Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Ferroptosis, a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, is increasingly recognized for its role in cancer development and as a potential therapeutic target. This review consolidates insights into the molecular mechanisms underpinning ferroptosis and evaluates the therapeutic potential of small-molecule inducers, such as erastin, RSL3, sulfasalazine, and sorafenib, which selectively trigger ferroptosis in cancer cells. It highlights the distinct morphological and molecular signatures of ferroptosis, its complex interplay with iron, lipid, and amino acid metabolic pathways, and the resultant implications for cancer treatment strategies. Strategic manipulation of the ferroptosis pathway offers a groundbreaking approach to cancer treatment, potentially circumventing the resistance that cancers develop against traditional apoptosis-inducing agents. Furthermore, it also emphasizes the necessity of refining these small molecules for clinical application and exploring their synergistic potential when combined with current therapies to augment overall treatment efficacy and improve patient outcomes. Ferroptosis thus emerges as a promising avenue in the realm of cancer therapy. Moving forward, research endeavors should focus on a more nuanced understanding of the interconnections between ferroptosis and other cell death modalities. Additionally, comprehensive evaluations of the long-term safety and therapeutic indices of the involved compounds are imperative. Such investigations are poised to herald a transformative shift in the paradigm of oncology, paving the way for innovative and targeted interventions.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206342278241008081126
2024-10-15
2025-05-19
Loading full text...

Full text loading...

References

  1. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  2. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑2 32015325
    [Google Scholar]
  3. ZhangS. XinW. AndersonG.J. LiR. GaoL. ChenS. ZhaoJ. LiuS. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis.Cell Death Dis.20221314010.1038/s41419‑021‑04490‑1 35013137
    [Google Scholar]
  4. TummersB. GreenD.R. Caspase‐8: Regulating life and death.Immunol. Rev.20172771768910.1111/imr.12541 28462525
    [Google Scholar]
  5. HouW. ZhangQ. YanZ. ChenR. ZehH.J.III KangR. LotzeM.T. TangD. Strange attractors: DAMPs and autophagy link tumor cell death and immunity.Cell Death Dis.2013412e96610.1038/cddis.2013.493 24336086
    [Google Scholar]
  6. YangZ.J. CheeC.E. HuangS. SinicropeF.A. The role of autophagy in cancer: Therapeutic implications.Mol. Cancer Ther.20111091533154110.1158/1535‑7163.MCT‑11‑0047 21878654
    [Google Scholar]
  7. GaoM. YiJ. ZhuJ. MinikesA.M. MonianP. ThompsonC.B. JiangX. Role of mitochondria in ferroptosis.Mol. Cell2019732354363.e310.1016/j.molcel.2018.10.042 30581146
    [Google Scholar]
  8. PowellL.W. SeckingtonR.C. DeugnierY. Haemochromatosis.Lancet20163881004570671610.1016/S0140‑6736(15)01315‑X 26975792
    [Google Scholar]
  9. ParkE. ChungS.W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation.Cell Death Dis.2019101182210.1038/s41419‑019‑2064‑5 31659150
    [Google Scholar]
  10. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  11. DasS.K. ZhabyeyevP. BasuR. PatelV.B. DyckJ.R.B. KassiriZ. OuditG.Y. Advanced iron-overload cardiomyopathy in a genetic murine model is rescued by resveratrol therapy.Biosci. Rep.2018381BSR2017130210.1042/BSR20171302 29208771
    [Google Scholar]
  12. DasS.K. WangW. ZhabyeyevP. BasuR. McLeanB. FanD. ParajuliN. DesAulniersJ. PatelV.B. HajjarR.J. DyckJ.R.B. KassiriZ. OuditG.Y. Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy.Sci. Rep.2015511813210.1038/srep18132 26638758
    [Google Scholar]
  13. BonfocoE. KraincD. AnkarcronaM. NicoteraP. LiptonS.A. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures.Proc. Natl. Acad. Sci. USA199592167162716610.1073/pnas.92.16.7162 7638161
    [Google Scholar]
  14. ZhangY. XinL. XiangM. ShangC. WangY. WangY. CuiX. LuY. The molecular mechanisms of ferroptosis and its role in cardiovascular disease.Biomed. Pharmacother.202214511242310.1016/j.biopha.2021.112423 34800783
    [Google Scholar]
  15. WardD.M. CloonanS.M. Mitochondrial iron in human health and disease.Annu. Rev. Physiol.201981145348210.1146/annurev‑physiol‑020518‑114742 30485761
    [Google Scholar]
  16. AndersonG.J. FrazerD.M. McLarenG.D. Iron absorption and metabolism.Curr. Opin. Gastroenterol.200925212913510.1097/MOG.0b013e32831ef1f7 19528880
    [Google Scholar]
  17. GunshinH. MackenzieB. BergerU.V. GunshinY. RomeroM.F. BoronW.F. NussbergerS. GollanJ.L. HedigerM.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter.Nature1997388664148248810.1038/41343 9242408
    [Google Scholar]
  18. FacchinettiM.M. Heme-Oxygenase-1.Antioxid. Redox Signal.202032171239124210.1089/ars.2020.8065 32148070
    [Google Scholar]
  19. WazaA.A. HamidZ. AliS. BhatS.A. BhatM.A. A review on heme oxygenase-1 induction: Is it a necessary evil.Inflamm. Res.201867757958810.1007/s00011‑018‑1151‑x 29693710
    [Google Scholar]
  20. NemethE. TuttleM.S. PowelsonJ. VaughnM.B. DonovanA. WardD.M. GanzT. KaplanJ. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization.Science200430657042090209310.1126/science.1104742 15514116
    [Google Scholar]
  21. DonovanA. LimaC.A. PinkusJ.L. PinkusG.S. ZonL.I. RobineS. AndrewsN.C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis.Cell Metab.20051319120010.1016/j.cmet.2005.01.003 16054062
    [Google Scholar]
  22. BogdanA.R. MiyazawaM. HashimotoK. TsujiY. Regulators of iron homeostasis: New players in metabolism, cell death, and disease.Trends Biochem. Sci.201641327428610.1016/j.tibs.2015.11.012 26725301
    [Google Scholar]
  23. ChenH. AttiehZ.K. SuT. SyedB.A. GaoH. AlaeddineR.M. FoxT.C. UstaJ. NaylorC.E. EvansR.W. McKieA.T. AndersonG.J. VulpeC.D. Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice.Blood2004103103933393910.1182/blood‑2003‑09‑3139 14751926
    [Google Scholar]
  24. ZhuL. ZhaoQ. YangT. DingW. ZhaoY. Cellular metabolism and macrophage functional polarization.Int. Rev. Immunol.20153418210010.3109/08830185.2014.969421 25340307
    [Google Scholar]
  25. GuoW.Z. FangH.B. CaoS.L. ChenS.Y. LiJ. ShiJ.H. TangH.W. ZhangY. WenP.H. ZhangJ.K. WangZ.H. ShiX.Y. PangC. YangH. HuB.W. ZhangS.J. Six-transmembrane epithelial antigen of the prostate 3 deficiency in hepatocytes protects the liver against ischemia-reperfusion injury by suppressing transforming growth factor-β-activated kinase 1.Hepatology20207131037105410.1002/hep.30882 31393024
    [Google Scholar]
  26. CamaschellaC. NaiA. SilvestriL. Iron metabolism and iron disorders revisited in the hepcidin era.Haematologica2020105226027210.3324/haematol.2019.232124 31949017
    [Google Scholar]
  27. ZengB. ZhangP. ZhengM. XiaoN. HanJ. WangC. WangZ. ZhaoZ. Detection and identification of the oxidizing species generated from the physiologically important Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.Arch. Biochem. Biophys.2019668394510.1016/j.abb.2019.05.006 31100219
    [Google Scholar]
  28. WangH. LiuC. ZhaoY. GaoG. Mitochondria regulation in ferroptosis.Eur. J. Cell Biol.202099115105810.1016/j.ejcb.2019.151058 31810634
    [Google Scholar]
  29. TangZ. XuZ. ZhuX. ZhangJ. New insights into molecules and pathways of cancer metabolism and therapeutic implications.Cancer Commun. (Lond.)2021411163610.1002/cac2.12112 33174400
    [Google Scholar]
  30. GaschlerM.M. StockwellB.R. Lipid peroxidation in cell death.Biochem. Biophys. Res. Commun.2017482341942510.1016/j.bbrc.2016.10.086 28212725
    [Google Scholar]
  31. KaganV.E. MaoG. QuF. AngeliJ.P.F. DollS. CroixC.S. DarH.H. LiuB. TyurinV.A. RitovV.B. KapralovA.A. AmoscatoA.A. JiangJ. AnthonymuthuT. MohammadyaniD. YangQ. PronethB. Klein-SeetharamanJ. WatkinsS. BaharI. GreenbergerJ. MallampalliR.K. StockwellB.R. TyurinaY.Y. ConradM. BayırH. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nat. Chem. Biol.2017131819010.1038/nchembio.2238 27842066
    [Google Scholar]
  32. StockwellB.R. AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.021 28985560
    [Google Scholar]
  33. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/5080843 31737171
    [Google Scholar]
  34. StoyanovskyD.A. TyurinaY.Y. ShrivastavaI. BaharI. TyurinV.A. ProtchenkoO. JadhavS. BolevichS.B. KozlovA.V. VladimirovY.A. ShvedovaA.A. PhilpottC.C. BayirH. KaganV.E. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?Free Radic. Biol. Med.201913315316110.1016/j.freeradbiomed.2018.09.008 30217775
    [Google Scholar]
  35. ConradM. PrattD.A. The chemical basis of ferroptosis.Nat. Chem. Biol.201915121137114710.1038/s41589‑019‑0408‑1 31740834
    [Google Scholar]
  36. LinZ. LiuJ. KangR. YangM. TangD. Lipid metabolism in ferroptosis.Adv. Biol.202158210039610.1002/adbi.202100396 34015188
    [Google Scholar]
  37. SiesH. Glutathione and its role in cellular functions.Free Radic. Biol. Med.1999279-1091692110.1016/S0891‑5849(99)00177‑X 10569624
    [Google Scholar]
  38. FormanH.J. ZhangH. RinnaA. Glutathione: Overview of its protective roles, measurement, and biosynthesis.Mol. Aspects Med.2009301-211210.1016/j.mam.2008.08.006 18796312
    [Google Scholar]
  39. RossD. Glutathione, free radicals and chemotherapeutic agents.Pharmacol. Ther.198837223124910.1016/0163‑7258(88)90027‑7 3290908
    [Google Scholar]
  40. YaoJ. LiJ. XiongD. QiuY. ShiG. JinJ.M. TaoY. TangS.Y. Development of a highly efficient and specific l-theanine synthase.Appl. Microbiol. Biotechnol.202010483417343110.1007/s00253‑020‑10482‑6 32103318
    [Google Scholar]
  41. WuG. LuptonJ.R. TurnerN.D. FangY-Z. YangS. Glutathione metabolism and its implications for health.J. Nutr.2004134348949210.1093/jn/134.3.489 14988435
    [Google Scholar]
  42. PompellaA. VisvikisA. PaolicchiA. TataV.D. CasiniA.F. The changing faces of glutathione, a cellular protagonist.Biochem. Pharmacol.20036681499150310.1016/S0006‑2952(03)00504‑5 14555227
    [Google Scholar]
  43. KaplowitzN. The importance and regulation of hepatic glutathione.Yale J. Biol. Med.1981546497502 7342494
    [Google Scholar]
  44. PaulB.D. SbodioJ.I. SnyderS.H. Cysteine metabolism in neuronal redox homeostasis.Trends Pharmacol. Sci.201839551352410.1016/j.tips.2018.02.007 29530337
    [Google Scholar]
  45. UrsiniF. MaiorinoM. Lipid peroxidation and ferroptosis: The role of GSH and GPx4.Free Radic. Biol. Med.202015217518510.1016/j.freeradbiomed.2020.02.027 32165281
    [Google Scholar]
  46. McGivanJ.D. BungardC.I. The transport of glutamine into mammalian cells.Front. Biosci.200712187488210.2741/2109 17127344
    [Google Scholar]
  47. ChenX. YuC. KangR. KroemerG. TangD. Cellular degradation systems in ferroptosis.Cell Death Differ.20212841135114810.1038/s41418‑020‑00728‑1 33462411
    [Google Scholar]
  48. LuoM. WuL. ZhangK. WangH. ZhangT. GutierrezL. O’ConnellD. ZhangP. LiY. GaoT. RenW. YangY. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma.Cell Death Differ.20182581457147210.1038/s41418‑017‑0053‑8 29348676
    [Google Scholar]
  49. LvH. ZhenC. LiuJ. YangP. HuL. ShangP. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy.Oxid. Med. Cell. Longev.2019201911610.1155/2019/3150145 31281572
    [Google Scholar]
  50. DesideriE. CiccaroneF. CirioloM.R. Targeting glutathione metabolism: Partner in crime in anticancer therapy.Nutrients2019118192610.3390/nu11081926 31426306
    [Google Scholar]
  51. Brigelius-FlohéR. FlohéL. Regulatory phenomena in the glutathione peroxidase superfamily.Antioxid. Redox Signal.202033749851610.1089/ars.2019.7905 31822117
    [Google Scholar]
  52. MatsuoM. KuseY. TakahashiK. KuwaharaK. TanitoM. KaidzuS. ShimazawaM. HaraH. OhiraA. Carteolol hydrochloride reduces visible light-induced retinal damage in vivo and BSO/glutamate-induced oxidative stress in vitro.J. Pharmacol. Sci.20191392849010.1016/j.jphs.2018.11.010 30580970
    [Google Scholar]
  53. WangY. ZhaoY. WangH. ZhangC. WangM. YangY. XuX. HuZ. Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11.FEBS Open Bio202010463764310.1002/2211‑5463.12823 32107878
    [Google Scholar]
  54. LiuJ. ZhangC. HuW. FengZ. Tumor suppressor p53 and metabolism.J. Mol. Cell Biol.201911428429210.1093/jmcb/mjy070 30500901
    [Google Scholar]
  55. KastenhuberE.R. LoweS.W. Putting p53 in Context.Cell201717061062107810.1016/j.cell.2017.08.028 28886379
    [Google Scholar]
  56. ZhangC. LiuJ. XuD. ZhangT. HuW. FengZ. Gain-of-function mutant p53 in cancer progression and therapy.J. Mol. Cell Biol.202012967468710.1093/jmcb/mjaa040 32722796
    [Google Scholar]
  57. VousdenK.H. LaneD.P. p53 in health and disease.Nat. Rev. Mol. Cell Biol.20078427528310.1038/nrm2147 17380161
    [Google Scholar]
  58. ChangJ.R. GhafouriM. MukerjeeR. BagashevA. ChabrashviliT. SawayaB.E. Role of p53 in neurodegenerative diseases.Neurodegener. Dis.201292688010.1159/000329999 22042001
    [Google Scholar]
  59. MouY. WangJ. WuJ. HeD. ZhangC. DuanC. LiB. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer.J. Hematol. Oncol.20191213410.1186/s13045‑019‑0720‑y 30925886
    [Google Scholar]
  60. LiY. CaoY. XiaoJ. ShangJ. TanQ. PingF. HuangW. WuF. ZhangH. ZhangX. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury.Cell Death Differ.20202792635265010.1038/s41418‑020‑0528‑x 32203170
    [Google Scholar]
  61. ZilleM. KaruppagounderS.S. ChenY. GoughP.J. BertinJ. FingerJ. MilnerT.A. JonasE.A. RatanR.R. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis.Stroke20174841033104310.1161/STROKEAHA.116.015609 28250197
    [Google Scholar]
  62. SunX. OuZ. ChenR. NiuX. ChenD. KangR. TangD. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.Hepatology201663117318410.1002/hep.28251 26403645
    [Google Scholar]
  63. DodsonM. Castro-PortuguezR. ZhangD.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol.20192310110710.1016/j.redox.2019.101107 30692038
    [Google Scholar]
  64. DolmaS. LessnickS.L. HahnW.C. StockwellB.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.Cancer Cell20033328529610.1016/S1535‑6108(03)00050‑3 12676586
    [Google Scholar]
  65. YagodaN. von RechenbergM. ZaganjorE. BauerA.J. YangW.S. FridmanD.J. WolpawA.J. SmuksteI. PeltierJ.M. BonifaceJ.J. SmithR. LessnickS.L. SahasrabudheS. StockwellB.R. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels.Nature2007447714686586910.1038/nature05859 17568748
    [Google Scholar]
  66. SatoM. KusumiR. HamashimaS. KobayashiS. SasakiS. KomiyamaY. IzumikawaT. ConradM. BannaiS. SatoH. The ferroptosis inducer erastin irreversibly inhibits system xc− and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells.Sci. Rep.20188196810.1038/s41598‑018‑19213‑4 29343855
    [Google Scholar]
  67. LemastersJ.J. Evolution of voltage-dependent anion channel function: From molecular sieve to governator to actuator of ferroptosis.Front. Oncol.2017730310.3389/fonc.2017.00303 29312883
    [Google Scholar]
  68. GoutP.W. BuckleyA.R. SimmsC.R. BruchovskyN. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc − cystine transporter: A new action for an old drug.Leukemia200115101633164010.1038/sj.leu.2402238 11587223
    [Google Scholar]
  69. KoppE. GhoshS. Inhibition of NF-kappa B by sodium salicylate and aspirin.Science1994265517495695910.1126/science.8052854 8052854
    [Google Scholar]
  70. WahlC. LiptayS. AdlerG. SchmidR.M. Sulfasalazine: A potent and specific inhibitor of nuclear factor kappa B.J. Clin. Invest.199810151163117410.1172/JCI992 9486988
    [Google Scholar]
  71. WilhelmS. CarterC. LynchM. LowingerT. DumasJ. SmithR.A. SchwartzB. SimantovR. KelleyS. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer.Nat. Rev. Drug Discov.200651083584410.1038/nrd2130 17016424
    [Google Scholar]
  72. ManciasJ.D. WangX. GygiS.P. HarperJ.W. KimmelmanA.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy.Nature2014509749810510910.1038/nature13148 24695223
    [Google Scholar]
  73. LouandreC. EzzoukhryZ. GodinC. BarbareJ.C. MazièreJ.C. ChauffertB. GalmicheA. Iron‐dependent cell death of hepatocellular carcinoma cells exposed to sorafenib.Int. J. Cancer201313371732174210.1002/ijc.28159 23505071
    [Google Scholar]
  74. HassanniaB. VandenabeeleP. BergheT. Targeting ferroptosis to iron out cancer.Cancer Cell201935683084910.1016/j.ccell.2019.04.002 31105042
    [Google Scholar]
  75. YangW.S. SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.010 24439385
    [Google Scholar]
  76. YangW.S. StockwellB.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.Chem. Biol.200815323424510.1016/j.chembiol.2008.02.010 18355723
    [Google Scholar]
  77. ShimadaK. SkoutaR. KaplanA. YangW.S. HayanoM. DixonS.J. BrownL.M. ValenzuelaC.A. WolpawA.J. StockwellB.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis.Nat. Chem. Biol.201612749750310.1038/nchembio.2079 27159577
    [Google Scholar]
  78. LeeJ.C. SuC.L. ChenL.L. WonS.J. Formosanin C‐induced apoptosis requires activation of caspase‐2 and change of mitochondrial membrane potential.Cancer Sci.2009100350351310.1111/j.1349‑7006.2008.01057.x 19154411
    [Google Scholar]
  79. HuC. ZuD. XuJ. XuH. YuanL. ChenJ. WeiQ. ZhangY. HanJ. LuT. DongJ. QinJ.J. XuZ. ChengX. Polyphyllin B suppresses gastric tumor growth by modulating iron metabolism and inducing ferroptosis.Int. J. Biol. Sci.20231941063107910.7150/ijbs.80324 36923926
    [Google Scholar]
  80. RudinC.M. YangZ. SchumakerL.M. VanderWeeleD.J. NewkirkK. EgorinM.J. ZuhowskiE.G. CullenK.J. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance.Cancer Res.2003632312318 12543781
    [Google Scholar]
  81. WeirN.M. SelvendiranK. KutalaV.K. TongL. VishwanathS. RajaramM. TridandapaniS. AnantS. KuppusamyP. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating akt and p38 mAPK.Cancer Biol. Ther.20076217818410.4161/cbt.6.2.3577 17218783
    [Google Scholar]
  82. SunC.Y. ZhuY. LiX.F. WangX.Q. TangL.P. SuZ.Q. LiC.Y. ZhengG.J. FengB. Scutellarin increases cisplatin-Induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways.Front. Pharmacol.201899210.3389/fphar.2018.00092 29487530
    [Google Scholar]
  83. YamaguchiH. HsuJ.L. ChenC.T. WangY.N. HsuM.C. ChangS.S. DuY. KoH.W. HerbstR. HungM.C. Caspase-independent cell death is involved in the negative effect of EGF receptor inhibitors on cisplatin in non-small cell lung cancer cells.Clin. Cancer Res.201319484585410.1158/1078‑0432.CCR‑12‑2621 23344263
    [Google Scholar]
  84. LiuQ. WangK. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin.Cell Biol. Int.201943111245125610.1002/cbin.11121 30811078
    [Google Scholar]
  85. ZhangL. SongW. LiH. CuiX. MaJ. WangR. XuY. LiM. BaiX. WangD. SunH. LuZ. 4‐octyl itaconate alleviates cisplatin‐induced ferroptosis possibly via activating the NRF2/HO ‐1 signalling pathway.J. Cell. Mol. Med.2024287e1820710.1111/jcmm.18207 38506087
    [Google Scholar]
  86. GaschlerM.M. AndiaA.A. LiuH. CsukaJ.M. HurlockerB. VaianaC.A. HeindelD.W. ZuckermanD.S. BosP.H. ReznikE. YeL.F. TyurinaY.Y. LinA.J. ShchepinovM.S. ChanA.Y. Peguero-PereiraE. FomichM.A. DanielsJ.D. BekishA.V. ShmanaiV.V. KaganV.E. MahalL.K. WoerpelK.A. StockwellB.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation.Nat. Chem. Biol.201814550751510.1038/s41589‑018‑0031‑6 29610484
    [Google Scholar]
  87. KlaymanD.L. Qinghaosu (artemisinin): An antimalarial drug from China.Science198522847031049105510.1126/science.3887571 3887571
    [Google Scholar]
  88. BalintG.A. Artemisinin and its derivatives: An important new class of antimalarial agents.Pharmacol. Ther.2001902-326126510.1016/S0163‑7258(01)00140‑1 11578659
    [Google Scholar]
  89. EfferthT. Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells.Curr. Drug Targets20067440742110.2174/138945006776359412 16611029
    [Google Scholar]
  90. ChaturvediD. GoswamiA. SaikiaP. BaruaN.C. RaoP.G. Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents.Chem. Soc. Rev.201039243545410.1039/B816679J 20111769
    [Google Scholar]
  91. Konstat-KorzennyE. Ascencio-AragónJ. Niezen-LugoS. Vázquez-LópezR. Artemisinin and its synthetic derivatives as a possible therapy for cancer.Med. Sci. (Basel)2018611910.3390/medsci6010019 29495461
    [Google Scholar]
  92. BerdelleN. NikolovaT. QuirosS. EfferthT. KainaB. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells.Mol. Cancer Ther.201110122224223310.1158/1535‑7163.MCT‑11‑0534 21998290
    [Google Scholar]
  93. LiP.C.H. LamE. RoosW.P. ZdzienickaM.Z. KainaB. EfferthT. Artesunate derived from traditional Chinese medicine induces DNA damage and repair.Cancer Res.200868114347435110.1158/0008‑5472.CAN‑07‑2970 18519695
    [Google Scholar]
  94. WangZ. HuW. ZhangJ.L. WuX.H. ZhouH.J. Dihydroartemisinin induces autophagy and inhibits the growth of iron‐loaded human myeloid leukemia K562 cells via ROS toxicity.FEBS Open Bio20122110311210.1016/j.fob.2012.05.002 23650588
    [Google Scholar]
  95. SinghN.P. LaiH.C. Artemisinin induces apoptosis in human cancer cells.Anticancer Res.200424422772280 15330172
    [Google Scholar]
  96. OokoE. SaeedM.E.M. KadiogluO. SarviS. ColakM. ElmasaoudiK. JanahR. GretenH.J. EfferthT. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells.Phytomedicine201522111045105410.1016/j.phymed.2015.08.002 26407947
    [Google Scholar]
  97. ChenG. GongR. ShiX. YangD. ZhangG. LuA. YueJ. BianZ. Halofuginone and artemisinin synergistically arrest cancer cells at the G1/G0 phase by upregulating p21Cip1 and p27Kip1.Oncotarget2016731503025031410.18632/oncotarget.10367 27385212
    [Google Scholar]
  98. ChenT. LiM. ZhangR. WangH. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy.J. Cell. Mol. Med.20091371358137010.1111/j.1582‑4934.2008.00360.x 18466355
    [Google Scholar]
  99. Hamacher-BradyA. SteinH.A. TurschnerS. ToegelI. MoraR. JenneweinN. EfferthT. EilsR. BradyN.R. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production.J. Biol. Chem.201128686587660110.1074/jbc.M110.210047 21149439
    [Google Scholar]
  100. LisewskiA.M. QuirosJ.P. NgC.L. AdikesavanA.K. MiuraK. PutluriN. EastmanR.T. ScanfeldD. RegenbogenS.J. AltenhofenL. LlinásM. SreekumarA. LongC. FidockD.A. LichtargeO. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate.Cell2014158491692810.1016/j.cell.2014.07.011 25126794
    [Google Scholar]
  101. LinR. ZhangZ. ChenL. ZhouY. ZouP. FengC. WangL. LiangG. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells.Cancer Lett.2016381116517510.1016/j.canlet.2016.07.033 27477901
    [Google Scholar]
  102. RouaultT.A. The role of iron regulatory proteins in mammalian iron homeostasis and disease.Nat. Chem. Biol.20062840641410.1038/nchembio807 16850017
    [Google Scholar]
  103. ChenG.Q. BenthaniF.A. WuJ. LiangD. BianZ.X. JiangX. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis.Cell Death Differ.202027124225410.1038/s41418‑019‑0352‑3 31114026
    [Google Scholar]
  104. ZhangY. TanH. DanielsJ.D. ZandkarimiF. LiuH. BrownL.M. UchidaK. O’ConnorO.A. StockwellB.R. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model.Cell Chem. Biol.2019265623633.e910.1016/j.chembiol.2019.01.008 30799221
    [Google Scholar]
  105. IovinoL. TremblayM.E. CivieroL. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells.J. Pharmacol. Sci.2020144315116410.1016/j.jphs.2020.07.011 32807662
    [Google Scholar]
  106. WuZ. GengY. LuX. ShiY. WuG. ZhangM. ShanB. PanH. YuanJ. Chaperone-mediated autophagy is involved in the execution of ferroptosis.Proc. Natl. Acad. Sci. USA201911682996300510.1073/pnas.1819728116 30718432
    [Google Scholar]
  107. EllinghausP. HeislerI. UnterschemmannK. HaerterM. BeckH. GreschatS. EhrmannA. SummerH. FlammeI. OehmeF. ThierauchK. MichelsM. Hess-StumppH. ZiegelbauerK. BAY 87‐2243, a highly potent and selective inhibitor of hypoxia‐induced gene activation has antitumor activities by inhibition of mitochondrial complex I.Cancer Med.20132561162410.1002/cam4.112 24403227
    [Google Scholar]
  108. SchöckelL. GlasauerA. BasitF. BitscharK. TruongH. ErdmannG. AlgireC. HägebarthA. WillemsP.H.G.M. KopitzC. KoopmanW.J.H. HéroultM. Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth.Cancer Metab.2015311110.1186/s40170‑015‑0138‑0 26500770
    [Google Scholar]
  109. BasitF. van OppenL.M.P.E. SchöckelL. BossenbroekH.M. van Emst-de VriesS.E. HermelingJ.C.W. GrefteS. KopitzC. HeroultM. HGM WillemsP. KoopmanW.J.H. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells.Cell Death Dis.201783e271610.1038/cddis.2017.133 28358377
    [Google Scholar]
  110. GuptaP.B. OnderT.T. JiangG. TaoK. KuperwasserC. WeinbergR.A. LanderE.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening.Cell2009138464565910.1016/j.cell.2009.06.034 19682730
    [Google Scholar]
  111. MaiT.T. HamaïA. HienzschA. CañequeT. MüllerS. WicinskiJ. CabaudO. LeroyC. DavidA. AcevedoV. RyoA. GinestierC. BirnbaumD. Charafe-JauffretE. CodognoP. MehrpourM. RodriguezR. Salinomycin kills cancer stem cells by sequestering iron in lysosomes.Nat. Chem.20179101025103310.1038/nchem.2778 28937680
    [Google Scholar]
  112. WooJ.H. ShimoniY. YangW.S. SubramaniamP. IyerA. NicolettiP. MartínezM. LópezG. MattioliM. RealubitR. KaranC. StockwellB.R. BansalM. CalifanoA. Elucidating compound mechanism of action by network perturbation analysis.Cell2015162244145110.1016/j.cell.2015.05.056 26186195
    [Google Scholar]
  113. RusnakD.W. LackeyK. AffleckK. WoodE.R. AlligoodK.J. RhodesN. KeithB.R. MurrayD.M. KnightW.B. MullinR.J. GilmerT.M. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo.Mol. Cancer Ther.2001128594 12467226
    [Google Scholar]
  114. WoodE.R. TruesdaleA.T. McDonaldO.B. YuanD. HassellA. DickersonS.H. EllisB. PennisiC. HorneE. LackeyK. AlligoodK.J. RusnakD.W. GilmerT.M. ShewchukL. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells.Cancer Res.200464186652665910.1158/0008‑5472.CAN‑04‑1168 15374980
    [Google Scholar]
  115. ParkS.H. ItoK. OlcottW. KatsyvI. Halstead-NusslochG. IrieH.Y. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2+ breast cancer cells by inducing Bim.Breast Cancer Res.20151718610.1186/s13058‑015‑0594‑z 26084280
    [Google Scholar]
  116. NahtaR. YuanL.X.H. DuY. EstevaF.J. Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: Effects on insulin-like growth factor I signaling.Mol. Cancer Ther.20076266767410.1158/1535‑7163.MCT‑06‑0423 17308062
    [Google Scholar]
  117. TanizakiJ. OkamotoI. FumitaS. OkamotoW. NishioK. NakagawaK. Roles of BIM induction and survivin downregulation in lapatinib-induced apoptosis in breast cancer cells with HER2 amplification.Oncogene201130394097410610.1038/onc.2011.111 21499301
    [Google Scholar]
  118. SunL. WangH. XuD. YuS. ZhangL. LiX. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway.Bioengineered2022131486010.1080/21655979.2021.2004980 34898356
    [Google Scholar]
  119. HassanniaB. WiernickiB. IngoldI. QuF. Van HerckS. TyurinaY.Y. BayırH. AbhariB.A. AngeliJ.P.F. ChoiS.M. MeulE. HeyninckK. DeclerckK. ChirumamillaC.S. Lahtela-KakkonenM. Van CampG. KryskoD.V. EkertP.G. FuldaS. De GeestB.G. ConradM. KaganV.E. BergheW. VandenabeeleP. V BergheT. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma.J. Clin. Invest.201812883341335510.1172/JCI99032 29939160
    [Google Scholar]
  120. JoshiP. MisraL. SiddiqueA.A. SrivastavaM. KumarS. DarokarM.P. Epoxide group relationship with cytotoxicity in withanolide derivatives from Withania somnifera.Steroids201479192710.1016/j.steroids.2013.10.008 24184562
    [Google Scholar]
  121. FurutaT. ShiL. ToyokuniS. Non‐thermal plasma as a simple ferroptosis inducer in cancer cells: A possible role of ferritin.Pathol. Int.201868744244310.1111/pin.12665 29624784
    [Google Scholar]
  122. ShiL. ItoF. WangY. OkazakiY. TanakaH. MizunoM. HoriM. HirayamaT. NagasawaH. RichardsonD.R. ToyokuniS. Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy.Free Radic. Biol. Med.201710890491710.1016/j.freeradbiomed.2017.04.368 28465262
    [Google Scholar]
  123. LinA. SahunM. BiscopE. VerswyvelH. De WaeleJ. De BackerJ. TheysC. CuypersB. LaukensK. BergheW.V. SmitsE. BogaertsA. Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma.Drug Resist. Updat.20236710091410.1016/j.drup.2022.100914 36630862
    [Google Scholar]
  124. KimC.H. BahnJ.H. LeeS.H. KimG.Y. JunS.I. LeeK. BaekS.J. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells.J. Biotechnol.2010150453053810.1016/j.jbiotec.2010.10.003 20959125
    [Google Scholar]
  125. ChoiJ.Y. JohH.M. ParkJ.M. KimM.J. ChungT.H. KangT.H. Non-thermal plasma-induced apoptosis is modulated by ATR- and PARP1-mediated DNA damage responses and circadian clock.Oncotarget2016722329803298910.18632/oncotarget.9087 27145275
    [Google Scholar]
  126. KangS.U. ChoJ-H. ChangJ.W. ShinY.S. KimK.I. ParkJ.K. YangS.S. LeeJ-S. MoonE. LeeK. KimC-H. Nonthermal plasma induces head and neck cancer cell death: The potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species.Cell Death Dis.201452e105610.1038/cddis.2014.33 24525732
    [Google Scholar]
  127. RidkerP.M. MoraS. RoseL. Percent reduction in LDL cholesterol following high-intensity statin therapy: Potential implications for guidelines and for the prescription of emerging lipid-lowering agents.Eur. Heart J.201637171373137910.1093/eurheartj/ehw046 26916794
    [Google Scholar]
  128. ViswanathanV.S. RyanM.J. DhruvH.D. GillS. EichhoffO.M. Seashore-LudlowB. KaffenbergerS.D. EatonJ.K. ShimadaK. AguirreA.J. ViswanathanS.R. ChattopadhyayS. TamayoP. YangW.S. ReesM.G. ChenS. BoskovicZ.V. JavaidS. HuangC. WuX. TsengY.Y. RoiderE.M. GaoD. ClearyJ.M. WolpinB.M. MesirovJ.P. HaberD.A. EngelmanJ.A. BoehmJ.S. KotzJ.D. HonC.S. ChenY. HahnW.C. LevesqueM.P. DoenchJ.G. BerensM.E. ShamjiA.F. ClemonsP.A. StockwellB.R. SchreiberS.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.Nature2017547766445345710.1038/nature23007 28678785
    [Google Scholar]
  129. OesterleA. LaufsU. LiaoJ.K. Pleiotropic effects of statins on the cardiovascular system.Circ. Res.2017120122924310.1161/CIRCRESAHA.116.308537 28057795
    [Google Scholar]
  130. WangJ. TokoroT. MatsuiK. HigaS. KitajimaI. Pitavastatin at low dose activates endothelial nitric oxide synthase through PI3K-AKT pathway in endothelial cells.Life Sci.200576192257226810.1016/j.lfs.2004.12.003 15733940
    [Google Scholar]
  131. WeisM. HeeschenC. GlassfordA.J. CookeJ.P. Statins have biphasic effects on angiogenesis.Circulation2002105673974510.1161/hc0602.103393 11839631
    [Google Scholar]
  132. YaoX. XieR. CaoY. TangJ. MenY. PengH. YangW. Simvastatin induced ferroptosis for triple-negative breast cancer therapy.J. Nanobiotechnol.202119131110.1186/s12951‑021‑01058‑1 34627266
    [Google Scholar]
  133. YangW.S. KimK.J. GaschlerM.M. PatelM. ShchepinovM.S. StockwellB.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc. Natl. Acad. Sci. USA201611334E4966E497510.1073/pnas.1603244113 27506793
    [Google Scholar]
  134. YuY. XieY. CaoL. YangL. YangM. LotzeM.T. ZehH.J. KangR. TangD. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.Mol. Cell. Oncol.201524e105454910.1080/23723556.2015.1054549 27308510
    [Google Scholar]
  135. JiangL. KonN. LiT. WangS.J. SuT. HibshooshH. BaerR. GuW. Ferroptosis as a p53-mediated activity during tumour suppression.Nature20155207545576210.1038/nature14344 25799988
    [Google Scholar]
  136. YangJ. MaS. XuR. WeiY. ZhangJ. ZuoT. WangZ. DengH. YangN. ShenQ. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy.J. Control. Release2021334213310.1016/j.jconrel.2021.04.013 33872626
    [Google Scholar]
  137. Desai MominM. KhanT. GharatS. NingthoujamR.S. OmriA. Metallic nanoparticles as drug delivery system for the treatment of cancer.Expert Opin. Drug Deliv.20211891261129010.1080/17425247.2021.1912008 33793359
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206342278241008081126
Loading
/content/journals/acamc/10.2174/0118715206342278241008081126
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; cell death; Ferroptosis; mechanism; ROS; small-molecule inducers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test