    [Google Scholar]
  68. ChenY.T. WangY. YehK.C. Role of root exudates in metal acquisition and tolerance.Curr. Opin. Plant Biol.201739667210.1016/j.pbi.2017.06.004 28654805
    [Google Scholar]
  69. LuH. SunJ. ZhuL. The role of artificial root exudate components in facilitating the degradation of pyrene in soil.Sci. Rep.201771713010.1038/s41598‑017‑07413‑3 28769098
    [Google Scholar]
  70. BolanN.S. ParkJ.H. RobinsonB. NaiduR. HuhK.Y. Chapter four - Phytostabilization: A green approach to contaminant containment.Advances in AgronomySparks, D.L., Ed.; Academic Press2011145204
    [Google Scholar]
  71. NedjimiB. Phytoremediation: A sustainable environmental technology for heavy metals decontamination.SN Appl. Sci.20213328610.1007/s42452‑021‑04301‑4
    [Google Scholar]
  72. SereginI.V. KozhevnikovaA.D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium.Russ. J. Plant Physiol.200855112210.1134/S1021443708010019
    [Google Scholar]
  73. PengJ.S. GongJ.M. Vacuolar sequestration capacity and long-distance metal transport in plants.Front. Plant Sci.201451910.3389/fpls.2014.00019 24550927
    [Google Scholar]
  74. YanA. WangY. TanS.N. Mohd YusofM.L. GhoshS. ChenZ. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land.Front. Plant Sci.20201135910.3389/fpls.2020.00359 32425957
    [Google Scholar]
  75. HlihorR.M. RoșcaM. Hagiu-ZaleschiL. SimionI.M. DarabanG.M. StoleruV. Medicinal plant growth in heavy metals contaminated soils: Responses to metal stress and induced risks to human health.Toxics202210949910.3390/toxics10090499 36136464
    [Google Scholar]
  76. SharmaJ.K. KumarN. SinghN.P. SantalA.R. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment.Front. Plant Sci.202314107687610.3389/fpls.2023.1076876 36778693
    [Google Scholar]
  77. HammamiH. AlaieE. DastgheibS.M.M. The ability of Silybum marianum to phytoremediate cadmium and/or diesel oil from the soil.Int. J. Phytoremediation201820875676310.1080/15226514.2018.1425664 29775104
    [Google Scholar]
  78. PapadimouS.G. BarbayiannisN. GoliaE.E. Preliminary investigation of the use of Silybum marianum (L.) Gaertn. as a Cd accumulator in contaminated Mediterranean soils: The relationships among cadmium (Cd) soil fractions and plant Cd content.EuroMediterr. J. Environ. Integr.20249140541710.1007/s41207‑023‑00430‑x
    [Google Scholar]
  79. TruongV.L. JeongW.S. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship.Int. J. Mol. Sci.20212217910910.3390/ijms22179109 34502017
    [Google Scholar]
  80. ForesterS.C. LambertJ.D. Antioxidant effects of green tea.Mol. Nutr. Food Res.2011556844854 21538850
    [Google Scholar]
  81. RaiM. JogeeP.S. AgarkarG. dos SantosC.A. Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives.Pharm. Biol.2016
    [Google Scholar]
  82. HuY. LiJ. LouB. WuR. WangG. LuC. WangH. PiJ. XuY. The role of reactive oxygen species in arsenic toxicity.Biomolecules202010224010.3390/biom10020240 32033297
    [Google Scholar]
  83. SmirnovaE. MoniruzzamanM. ChinS. SureshbabuA. KarthikeyanA. DoK. MinT. A review of the role of curcumin in metal induced toxicity.Antioxidants202312224310.3390/antiox12020243 36829803
    [Google Scholar]
  84. HasanM.R. AlotaibiB.S. AlthafarZ.M. MujamammiA.H. JameelaJ. An update on the therapeutic anticancer potential of Ocimum sanctum L.: “Elixir of Life”.Molecules2023283119310.3390/molecules28031193 36770859
    [Google Scholar]
  85. ChenS. WangZ. HuangY. O’BarrS.A. WongR.A. YeungS. ChowM.S. Ginseng and anticancer drug combination to improve cancer chemotherapy: A critical review.Evid. Based Complement. Alternat. Med.2014201416894010.1155/2014/168940 24876866
    [Google Scholar]
  86. PerryN.B. van KlinkJ.W. BurgessE.J. ParmenterG.A. Alkamide levels in Echinacea purpurea: Effects of processing, drying and storage.Planta Med.2000661545610.1055/s‑2000‑11111 10705735
    [Google Scholar]
  87. ZhangJ. LuoY. HouH. YuP. GuoJ. WangG. Zinc-enhanced regulation of the Ginkgo biloba L. Response and secondary metabolites.Forests202415575910.3390/f15050759
    [Google Scholar]
  88. FengX. ZhangL. ZhuH. Comparative anticancer and antioxidant activities of different ingredients of Ginkgo biloba extract (EGb 761).Planta Med.200975879279610.1055/s‑0029‑1185451 19288403
    [Google Scholar]
  89. MalikM.S. AlsantaliR.I. JassasR.S. AlsimareeA.A. SyedR. AlsharifM.A. KalpanaK. MoradM. AlthagafiI.I. AhmedS.A. Journey of anthraquinones as anticancer agents – A systematic review of recent literature.RSC Advances20211157358063582710.1039/D1RA05686G 35492773
    [Google Scholar]
  90. RowinskyE. The vinca alkaloids.Holland-Frei Cancer Medicine.6th edBC Decker2003
    [Google Scholar]
  91. MoudiM. GoR. YienC.Y.S. NazreM. Vinca alkaloids.Int. J. Prev. Med.201341112311235 24404355
    [Google Scholar]
  92. KumarD. SinghD.P. BarmanS.C. KumarN. Heavy metal and their regulation in plant system: An overview.Plant Responses to Xenobiotics. SinghA. PrasadS.M. SinghR.P. SingaporeSpringer2016193810.1007/978‑981‑10‑2860‑1_2
    [Google Scholar]
  93. BañuelosG.S. AjwaH.A. Trace elements in soils and plants: An overview.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.199934495197410.1080/10934529909376875
    [Google Scholar]
  94. MansoorS. AliA. KourN. BornhorstJ. AlHarbiK. RinklebeJ. Abd El MoneimD. AhmadP. ChungY.S. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants.Plants20231216300310.3390/plants12163003 37631213
    [Google Scholar]
  95. YangY. ZhangL. HuangX. ZhouY. QuanQ. LiY. ZhuX. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata.PLoS One2020153e022856310.1371/journal.pone.0228563 32176700
    [Google Scholar]
  96. TchounwouP.B. YedjouC.G. PatlollaA.K. SuttonD.J. Heavy metal toxicity and the environment.Molecular, Clinical and Environmental Toxicology.BaselSpringer201210.1007/978‑3‑7643‑8340‑4_6
    [Google Scholar]
  97. TanK.H. Principles of Soil Chemistry.4th edBoca RatonCRC Press201010.1201/9781439894606
    [Google Scholar]
  98. GinnekenL. MeersE. GuissonR. RuttensA. ElstK. TackF. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production.J. Environ. Eng. Landsc. Manag.201015
    [Google Scholar]
  99. MerklN. Schultze-KraftR. InfanteC. Phytoremediation in the tropics-influence of heavy crude oil on root morphological characteristics of graminoids.Environ. Pollut.200513818691
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206341220241120132600
Loading
/content/journals/acamc/10.2174/0118715206341220241120132600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test