Skip to content
2000
image of CD36 as a Therapeutic Target in Tumor Microenvironment and Lipid Metabolism

Abstract

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME. CD36, a key lipid transporter, plays a crucial role in regulating fatty acid sensing and lipid metabolism, and its dysregulated expression has been associated with poor prognosis in several cancers. Studies have demonstrated that elevated CD 36 expression in the TME is closely linked to abnormal lipid metabolism, promoting tumor growth, migration, and metastasis. In recent years, significant progress has been made in developing CD36-targeted therapies, including small-molecule inhibitors, antibodies, and nanoparticle-based drugs, with many entering experimental or preclinical stages. This review comprehensively summarizes the latest advances in understanding the role of CD36 in the TME, focusing on its metabolic regulatory mechanisms in tumor cells, immune cells, and stromal cells. Additionally, it highlights the contribution of CD36 to immune evasion, drug resistance, and cancer stem cell maintenance while discussing several therapeutic strategies targeting CD36, including novel therapies currently in clinical trials. By exploring the therapeutic potential of CD36, this review provides critical insights for the future development of CD36-targeted cancer therapies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206353634241111113338
2025-01-01
2025-01-18
Loading full text...

Full text loading...

References

  1. Li Y. Huang X. Yang G. Xu K. Yin Y. Brecchia G. Yin J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog. Lipid Res. 2022 88 101193 10.1016/j.plipres.2022.101193 36055468
    [Google Scholar]
  2. Wang J. Li Y. CD36 tango in cancer: signaling pathways and functions. Theranostics 2019 9 17 4893 4908 10.7150/thno.36037 31410189
    [Google Scholar]
  3. Feng W.W. Zuppe H.T. Kurokawa M. The Role of CD36 in Cancer Progression and Its Value as a Therapeutic Target. Cells 2023 12 12 1605 10.3390/cells12121605 37371076
    [Google Scholar]
  4. Luiken J.J.F.P. Chanda D. Nabben M. Neumann D. Glatz J.F.C. Post-translational modifications of CD36 (SR-B2): Implications for regulation of myocellular fatty acid uptake. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 12 2253 2258 10.1016/j.bbadis.2016.09.004 27615427
    [Google Scholar]
  5. Ding Z. Liu S. Wang X. Theus S. Deng X. Fan Y. Zhou S. Mehta J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res. 2018 114 8 1145 1153 10.1093/cvr/cvy079 29617722
    [Google Scholar]
  6. Jay A.G. Chen A.N. Paz M.A. Hung J.P. Hamilton J.A. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding. J. Biol. Chem. 2015 290 8 4590 4603 10.1074/jbc.M114.627026 25555908
    [Google Scholar]
  7. Neubauer E.F. Poole A.Z. Weis V.M. Davy S.K. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ 2016 4 e2692 10.7717/peerj.2692 27896028
    [Google Scholar]
  8. Neculai D. Schwake M. Ravichandran M. Zunke F. Collins R.F. Peters J. Neculai M. Plumb J. Loppnau P. Pizarro J.C. Seitova A. Trimble W.S. Saftig P. Grinstein S. Dhe-Paganon S. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 2013 504 7478 172 176 10.1038/nature12684 24162852
    [Google Scholar]
  9. Kuda O. Pietka T.A. Demianova Z. Kudova E. Cvacka J. Kopecky J. Abumrad N.A. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J. Biol. Chem. 2013 288 22 15547 15555 10.1074/jbc.M113.473298 23603908
    [Google Scholar]
  10. Conrad K.S. Cheng T.W. Ysselstein D. Heybrock S. Hoth L.R. Chrunyk B.A. am Ende C.W. Krainc D. Schwake M. Saftig P. Liu S. Qiu X. Ehlers M.D. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat. Commun. 2017 8 1 1908 10.1038/s41467‑017‑02044‑8 29199275
    [Google Scholar]
  11. Glatz J.C. Luiken J.F.P. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J. Lipid Res. 2018 59 7 1084 1093 10.1194/jlr.R082933 29627764
    [Google Scholar]
  12. Heybrock S. Kanerva K. Meng Y. Ing C. Liang A. Xiong Z.J. Weng X. Ah Kim Y. Collins R. Trimble W. Pomès R. Privé G.G. Annaert W. Schwake M. Heeren J. Lüllmann-Rauch R. Grinstein S. Ikonen E. Saftig P. Neculai D. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat. Commun. 2019 10 1 3521 10.1038/s41467‑019‑11425‑0 31387993
    [Google Scholar]
  13. Yu M. Lau T.Y. Carr S.A. Krieger M. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI. Biochemistry 2012 51 50 10044 10055 10.1021/bi301203x 23205738
    [Google Scholar]
  14. Armesilla A.L. Vega M.A. Structural organization of the gene for human CD36 glycoprotein. J. Biol. Chem. 1994 269 29 18985 18991 10.1016/S0021‑9258(17)32263‑9 7518447
    [Google Scholar]
  15. Hale J.S. Otvos B. Sinyuk M. Alvarado A.G. Hitomi M. Stoltz K. Wu Q. Flavahan W. Levison B. Johansen M.L. Schmitt D. Neltner J.M. Huang P. Ren B. Sloan A.E. Silverstein R.L. Gladson C.L. DiDonato J.A. Brown J.M. McIntyre T. Hazen S.L. Horbinski C. Rich J.N. Lathia J.D. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells 2014 32 7 1746 1758 10.1002/stem.1716 24737733
    [Google Scholar]
  16. Park Y.M. Febbraio M. Silverstein R.L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest. 2009 119 1 136 145 19065049
    [Google Scholar]
  17. Stuart L.M. Bell S.A. Stewart C.R. Silver J.M. Richard J. Goss J.L. Tseng A.A. Zhang A. Khoury J.B.E. Moore K.J. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J. Biol. Chem. 2007 282 37 27392 27401 10.1074/jbc.M702887200 17623670
    [Google Scholar]
  18. Pan J. Fan Z. Wang Z. Dai Q. Xiang Z. Yuan F. Yan M. Zhu Z. Liu B. Li C. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J. Exp. Clin. Cancer Res. 2019 38 1 52 10.1186/s13046‑019‑1049‑7 30717785
    [Google Scholar]
  19. Xiao Y. Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021 221 107753 10.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  20. Li J. Byrne K.T. Yan F. Yamazoe T. Chen Z. Baslan T. Richman L.P. Lin J.H. Sun Y.H. Rech A.J. Balli D. Hay C.A. Sela Y. Merrell A.J. Liudahl S.M. Gordon N. Norgard R.J. Yuan S. Yu S. Chao T. Ye S. Eisinger-Mathason T.S.K. Faryabi R.B. Tobias J.W. Lowe S.W. Coussens L.M. Wherry E.J. Vonderheide R.H. Stanger B.Z. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity 2018 49 1 178 193.e7 10.1016/j.immuni.2018.06.006 29958801
    [Google Scholar]
  21. Ma W. Zhang K. Bao Z. Jiang T. Zhang Y. SAMD9 Is Relating With M2 Macrophage and Remarkable Malignancy Characters in Low-Grade Glioma. Front. Immunol. 2021 12 659659 10.3389/fimmu.2021.659659 33936093
    [Google Scholar]
  22. Cortese N. Carriero R. Laghi L. Mantovani A. Marchesi F. Prognostic significance of tumor-associated macrophages: past, present and future. Semin. Immunol. 2020 48 101408 10.1016/j.smim.2020.101408 32943279
    [Google Scholar]
  23. Jiang X. Wang J. Deng X. Xiong F. Zhang S. Gong Z. Li X. Cao K. Deng H. He Y. Liao Q. Xiang B. Zhou M. Guo C. Zeng Z. Li G. Li X. Xiong W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res. 2020 39 1 204 10.1186/s13046‑020‑01709‑5 32993787
    [Google Scholar]
  24. Gyamfi J. Kim J. Choi J. Cancer as a Metabolic Disorder. Int. J. Mol. Sci. 2022 23 3 1155 10.3390/ijms23031155 35163079
    [Google Scholar]
  25. Brooks J.M. Menezes A.N. Ibrahim M. Archer L. Lal N. Bagnall C.J. von Zeidler S.V. Valentine H.R. Spruce R.J. Batis N. Bryant J.L. Hartley M. Kaul B. Ryan G.B. Bao R. Khattri A. Lee S.P. Ogbureke K.U.E. Middleton G. Tennant D.A. Beggs A.D. Deeks J. West C.M.L. Cazier J.B. Willcox B.E. Seiwert T.Y. Mehanna H. Development and Validation of a Combined Hypoxia and Immune Prognostic Classifier for Head and Neck Cancer. Clin. Cancer Res. 2019 25 17 5315 5328 10.1158/1078‑0432.CCR‑18‑3314 31182433
    [Google Scholar]
  26. Woods D.M. Sodré A.L. Villagra A. Sarnaik A. Sotomayor E.M. Weber J. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade. Cancer Immunol. Res. 2015 3 12 1375 1385 10.1158/2326‑6066.CIR‑15‑0077‑T 26297712
    [Google Scholar]
  27. Bian X. Liu R. Meng Y. Xing D. Xu D. Lu Z. Lipid metabolism and cancer. J. Exp. Med. 2021 218 1 e20201606 10.1084/jem.20201606 33601415
    [Google Scholar]
  28. Kim D.H. Song N.Y. Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch. Pharm. Res. 2023 46 11-12 855 881 10.1007/s12272‑023‑01473‑y 38060103
    [Google Scholar]
  29. Yu W. Lei Q. Yang L. Qin G. Liu S. Wang D. Ping Y. Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol. 2021 14 1 187 10.1186/s13045‑021‑01200‑4 34742349
    [Google Scholar]
  30. Pitt J.M. Marabelle A. Eggermont A. Soria J.C. Kroemer G. Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann. Oncol. 2016 27 8 1482 1492 10.1093/annonc/mdw168 27069014
    [Google Scholar]
  31. Murai H. Kodama T. Maesaka K. Tange S. Motooka D. Suzuki Y. Shigematsu Y. Inamura K. Mise Y. Saiura A. Ono Y. Takahashi Y. Kawasaki Y. Iino S. Kobayashi S. Idogawa M. Tokino T. Hashidate-Yoshida T. Shindou H. Miyazaki M. Imai Y. Tanaka S. Mita E. Ohkawa K. Hikita H. Sakamori R. Tatsumi T. Eguchi H. Morii E. Takehara T. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology 2023 77 1 77 91 10.1002/hep.32573 35567547
    [Google Scholar]
  32. Vinay D.S. Ryan E.P. Pawelec G. Talib W.H. Stagg J. Elkord E. Lichtor T. Decker W.K. Whelan R.L. Kumara H.M.C.S. Signori E. Honoki K. Georgakilas A.G. Amin A. Helferich W.G. Boosani C.S. Guha G. Ciriolo M.R. Chen S. Mohammed S.I. Azmi A.S. Keith W.N. Bilsland A. Bhakta D. Halicka D. Fujii H. Aquilano K. Ashraf S.S. Nowsheen S. Yang X. Choi B.K. Kwon B.S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015 35 Suppl. S185 S198 10.1016/j.semcancer.2015.03.004 25818339
    [Google Scholar]
  33. de Visser K.E. Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023 41 3 374 403 10.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  34. Jiang M. Wu N. Xu B. Chu Y. Li X. Su S. Chen D. Li W. Shi Y. Gao X. Zhang H. Zhang Z. Du W. Nie Y. Liang J. Fan D. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics 2019 9 18 5359 5373 10.7150/thno.34024 31410220
    [Google Scholar]
  35. Pascual G. Avgustinova A. Mejetta S. Martín M. Castellanos A. Attolini C.S.O. Berenguer A. Prats N. Toll A. Hueto J.A. Bescós C. Di Croce L. Benitah S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017 541 7635 41 45 10.1038/nature20791 27974793
    [Google Scholar]
  36. Yang P. Su C. Luo X. Zeng H. Zhao L. Wei L. Zhang X. Varghese Z. Moorhead J.F. Chen Y. Ruan X.Z. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett. 2018 438 76 85 10.1016/j.canlet.2018.09.006 30213558
    [Google Scholar]
  37. Liu L.Z. Wang B. Zhang R. Wu Z. Huang Y. Zhang X. Zhou J. Yi J. Shen J. Li M.Y. Dong M. The activated CD36-Src axis promotes lung adenocarcinoma cell proliferation and actin remodeling-involved metastasis in high-fat environment. Cell Death Dis. 2023 14 8 548 10.1038/s41419‑023‑06078‑3 37612265
    [Google Scholar]
  38. Ladanyi A. Mukherjee A. Kenny H.A. Johnson A. Mitra A.K. Sundaresan S. Nieman K.M. Pascual G. Benitah S.A. Montag A. Yamada S.D. Abumrad N.A. Lengyel E. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 2018 37 17 2285 2301 10.1038/s41388‑017‑0093‑z 29398710
    [Google Scholar]
  39. Brat D.J. Castellano-Sanchez A.A. Hunter S.B. Pecot M. Cohen C. Hammond E.H. Devi S.N. Kaur B. Van Meir E.G. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004 64 3 920 927 10.1158/0008‑5472.CAN‑03‑2073 14871821
    [Google Scholar]
  40. Taïb B. Aboussalah A.M. Moniruzzaman M. Chen S. Haughey N.J. Kim S.F. Ahima R.S. Lipid accumulation and oxidation in glioblastoma multiforme. Sci. Rep. 2019 9 1 19593 10.1038/s41598‑019‑55985‑z 31863022
    [Google Scholar]
  41. Shakya S. Gromovsky A.D. Hale J.S. Knudsen A.M. Prager B. Wallace L.C. Penalva L.O.F. Brown H.A. Kristensen B.W. Rich J.N. Lathia J.D. Brown J.M. Hubert C.G. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun. 2021 9 1 101 10.1186/s40478‑021‑01205‑7 34059134
    [Google Scholar]
  42. Tanase C. Enciu A.M. Codrici E. Popescu I.D. Dudau M. Dobri A.M. Pop S. Mihai S. Gheorghișan-Gălățeanu A.A. Hinescu M.E. Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately? Int. J. Mol. Sci. 2022 23 2 604 10.3390/ijms23020604 35054787
    [Google Scholar]
  43. You Z. Hu Z. Hou C. Ma C. Xu X. Zheng Y. Sun X. Ke Y. Liang J. Xie Z. Shu L. Liu Y. FABP4 facilitates epithelial-mesenchymal transition via elevating CD36 expression in glioma cells. Neoplasia 2024 57 101050 10.1016/j.neo.2024.101050 39243502
    [Google Scholar]
  44. Zaoui M. Morel M. Ferrand N. Fellahi S. Bastard J.P. Lamazière A. Larsen A.K. Béréziat V. Atlan M. Sabbah M. Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density. Cancers (Basel) 2019 11 12 2012 10.3390/cancers11122012 31847105
    [Google Scholar]
  45. Casciano J.C. Perry C. Cohen-Nowak A.J. Miller K.D. Vande Voorde J. Zhang Q. Chalmers S. Sandison M.E. Liu Q. Hedley A. McBryan T. Tang H.Y. Gorman N. Beer T. Speicher D.W. Adams P.D. Liu X. Schlegel R. McCarron J.G. Wakelam M.J.O. Gottlieb E. Kossenkov A.V. Schug Z.T. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. Br. J. Cancer 2020 122 6 868 884 10.1038/s41416‑019‑0711‑3 31942031
    [Google Scholar]
  46. Wang C. Han J. Chen Y. [Inhibition of CD36 and Nogo-B expression inhibited the proliferation and migration of triple negative breast cancer cells]. Chin. J. Biotechnol. 2023 39 10 4168 4188 37877398
    [Google Scholar]
  47. Rybinska I. Mangano N. Romero-Cordoba S.L. Regondi V. Ciravolo V. De Cecco L. Maffioli E. Paolini B. Bianchi F. Sfondrini L. Tedeschi G. Agresti R. Tagliabue E. Triulzi T. SAA1 ‐dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. Int. J. Cancer 2024 154 10 1842 1856 10.1002/ijc.34859 38289016
    [Google Scholar]
  48. Ye H. Adane B. Khan N. Sullivan T. Minhajuddin M. Gasparetto M. Stevens B. Pei S. Balys M. Ashton J.M. Klemm D.J. Woolthuis C.M. Stranahan A.W. Park C.Y. Jordan C.T. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell 2016 19 1 23 37 10.1016/j.stem.2016.06.001 27374788
    [Google Scholar]
  49. Farge T. Saland E. de Toni F. Aroua N. Hosseini M. Perry R. Bosc C. Sugita M. Stuani L. Fraisse M. Scotland S. Larrue C. Boutzen H. Féliu V. Nicolau-Travers M.L. Cassant-Sourdy S. Broin N. David M. Serhan N. Sarry A. Tavitian S. Kaoma T. Vallar L. Iacovoni J. Linares L.K. Montersino C. Castellano R. Griessinger E. Collette Y. Duchamp O. Barreira Y. Hirsch P. Palama T. Gales L. Delhommeau F. Garmy-Susini B.H. Portais J.C. Vergez F. Selak M. Danet-Desnoyers G. Carroll M. Récher C. Sarry J.E. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017 7 7 716 735 10.1158/2159‑8290.CD‑16‑0441 28416471
    [Google Scholar]
  50. Zhang Y. Guo H. Zhang Z. Lu W. Zhu J. Shi J. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Exp. Cell Res. 2022 415 1 113112 10.1016/j.yexcr.2022.113112 35346671
    [Google Scholar]
  51. Feng W.W. Wilkins O. Bang S. Ung M. Li J. An J. del Genio C. Canfield K. DiRenzo J. Wells W. Gaur A. Robey R.B. Guo J.Y. Powles R.L. Sotiriou C. Pusztai L. Febbraio M. Cheng C. Kinlaw W.B. Kurokawa M. CD36-Mediated Metabolic Rewiring of Breast Cancer Cells Promotes Resistance to HER2-Targeted Therapies. Cell Rep. 2019 29 11 3405 3420.e5 10.1016/j.celrep.2019.11.008 31825825
    [Google Scholar]
  52. Yang L. Sun J. Li M. Long Y. Zhang D. Guo H. Huang R. Yan J. Oxidized Low-Density Lipoprotein Links Hypercholesterolemia and Bladder Cancer Aggressiveness by Promoting Cancer Stemness. Cancer Res. 2021 81 22 5720 5732 10.1158/0008‑5472.CAN‑21‑0646 34479964
    [Google Scholar]
  53. Gyamfi J. Yeo J.H. Kwon D. Min B.S. Cha Y.J. Koo J.S. Jeong J. Lee J. Choi J. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer 2021 7 1 129 10.1038/s41523‑021‑00324‑7 34561446
    [Google Scholar]
  54. Fridman W.H. Pagès F. Sautès-Fridman C. Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 2012 12 4 298 306 10.1038/nrc3245 22419253
    [Google Scholar]
  55. Farhood B. Najafi M. Mortezaee K. CD8 + cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 2019 234 6 8509 8521 10.1002/jcp.27782 30520029
    [Google Scholar]
  56. Chow A. Perica K. Klebanoff C.A. Wolchok J.D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2022 19 12 775 790 10.1038/s41571‑022‑00689‑z 36216928
    [Google Scholar]
  57. Manzo T. Prentice B.M. Anderson K.G. Raman A. Schalck A. Codreanu G.S. Nava Lauson C.B. Tiberti S. Raimondi A. Jones M.A. Reyzer M. Bates B.M. Spraggins J.M. Patterson N.H. McLean J.A. Rai K. Tacchetti C. Tucci S. Wargo J.A. Rodighiero S. Clise-Dwyer K. Sherrod S.D. Kim M. Navin N.E. Caprioli R.M. Greenberg P.D. Draetta G. Nezi L. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 2020 217 8 e20191920 10.1084/jem.20191920 32491160
    [Google Scholar]
  58. Ao Y.Q. Gao J. Zhang L.X. Deng J. Wang S. Lin M. Wang H.K. Ding J.Y. Jiang J.H. Tumor-infiltrating CD36+CD8+T cells determine exhausted tumor microenvironment and correlate with inferior response to chemotherapy in non-small cell lung cancer. BMC Cancer 2023 23 1 367 10.1186/s12885‑023‑10836‑z 37085798
    [Google Scholar]
  59. Xu S. Chaudhary O. Rodríguez-Morales P. Sun X. Chen D. Zappasodi R. Xu Z. Pinto A.F.M. Williams A. Schulze I. Farsakoglu Y. Varanasi S.K. Low J.S. Tang W. Wang H. McDonald B. Tripple V. Downes M. Evans R.M. Abumrad N.A. Merghoub T. Wolchok J.D. Shokhirev M.N. Ho P.C. Witztum J.L. Emu B. Cui G. Kaech S.M. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 2021 54 7 1561 1577.e7 10.1016/j.immuni.2021.05.003 34102100
    [Google Scholar]
  60. Ma X. Xiao L. Liu L. Ye L. Su P. Bi E. Wang Q. Yang M. Qian J. Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 2021 33 5 1001 1012.e5 10.1016/j.cmet.2021.02.015 33691090
    [Google Scholar]
  61. CD36 Activity Causes Ferroptosis in Tumor-Infiltrating CD8+ T Cells. Cancer Discov. 2021 11 5 OF24 10.1158/2159‑8290.CD‑RW2021‑039 33741707
    [Google Scholar]
  62. Kolonin M.G. Bad Cholesterol Uptake by CD36 in T-Cells Cripples Anti-Tumor Immune Response. Immunometabolism (Cobham) 2021 3 4 e210028 10.20900/immunometab20210028 34603769
    [Google Scholar]
  63. Orange J.S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol. 2008 8 9 713 725 10.1038/nri2381 19172692
    [Google Scholar]
  64. Schimmer S. Mittermüller D. Werner T. Görs P.E. Meckelmann S.W. Finlay D.K. Dittmer U. Littwitz-Salomon E. Fatty acids are crucial to fuel NK cells upon acute retrovirus infection. Front. Immunol. 2023 14 1296355 10.3389/fimmu.2023.1296355 38094304
    [Google Scholar]
  65. Hu X. Jia X. Xu C. Wei Y. Wang Z. Liu G. You Q. Lu G. Gong W. Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metabolism 2021 120 154800 10.1016/j.metabol.2021.154800 34051224
    [Google Scholar]
  66. Gowda N.M. Wu X. Kumar S. Febbraio M. Gowda D.C. CD36 contributes to malaria parasite-induced pro-inflammatory cytokine production and NK and T cell activation by dendritic cells. PLoS One 2013 8 10 e77604 10.1371/journal.pone.0077604 24204889
    [Google Scholar]
  67. Niavarani S.R. Lawson C. Bakos O. Boudaud M. Batenchuk C. Rouleau S. Tai L.H. Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer 2019 19 1 823 10.1186/s12885‑019‑6045‑y 31429730
    [Google Scholar]
  68. Savage P.A. Klawon D.E.J. Miller C.H. Regulatory T Cell Development. Annu. Rev. Immunol. 2020 38 1 421 453 10.1146/annurev‑immunol‑100219‑020937 31990619
    [Google Scholar]
  69. Sharma P. Hu-Lieskovan S. Wargo J.A. Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017 168 4 707 723 10.1016/j.cell.2017.01.017 28187290
    [Google Scholar]
  70. Rech A.J. Mick R. Martin S. Recio A. Aqui N.A. Powell D.J. Jr Colligon T.A. Trosko J.A. Leinbach L.I. Pletcher C.H. Tweed C.K. DeMichele A. Fox K.R. Domchek S.M. Riley J.L. Vonderheide R.H. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci. Transl. Med. 2012 4 134 134ra62 10.1126/scitranslmed.3003330 22593175
    [Google Scholar]
  71. Sutmuller R.P.M. van Duivenvoorde L.M. van Elsas A. Schumacher T.N.M. Wildenberg M.E. Allison J.P. Toes R.E.M. Offringa R. Melief C.J.M. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 2001 194 6 823 832 10.1084/jem.194.6.823 11560997
    [Google Scholar]
  72. Wang H. Franco F. Tsui Y.C. Xie X. Trefny M.P. Zappasodi R. Mohmood S.R. Fernández-García J. Tsai C.H. Schulze I. Picard F. Meylan E. Silverstein R. Goldberg I. Fendt S.M. Wolchok J.D. Merghoub T. Jandus C. Zippelius A. Ho P.C. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 2020 21 3 298 308 10.1038/s41590‑019‑0589‑5 32066953
    [Google Scholar]
  73. Miao Y. Zhang C. Yang L. Zeng X. Hu Y. Xue X. Dai Y. Wei Z. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα. Cell Commun. Signal. 2022 20 1 48 10.1186/s12964‑022‑00849‑9 35392915
    [Google Scholar]
  74. Geys L. Vranckx C. Lijnen H.R. Scroyen I. CD36 deficiency blunts effects of diet on regulatory T cells in murine gonadal adipose tissue and mesenteric lymph nodes. Cell. Immunol. 2015 298 1-2 33 36 10.1016/j.cellimm.2015.08.006 26344897
    [Google Scholar]
  75. Salmaninejad A. Valilou S.F. Soltani A. Ahmadi S. Abarghan Y.J. Rosengren R.J. Sahebkar A. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol. (Dordr.) 2019 42 5 591 608 10.1007/s13402‑019‑00453‑z 31144271
    [Google Scholar]
  76. Gao J. Liang Y. Wang L. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Front. Immunol. 2022 13 888713 10.3389/fimmu.2022.888713 35844605
    [Google Scholar]
  77. Pan Y. Yu Y. Wang X. Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020 11 583084 10.3389/fimmu.2020.583084 33365025
    [Google Scholar]
  78. Mosser D.M. Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008 8 12 958 969 10.1038/nri2448 19029990
    [Google Scholar]
  79. Corn K.C. Windham M.A. Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res. 2020 80 101055 10.1016/j.plipres.2020.101055 32791170
    [Google Scholar]
  80. Huang S.C.C. Everts B. Ivanova Y. O’Sullivan D. Nascimento M. Smith A.M. Beatty W. Love-Gregory L. Lam W.Y. O’Neill C.M. Yan C. Du H. Abumrad N.A. Urban J.F. Jr Artyomov M.N. Pearce E.L. Pearce E.J. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 2014 15 9 846 855 10.1038/ni.2956 25086775
    [Google Scholar]
  81. Chen Y. Yang M. Huang W. Chen W. Zhao Y. Schulte M.L. Volberding P. Gerbec Z. Zimmermann M.T. Zeighami A. Demos W. Zhang J. Knaack D.A. Smith B.C. Cui W. Malarkannan S. Sodhi K. Shapiro J.I. Xie Z. Sahoo D. Silverstein R.L. Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses. Circ. Res. 2019 125 12 1087 1102 10.1161/CIRCRESAHA.119.315833 31625810
    [Google Scholar]
  82. Su P. Wang Q. Bi E. Ma X. Liu L. Yang M. Qian J. Yi Q. Enhanced Lipid Accumulation and Metabolism Are Required for the Differentiation and Activation of Tumor-Associated Macrophages. Cancer Res. 2020 80 7 1438 1450 10.1158/0008‑5472.CAN‑19‑2994 32015091
    [Google Scholar]
  83. Albakri M.M. Huang S.C.C. Tashkandi H.N. Sieg S.F. Fatty acids secreted from head and neck cancer induce M2-like Macrophages. J. Leukoc. Biol. 2022 112 4 617 628 10.1002/JLB.1A0521‑251R 35213745
    [Google Scholar]
  84. Yang P. Qin H. Li Y. Xiao A. Zheng E. Zeng H. Su C. Luo X. Lu Q. Liao M. Zhao L. Wei L. Varghese Z. Moorhead J.F. Chen Y. Ruan X.Z. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat. Commun. 2022 13 1 5782 10.1038/s41467‑022‑33349‑y 36184646
    [Google Scholar]
  85. Aguirre L.A. Montalbán-Hernández K. Avendaño-Ortiz J. Marín E. Lozano R. Toledano V. Sánchez-Maroto L. Terrón V. Valentín J. Pulido E. Casalvilla J.C. Rubio C. Diekhorst L. Laso-García F. del Fresno C. Collazo-Lorduy A. Jiménez-Munarriz B. Gómez-Campelo P. Llanos-González E. Fernández-Velasco M. Rodríguez-Antolín C. Pérez de Diego R. Cantero-Cid R. Hernádez-Jimenez E. Álvarez E. Rosas R. dies López-Ayllón B. de Castro J. Wculek S.K. Cubillos-Zapata C. Ibáñez de Cáceres I. Díaz-Agero P. Gutiérrez Fernández M. Paz de Miguel M. Sancho D. Schulte L. Perona R. Belda-Iniesta C. Boscá L. López-Collazo E. Tumor stem cells fuse with monocytes to form highly invasive tumor-hybrid cells. OncoImmunology 2020 9 1 1773204 10.1080/2162402X.2020.1773204 32923132
    [Google Scholar]
  86. Dorhoi A. Du Plessis N. Monocytic Myeloid-Derived Suppressor Cells in Chronic Infections. Front. Immunol. 2018 8 1895 10.3389/fimmu.2017.01895 29354120
    [Google Scholar]
  87. Christofides A. Strauss L. Yeo A. Cao C. Charest A. Boussiotis V.A. The complex role of tumor-infiltrating macrophages. Nat. Immunol. 2022 23 8 1148 1156 10.1038/s41590‑022‑01267‑2 35879449
    [Google Scholar]
  88. Parker K.H. Beury D.W. Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells. Adv. Cancer Res. 2015 128 95 139 10.1016/bs.acr.2015.04.002 26216631
    [Google Scholar]
  89. Sica A. Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J. Autoimmun. 2017 85 117 125 10.1016/j.jaut.2017.07.010 28728794
    [Google Scholar]
  90. Adeshakin A.O. Liu W. Adeshakin F.O. Afolabi L.O. Zhang M. Zhang G. Wang L. Li Z. Lin L. Cao Q. Yan D. Wan X. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell. Immunol. 2021 362 104286 10.1016/j.cellimm.2021.104286 33524739
    [Google Scholar]
  91. Al-Khami A.A. Zheng L. Del Valle L. Hossain F. Wyczechowska D. Zabaleta J. Sanchez M.D. Dean M.J. Rodriguez P.C. Ochoa A.C. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. OncoImmunology 2017 6 10 e1344804 10.1080/2162402X.2017.1344804 29123954
    [Google Scholar]
  92. Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016 16 9 582 598 10.1038/nrc.2016.73 27550820
    [Google Scholar]
  93. Öhlund D. Elyada E. Tuveson D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 2014 211 8 1503 1523 10.1084/jem.20140692 25071162
    [Google Scholar]
  94. Ma C. Yang C. Peng A. Sun T. Ji X. Mi J. Wei L. Shen S. Feng Q. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol. Cancer 2023 22 1 170 10.1186/s12943‑023‑01876‑x 37833788
    [Google Scholar]
  95. Mao X. Xu J. Wang W. Liang C. Hua J. Liu J. Zhang B. Meng Q. Yu X. Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer 2021 20 1 131 10.1186/s12943‑021‑01428‑1 34635121
    [Google Scholar]
  96. Nath A. Chan C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci. Rep. 2016 6 1 18669 10.1038/srep18669 26725848
    [Google Scholar]
  97. Xiao Z. Todd L. Huang L. Noguera-Ortega E. Lu Z. Huang L. Kopp M. Li Y. Pattada N. Zhong W. Guo W. Scholler J. Liousia M. Assenmacher C.A. June C.H. Albelda S.M. Puré E. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat. Commun. 2023 14 1 5110 10.1038/s41467‑023‑40850‑5 37607999
    [Google Scholar]
  98. Zhu G.Q. Tang Z. Huang R. Qu W.F. Fang Y. Yang R. Tao C.Y. Gao J. Wu X.L. Sun H.X. Zhou Y.F. Song S.S. Ding Z.B. Dai Z. Zhou J. Ye D. Wu D.J. Liu W.R. Fan J. Shi Y.H. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 2023 9 1 25 10.1038/s41421‑023‑00529‑z 36878933
    [Google Scholar]
  99. Gong J. Lin Y. Zhang H. Liu C. Cheng Z. Yang X. Zhang J. Xiao Y. Sang N. Qian X. Wang L. Cen X. Du X. Zhao Y. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis. 2020 11 4 267 10.1038/s41419‑020‑2434‑z 32327627
    [Google Scholar]
  100. Nan P. Dong X. Bai X. Lu H. Liu F. Sun Y. Zhao X. Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway. Cancer Lett. 2022 528 59 75 10.1016/j.canlet.2021.12.025 34958892
    [Google Scholar]
  101. Zhang L. Billet S. Gonzales G. Rohena-Rivera K. Muranaka H. Chu G. Yang Q. Kim H. Bhowmick N. Smith B. Fatty Acid Signaling Impacts Prostate Cancer Lineage Plasticity in an Autocrine and Paracrine Manner. Cancers (Basel) 2022 14 14 3449 10.3390/cancers14143449 35884514
    [Google Scholar]
  102. Jayawardhana A.M.D.S. Stilgenbauer M. Datta P. Qiu Z. Mckenzie S. Wang H. Bowers D. Kurokawa M. Zheng Y.R. Fatty acid-like Pt( iv ) prodrugs overcome cisplatin resistance in ovarian cancer by harnessing CD36. Chem. Commun. (Camb.) 2020 56 73 10706 10709 10.1039/D0CC02174A 32789350
    [Google Scholar]
  103. Wang B. Yan N. Wu D. Dou Y. Liu Z. Hu X. Chen C. Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. Nanotechnology 2021 32 39 395101 10.1088/1361‑6528/ac0d1e 34153956
    [Google Scholar]
  104. Sp N. Kang D. Kim D. Park J. Lee H. Kim H. Darvin P. Park Y.M. Yang Y. Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Κb signaling axis. Nutrients 2018 10 6 772 10.3390/nu10060772 29914089
    [Google Scholar]
  105. Chen L. Xia J.S. Wu J.H. Chen Y.G. Qiu C.J. Quercetin suppresses cell survival and invasion in oral squamous cell carcinoma via the miR-1254/CD36 cascade in vitro. Hum. Exp. Toxicol. 2021 40 9 1413 1421 10.1177/0960327121991912 33686878
    [Google Scholar]
  106. Pang B. Xu X. Lu Y. Jin H. Yang R. Jiang C. Shao D. Liu Y. Shi J. Prediction of new targets and mechanisms for quercetin in the treatment of pancreatic cancer, colon cancer, and rectal cancer. Food Funct. 2019 10 9 5339 5349 10.1039/C9FO01168D 31393490
    [Google Scholar]
  107. Chen X. Wang L. Wu Y. Song S. Min H. Yang Y. He X. Liang Q. Yi L. Wang Y. Gao Q. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr. Diabetes 2018 8 1 1 10.1038/s41387‑017‑0009‑6 29330446
    [Google Scholar]
  108. Mahalingam D. Harb W. Patnaik A. Bullock A. Watnick R.S. Vincent M.Y. Chen J.J. Wang S. Pestana H. Chao J. Mahoney J. Cieslewicz M. Watnick J. First-in-human phase I dose escalation trial of the first-in-class tumor microenvironment modulator VT1021 in advanced solid tumors. Commun. Med. 2024 4 1 10 10.1038/s43856‑024‑00433‑x 38218979
    [Google Scholar]
  109. Chen J.J. Vincent M.Y. Shepard D. Peereboom D. Mahalingam D. Battiste J. Patel M.R. Juric D. Wen P.Y. Bullock A. Selfridge J.E. Pant S. Liu J. Li W. Fyfe S. Wang S. Zota V. Mahoney J. Watnick R.S. Cieslewicz M. Watnick J. Phase 1 dose expansion and biomarker study assessing first-in-class tumor microenvironment modulator VT1021 in patients with advanced solid tumors. Commun. Med. 2024 4 1 95 10.1038/s43856‑024‑00520‑z 38773224
    [Google Scholar]
  110. Febbraio M. Abumrad N.A. Hajjar D.P. Sharma K. Cheng W. Pearce S.F.A. Silverstein R.L. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem. 1999 274 27 19055 19062 10.1074/jbc.274.27.19055 10383407
    [Google Scholar]
  111. Kajihara S. Hisatomi A. Ogawa Y. Yasutake T. Yoshimura T. Hara T. Mizuta T. Ozaki I. Iwamoto N. Yamamoto K. Association of the Pro90Ser CD36 mutation with elevated free fatty acid concentrations but not with insulin resistance syndrome in Japanese. Clin. Chim. Acta 2001 314 1-2 125 130 10.1016/S0009‑8981(01)00658‑1 11718687
    [Google Scholar]
  112. Miyaoka K. Kuwasako T. Hirano K. Nozaki S. Yamashita S. Matsuzawa Y. CD36 deficiency associated with insulin resistance. Lancet 2001 357 9257 686 687 10.1016/S0140‑6736(00)04138‑6 11247555
    [Google Scholar]
  113. Kuwasako T. Hirano K. Sakai N. Ishigami M. Hiraoka H. Yakub M.J. Yamauchi-Takihara K. Yamashita S. Matsuzawa Y. Lipoprotein abnormalities in human genetic CD36 deficiency associated with insulin resistance and abnormal fatty acid metabolism. Diabetes Care 2003 26 5 1647 1648 10.2337/diacare.26.5.1647‑a 12716848
    [Google Scholar]
  114. Hirano K. Kuwasako T. Nakagawa-Toyama Y. Janabi M. Yamashita S. Matsuzawa Y. Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc. Med. 2003 13 4 136 141 10.1016/S1050‑1738(03)00026‑4 12732446
    [Google Scholar]
  115. Yamashita S. Hirano K.I. Kuwasako T. Janabi M. Toyama Y. Ishigami M. Sakai N. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol. Cell. Biochem. 2007 299 1-2 19 22 10.1007/s11010‑005‑9031‑4 16670819
    [Google Scholar]
  116. Domínguez D.J. Enríquez S. Alba G. Garnacho C. Cortegana C. Campos R. Merino L. Hajji N. Sánchez-Margalet V. Prieto L. Cancer nano-immunotherapy: The novel and promising weapon to fight cancer. Int. J. Mol. Sci. 2024 25 2 1195 10.3390/ijms25021195 38256268
    [Google Scholar]
  117. Guo S. Feng J. Li Z. Yang S. Qiu X. Xu Y. Shen Z. Improved cancer immunotherapy strategies by nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 3 e1873 10.1002/wnan.1873 36576112
    [Google Scholar]
  118. Shi Y. Lammers T. Combining nanomedicine and immunotherapy. Acc. Chem. Res. 2019 52 6 1543 1554 10.1021/acs.accounts.9b00148 31120725
    [Google Scholar]
  119. Bai Y. Nan Y. Wu T. Zhu A. Xie X. Sun Y. Deng Y. Dou Z. Hu X. Zhou R. Xu S. Zhang Y. Fan J. Ju D. Lipid nanoparticle‐mediated delivery of CRISPR‐Cas9 against rubicon ameliorates nafld by modulating CD36 along with glycerophospholipid metabolism. Adv. Sci. 2024 11 31 2400493 10.1002/advs.202400493 38894572
    [Google Scholar]
  120. Zhao N. Francis N.L. Song S. Kholodovych V. Calvelli H.R. Hoop C.L. Pang Z.P. Baum J. Uhrich K.E. Moghe P.V. CD36‐binding amphiphilic nanoparticles for attenuation of α‐synuclein‐induced microglial activation. Adv. NanoBiomed Res. 2022 2 6 2100120 10.1002/anbr.202100120 36051821
    [Google Scholar]
  121. Zhang J. Nie S. Zu Y. Abbasi M. Cao J. Li C. Wu D. Labib S. Brackee G. Shen C.L. Wang S. Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. J. Control. Release 2019 303 263 273 10.1016/j.jconrel.2019.04.018 30999008
    [Google Scholar]
  122. Cui K. Gao X. Wang B. Wu H. Arulsamy K. Dong Y. Xiao Y. Jiang X. Malovichko M.V. Li K. Peng Q. Lu Y.W. Zhu B. Zheng R. Wong S. Cowan D.B. Linton M. Srivastava S. Shi J. Chen K. Chen H. Epsin nanotherapy regulates cholesterol transport to fortify atheroma regression. Circ. Res. 2023 132 1 e22 e42 10.1161/CIRCRESAHA.122.321723 36444722
    [Google Scholar]
  123. Gao C. Huang Q. Liu C. Kwong C.H.T. Yue L. Wan J.B. Lee S.M.Y. Wang R. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 2020 11 1 2622 10.1038/s41467‑020‑16439‑7 32457361
    [Google Scholar]
  124. Wilson C.G. Tran J.L. Erion D.M. Vera N.B. Febbraio M. Weiss E.J. Hepatocyte-specific disruption of cd36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 2016 157 2 570 585 10.1210/en.2015‑1866 26650570
    [Google Scholar]
  125. Marleau S. Harb D. Bujold K. Avallone R. Iken K. Wang Y. Demers A. Sirois M.G. Febbraio M. Silverstein R.L. Tremblay A. Ong H. EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E‐deficient mice from developing atherosclerotic lesions. FASEB J. 2005 19 13 1869 1871 10.1096/fj.04‑3253fje 16123174
    [Google Scholar]
  126. Bujold K. Mellal K. Zoccal K.F. Rhainds D. Brissette L. Febbraio M. Marleau S. Ong H. EP 80317, a CD36 selective ligand, promotes reverse cholesterol transport in apolipoprotein E-deficient mice. Atherosclerosis 2013 229 2 408 414 10.1016/j.atherosclerosis.2013.05.031 23880196
    [Google Scholar]
  127. Geloen A. Helin L. Geeraert B. Malaud E. Holvoet P. Marguerie G. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One 2012 7 5 e37633 10.1371/journal.pone.0037633 22662181
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206353634241111113338
Loading
/content/journals/acamc/10.2174/0118715206353634241111113338
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer stem cells ; tumor microenvironment ; targeted therapy ; CD36 ; lipid metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test