Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

AXL, a receptor tyrosine kinase, has emerged as a critical player in tumorigenesis, metastasis, and resistance to conventional therapies. Its aberrant activation drives cell proliferation, survival, and angiogenesis, making it an attractive target for cancer treatment. In recent years, significant progress has been made in the development of AXL inhibitors. Chemical approaches have led to the discovery of small molecules that selectively bind to and inhibit AXL, disrupting its downstream signaling pathways. These inhibitors exhibit diverse structural features, including ATP-competitive and allosteric binding modes, offering potential advantages in terms of selectivity and potency. In addition to chemical approaches, biological strategies have also been explored to target AXL. These include the use of monoclonal antibodies, which can neutralize AXL ligands or induce receptor internalization and degradation. Furthermore, gene therapy techniques have been investigated to downregulate AXL expression or disrupt its signaling pathways. Despite these advancements, challenges remain in the development of AXL inhibitors. Selectivity is a critical concern, as AXL shares homology with other receptor tyrosine kinases. Drug resistance is another obstacle, as cancer cells can develop mechanisms to evade AXL inhibition. Furthermore, to address these challenges, combination therapies are being explored, such as combining AXL inhibitors with other targeted agents or conventional treatments. In conclusion, developing AXL inhibitors represents a promising avenue for improving cancer treatment outcomes. Continued research efforts are essential to overcome the existing challenges and translate these compounds into effective clinical therapies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206351185241209053053
2024-12-13
2025-04-24
Loading full text...

Full text loading...

References

  1. JänneP.A. YangJ.C.H. KimD.W. PlanchardD. OheY. RamalingamS.S. AhnM.J. KimS.W. SuW.C. HornL. HaggstromD. FelipE. KimJ.H. FrewerP. CantariniM. BrownK.H. DickinsonP.A. GhiorghiuS. RansonM. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer.N. Engl. J. Med.2015372181689169910.1056/NEJMoa1411817 25923549
    [Google Scholar]
  2. SubbiahV. MeyerC. ZinnerR. Meric-BernstamF. ZahurakM.L. O’ConnorA. RoszikJ. ShawK. LudwigJ.A. KurzrockR. AzadN.A. Phase Ib/II study of the safety and efficacy of combination therapy with multikinase VEGF inhibitor pazopanib and mek inhibitor trametinib in advanced soft tissue sarcoma.Clin. Cancer Res.201723154027403410.1158/1078‑0432.CCR‑17‑0272 28377484
    [Google Scholar]
  3. GayC.M. BalajiK. ByersL.A. Giving AXL the axe: Targeting AXL in human malignancy.Br. J. Cancer2017116441542310.1038/bjc.2016.428 28072762
    [Google Scholar]
  4. FeneyrollesC. SpenlinhauerA. GuietL. FauvelB. Daydé-CazalsB. WarnaultP. ChevéG. YasriA. Axl kinase as a key target for oncology: Focus on small molecule inhibitors.Mol. Cancer Ther.20141392141214810.1158/1535‑7163.MCT‑13‑1083 25139999
    [Google Scholar]
  5. BarataP.C. RiniB.I. Treatment of renal cell carcinoma: Current status and future directions.CA Cancer J. Clin.201767650752410.3322/caac.21411 28961310
    [Google Scholar]
  6. LiuE. HjelleB. BishopJ.M. Transforming genes in chronic myelogenous leukemia.Proc. Natl. Acad. Sci. USA19888561952195610.1073/pnas.85.6.1952 3279421
    [Google Scholar]
  7. GrahamD.K. DeRyckereD. DaviesK.D. EarpH.S. The TAM family: Phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer.Nat. Rev. Cancer2014141276978510.1038/nrc3847 25568918
    [Google Scholar]
  8. GroffenJ. StephensonJ. HeisterkampN. DekleinA. BartramC. GrosveldG. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22.Cell1984361939910.1016/0092‑8674(84)90077‑1 6319012
    [Google Scholar]
  9. DeiningerM.W.N. GoldmanJ.M. MeloJ.V. The molecular biology of chronic myeloid leukemia.Blood200096103343335610.1182/blood.V96.10.3343
    [Google Scholar]
  10. SteelmanL.S. PohnertS.C. SheltonJ.G. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis.Leukaemia20041818921810.1038/sj.leu.2403241
    [Google Scholar]
  11. BosurgiL. BerninkJ.H. Delgado CuevasV. GaglianiN. JoannasL. SchmidE.T. BoothC.J. GhoshS. RothlinC.V. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer.Proc. Natl. Acad. Sci. USA201311032130911309610.1073/pnas.1302507110 23878224
    [Google Scholar]
  12. SchmidtT. Ben-BatallaI. SchultzeA. LogesS. Macrophage–tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands.Cell. Mol. Life Sci.20126991391141410.1007/s00018‑011‑0863‑7 22076650
    [Google Scholar]
  13. McDermottU. SettlemanJ. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology.J. Clin. Oncol.200927335650565910.1200/JCO.2009.22.9054 19858389
    [Google Scholar]
  14. CarragherN.O. Unciti-BrocetaA. CameronD.A. Advancing cancer drug discovery towards more agile development of targeted combination therapies.Future Med. Chem.2012418710510.4155/fmc.11.169 22168166
    [Google Scholar]
  15. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: an evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc3599 24060863
    [Google Scholar]
  16. RosellR. TeixidóC. HuangA. AXL mediates resistance toPI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and oesophageal squamous cell carcinomas.Cancer Cell20152753354610.1016/j.ccell.2015.03.010
    [Google Scholar]
  17. SherwoodL.M. ParrisE.E. FolkmanJ. Tumor angiogenesis: Therapeutic implications.N. Engl. J. Med.1971285211182118610.1056/NEJM197111182852108 4938153
    [Google Scholar]
  18. FolkmanJ. What is the evidence that tumors are angiogenesis dependent?J. Natl. Cancer Inst.19908214610.1016/S0065‑230X(00)79001‑4 10818676
    [Google Scholar]
  19. CherringtonJ.M. StrawnL.M. ShawverL.K. New paradigms for the treatment of cancer: The role of anti-angiogenesis agents.Adv. Cancer Res.20007913810.1016/S0065‑230X(00)79001‑4 10818676
    [Google Scholar]
  20. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑9 10647931
    [Google Scholar]
  21. FaivreS. DjelloulS. RaymondE. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors.Semin. Oncol.200633440742010.1053/j.seminoncol.2006.04.005 16890796
    [Google Scholar]
  22. KrisM.G. NataleR.B. HerbstR.S. LynchT.J.Jr PragerD. BelaniC.P. SchillerJ.H. KellyK. SpiridonidisH. SandlerA. AlbainK.S. CellaD. WolfM.K. AverbuchS.D. OchsJ.J. KayA.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial.JAMA2003290162149215810.1001/jama.290.16.2149 14570950
    [Google Scholar]
  23. Pérez-SolerR. Phase II clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer.Clin. Lung Cancer20046Suppl. 1S20S2310.3816/CLC.2004.s.010 15638953
    [Google Scholar]
  24. PaezJ.G. JänneP.A. LeeJ.C. TracyS. GreulichH. GabrielS. HermanP. KayeF.J. LindemanN. BoggonT.J. NaokiK. SasakiH. FujiiY. EckM.J. SellersW.R. JohnsonB.E. MeyersonM. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.Science200430456761497150010.1126/science.1099314 15118125
    [Google Scholar]
  25. SharmaS.V. BellD.W. SettlemanJ. HaberD.A. Epidermal growth factor receptor mutations in lung cancer.Nat. Rev. Cancer20077316918110.1038/nrc2088 17318210
    [Google Scholar]
  26. SharmaS.V. GajowniczekP. WayI.P. LeeD.Y. JiangJ. YuzaY. ClassonM. HaberD.A. SettlemanJ. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes.Cancer Cell200610542543510.1016/j.ccr.2006.09.014 17097564
    [Google Scholar]
  27. International Agency for Research on CancerGLOBOCAN: kidney cancer estimated.Available from: https://gco.iarc.who.int/en (accessed on 18-11-2024).
  28. GuptaK. MillerJ.D. LiJ.Z. RussellM.W. CharbonneauC. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): A literature review.Cancer Treat. Rev.200834319320510.1016/j.ctrv.2007.12.001 18313224
    [Google Scholar]
  29. JanzenN.K. KimH.L. FiglinR.A. BelldegrunA.S. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease.Urol. Clin. North Am.200330484385210.1016/S0094‑0143(03)00056‑9 14680319
    [Google Scholar]
  30. KroegerN. ChoueiriT.K. LeeJ.L. BjarnasonG.A. KnoxJ.J. MacKenzieM.J. WoodL. SrinivasS. VaishamayanU.N. RhaS.Y. PalS.K. YuasaT. DonskovF. AgarwalN. TanM.H. BamiasA. KollmannsbergerC.K. NorthS.A. RiniB.I. HengD.Y.C. Survival outcome and treatment response of patients with late relapse from renal cell carcinoma in the era of targeted therapy.Eur. Urol.20146561086109210.1016/j.eururo.2013.07.031 23916693
    [Google Scholar]
  31. LeibovichB.C. BluteM.L. ChevilleJ.C. LohseC.M. FrankI. KwonE.D. WeaverA.L. ParkerA.S. ZinckeH. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma.Cancer20039771663167110.1002/cncr.11234 12655523
    [Google Scholar]
  32. BernabéR. PatraoA. CarterL. BlackhallF. DeanE. Selumetinib in the treatment of non-small-cell lung cancer.Future Oncol.201612222545256010.2217/fon‑2016‑0132 27467210
    [Google Scholar]
  33. HeigenerD.F. GandaraD.R. ReckM. Targeting of MEK in lung cancer therapeutics.Lancet Respir. Med.20153431932710.1016/S2213‑2600(15)00026‑0 25801412
    [Google Scholar]
  34. VilmarA.C. Santoni-RugiuE. SørensenJ.B. Class III β-tubulin in advanced NSCLC of adenocarcinoma subtype predicts superior outcome in a randomized trial.Clin. Cancer Res.201117155205521410.1158/1078‑0432.CCR‑11‑0658 21690572
    [Google Scholar]
  35. MorgenszternD. CampoM.J. DahlbergS.E. DoebeleR.C. GaronE. GerberD.E. GoldbergS.B. HammermanP.S. HeistR.S. HensingT. HornL. RamalingamS.S. RudinC.M. SalgiaR. SequistL.V. ShawA.T. SimonG.R. SomaiahN. SpigelD.R. WrangleJ. JohnsonD. HerbstR.S. BunnP. GovindanR. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014.J. Thorac. Oncol.201510S1S1S6310.1097/JTO.0000000000000405 25535693
    [Google Scholar]
  36. RobertsP.J. DerC.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.Oncogene200726223291331010.1038/sj.onc.1210422 17496923
    [Google Scholar]
  37. LiuY. YangY. YeY.C. ShiQ.F. ChaiK. TashiroS. OnoderaS. IkejimaT. Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells.J. Pharmacol. Sci.2012118442343210.1254/jphs.11181FP 22466960
    [Google Scholar]
  38. ChibaM. TogashiY. TomidaS. MizuuchiH. NakamuraY. BannoE. HayashiH. TerashimaM. De VelascoM.A. SakaiK. FujitaY. MitsudomiT. NishioK. MEK inhibitors against MET-amplified non-small cell lung cancer.Int. J. Oncol.20164962236224410.3892/ijo.2016.3736 27748834
    [Google Scholar]
  39. WatersA.M. KhatibT.O. PapkeB. GoodwinC.M. HobbsG.A. DiehlJ.N. YangR. EdwardsA.C. WalshK.H. SulahianR. McFarlandJ.M. KapnerK.S. GilbertT.S.K. StalneckerC.A. JavaidS. BarkovskayaA. GroverK.R. HibshmanP.S. BlakeD.R. SchaeferA. NowakK.M. KlompJ.E. HayesT.K. KassnerM. TangN. TanaseichukO. ChenK. ZhouY. KalkatM. HerringL.E. GravesL.M. PennL.Z. YinH.H. AguirreA.J. HahnW.C. CoxA.D. DerC.J. Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition.Cell Rep.2021351310929110.1016/j.celrep.2021.109291 34192548
    [Google Scholar]
  40. HeinrichM.C. CorlessC.L. DuensingA. McGreeveyL. ChenC.J. JosephN. SingerS. GriffithD.J. HaleyA. TownA. DemetriG.D. FletcherC.D.M. FletcherJ.A. PDGFRA activating mutations in gastrointestinal stromal tumors.Science2003299560770871010.1126/science.1079666 12522257
    [Google Scholar]
  41. CorlessC.L. McGreeveyL. HaleyA. TownA. HeinrichM.C. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size.Am. J. Pathol.200216051567157210.1016/S0002‑9440(10)61103‑0 12000708
    [Google Scholar]
  42. QiaoG.B. WuY.L. YangX.N. ZhongW.Z. XieD. GuanX.Y. FischerD. KolbergH.C. KrugerS. StuerzbecherH-W. High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients.Br. J. Cancer200593113714310.1038/sj.bjc.6602665 15956972
    [Google Scholar]
  43. HansenL.T. LundinC. Spang-ThomsenM. PetersenL.N. HelledayT. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer.Int. J. Cancer2003105447247910.1002/ijc.11106 12712436
    [Google Scholar]
  44. HenningW. StürzbecherH.W. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance.Toxicology20031931-29110910.1016/S0300‑483X(03)00291‑9 14599770
    [Google Scholar]
  45. ICH harmonised tripartite guideline nonclinical evaluation for anticancer pharmaceuticals.Available from: https://database.ich.org/sites/default/files/S9_Guideline.pdf (accessed on 18-11-2024).2009
/content/journals/acamc/10.2174/0118715206351185241209053053
Loading
/content/journals/acamc/10.2174/0118715206351185241209053053
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): amuvatinib; AXL inhibitors; cabozantinib; foretinib; MGCD265; oncology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test