Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Oral cancer, currently ranked 16th among the most prevalent malignancies worldwide according to GLOBOCAN, presents significant challenges to global oral health. Conventional treatment modalities such as surgery, radiation, and chemotherapy often have limitations, prompting the need for innovative therapeutic approaches. Tissue engineering has emerged as a promising solution aimed at developing biocompatible, functional, and biologically responsive tissue constructs. This approach involves the integration of cells, bioactive compounds, and scaffolds to enhance treatment efficacy. Electrospun nanofibers, mimicking the extracellular matrix, exhibit considerable potential in addressing complex oral health issues by influencing cellular behavior. The versatility of electrospinning technology allows for the fabrication of fiber scaffolds with high surface area, making them ideal for localized delivery of bioactive compounds or pharmaceuticals. Enhancing these electrospun scaffolds with growth factors, nanoparticles, and biologically active substances significantly increases their therapeutic appeal in oral cancer management. This review offers a comprehensive examination of the various applications of electrospun nanofibers in oral cancer therapy. Utilizing electronic databases such as PubMed, CrossREF, and Google Scholar, we conducted an extensive review of relevant literature concerning “electrospun nanofibers” and their therapeutic potential in oral cancer treatment. Key topics addressed include engineering methodologies, drug diffusion mechanisms, factors influencing nanofiber scaffold design, toxicity concerns, and clinical implications. The findings underscore the transformative potential of electrospun nanofibers in revolutionizing oral cancer therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206348821241119100134
2025-01-03
2025-04-21
Loading full text...

Full text loading...

References

  1. PandeyP. AryaD.K. DeepakP. AliD. AlarifiS. SrivastavaS. LavasanifarA. RajinikanthP.S. αvβ3 integrin and folate-targeted pH-sensitive liposomes with dual ligand modification for metastatic breast cancer treatment.Bioengineering (Basel)202411880010.3390/bioengineering11080800
    [Google Scholar]
  2. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.33588
    [Google Scholar]
  3. LavudiK. NuguriS.M. PandeyP. KokkantiR.R. WangQ.E. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy.Life Sci.202435612303310.1016/j.lfs.2024.123033
    [Google Scholar]
  4. PandeyP. ChaudharyR. TripathiD. LavudiK. DuaK. WeinfeldM. LavasanifarA. RajinikanthP.S. Personalized treatment approach for HER2-positive metastatic breast cancer.Med. Oncol.2024411125210.1007/s12032‑024‑02504‑4
    [Google Scholar]
  5. BizuayehuH.M. DadiA.F. HassenT.A. KetemaD.B. AhmedK.Y. KassaZ.Y. AmsaluE. KibretG.D. AlemuA.A. AlebelA. Global burden of 34 cancers among women in 2020 and projections to 2040: Population‐based data from 185 countries/territories.Int. J. Cancer20241548137793
    [Google Scholar]
  6. TripathiD. ShuklaV. SahooJ. SharmaD.K. ShuklaT. Engineered tissue in cancer research: Techniques, challenges, and current status. Targeted cancer therapy in biomedical engineering.Springer202329132410.1007/978‑981‑19‑9786‑0_8
    [Google Scholar]
  7. WeinbergR.A. RobertA. The biology of cancer.New YorkGarland Science2014
    [Google Scholar]
  8. AlvesD. AraújoJ.C. FangueiroR. FerreiraD.P. Localized therapeutic approaches based on micro/nanofibers for cancer treatment.Molecules2023287305310.3390/molecules28073053
    [Google Scholar]
  9. FilhoA.M. WarnakulasuriyaS. Epidemiology of oral cancer in South and South‐East Asia: Incidence and mortality.Oral Dis.2024odi.1490610.1111/odi.14906
    [Google Scholar]
  10. ShresthaA.D. VedstedP. KallestrupP. NeupaneD. Prevalence and incidence of oral cancer in low‐ and middle‐income countries: A scoping review.Eur. J. Cancer Care (Engl.)2020292e1320710.1111/ecc.13207
    [Google Scholar]
  11. MohammedR.A. AhmedS.K. Oral cancer screening: Past, present, and future perspectives.Oral Oncology Reports20241010030610.1016/j.oor.2024.100306
    [Google Scholar]
  12. SrivastavaD. PandeyP. TripathiD.K. YadavJ.P. AliB. SinghV. VermaA. MishraA. KumarD. MishraA. RajinikanthP.S. Tasar Silkworm Pupae oil: A potential therapeutic and edible lipid source to mitigate the oxidative stress and cholesterol complications associated with diabetes.Food and Humanity2024310041810.1016/j.foohum.2024.100418
    [Google Scholar]
  13. PrelecJ. LarondeD.M. Treatment modalities of oral cancer.Can. J. Dent. Hyg.2014481319
    [Google Scholar]
  14. GharatSA MominMM BhavsarC. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy.Crit. Rev. Ther. Drug Carrier Syst.201633436340010.1615/CritRevTherDrugCarrierSyst.2016016272
    [Google Scholar]
  15. KumariM. ChhikaraB.S. SinghP. RathiB. SinghG. Signaling and molecular pathways implicated in oral cancer: A concise review.Chem. Biol. Letters202411165265210.62110/sciencein.cbl.2024.v11.652
    [Google Scholar]
  16. PandeyP Kumar AryaD RamarM.K. ChidambaramK RajinikanthPS Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy.Drug Discov. Today202227925262540
    [Google Scholar]
  17. PandeyG. PandeyP. AryaD.K. KanaujiyaS. KapoorD.D. GuptaR.K. RanjanS. ChidambaramK. ManickamB. RajinikanthP.S. Multilayered nanofibrous scaffold of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with hemostatic/antibacterial agents for rapid acute hemostatic wound healing.Int. J. Pharm.2023638122918
    [Google Scholar]
  18. NandaA PandeyP RajinikanthP.S. SinghN. Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation-A review.Int. J. Biol. Macromol.2024129416
    [Google Scholar]
  19. AnandS. PandeyP. BegumM.Y. ChidambaramK. AryaD.K. GuptaR.K. SankhwarR. JaiswalS. ThakurS. RajinikanthP.S. Electrospun biomimetic multifunctional nanofibers loaded with ferulic acid for enhanced antimicrobial and wound-healing activities in STZ-induced diabetic rats.Pharmaceuticals202215302
    [Google Scholar]
  20. AnandS. RajinikanthP.S. AryaD.K. PandeyP. GuptaR.K. SankhwarR. ChidambaramK. Multifunctional biomimetic nanofibrous scaffold loaded with asiaticoside for rapid diabetic wound healing.Pharmaceutics202214273
    [Google Scholar]
  21. WarnakulasuriyaS. Global epidemiology of oral and oropharyngeal cancer.Oral Oncol.2009454-530931610.1016/j.oraloncology.2008.06.002
    [Google Scholar]
  22. SinghP. RajputM. PandeyM. Tumor hypoxia and role of hypoxia-inducible factor in oral cancer.World J. Surg. Oncol.20242211810.1186/s12957‑023‑03284‑3
    [Google Scholar]
  23. ColettaR.D. YeudallW.A. SaloT. Grand challenges in oral cancers.Frontiers Media, SA20203
    [Google Scholar]
  24. SuY.F. ChenY.J. TsaiF.T. LiW.C. HsuM.L. WangD.H. YangC.C. Current insights into oral cancer diagnostics.Diagnostics (Basel)2021117128710.3390/diagnostics11071287
    [Google Scholar]
  25. KoY.C. HuangY.L. LeeC.H. ChenM.J. LinL.M. TsaiC.C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan.J. Oral Pathol. Med.1995241045045310.1111/j.1600‑0714.1995.tb01132.x
    [Google Scholar]
  26. ZhouY. WangM. YanC. LiuH. YuD.G. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers.Biomolecules2022129125410.3390/biom12091254
    [Google Scholar]
  27. SharmaN. BhatiaS. SinghS.A. BatraN. Oral microbiome and health.AIMS Microbiol.201841426610.3934/microbiol.2018.1.42
    [Google Scholar]
  28. NegriE. FranceschiS. BosettiC. LeviF. ContiE. ParpinelM. La VecchiaC. Selected micronutrients and oral and pharyngeal cancer.Int. J. Cancer200086112212710.1002/(SICI)1097‑0215(20000401)86:1<122::AID‑IJC19>3.0.CO;2‑2
    [Google Scholar]
  29. TiwariV. WilsonD.M.III DNA damage and associated DNA repair defects in disease and premature aging.Am. J. Hum. Genet.2019105223725710.1016/j.ajhg.2019.06.005
    [Google Scholar]
  30. SaberianE. JenčaA. PetrášováA. JenčováJ. Atazadegan JahromiR. SeiffadiniR. Oral cancer at a glance.Asian Pacific J. Cancer Biol.20238437938610.31557/apjcb.2023.8.4.379‑386
    [Google Scholar]
  31. BaganJ. SarrionG. JimenezY. Oral cancer: Clinical features.Oral Oncol.201046641441710.1016/j.oraloncology.2010.03.009
    [Google Scholar]
  32. KawashitaY. KoyamaY. KuritaH. OtsuruM. OtaY. OkuraM. HorieA. SekiyaH. UmedaM. Effectiveness of a comprehensive oral management protocol for the prevention of severe oral mucositis in patients receiving radiotherapy with or without chemotherapy for oral cancer: a multicentre, phase II, randomized controlled trial.Int. J. Oral Maxillofac. Surg.201948785786410.1016/j.ijom.2018.10.010
    [Google Scholar]
  33. CohenE.E.W. BaruJ. HuoD. HarafD.J. CrowleyM. WittM.E. BlairE.A. WeichselbaumR.R. RosenF. VokesE.E. StensonK. Efficacy and safety of treating T4 oral cavity tumors with primary chemoradiotherapy.Head Neck20093181013102110.1002/hed.21062
    [Google Scholar]
  34. LiaoC.T. ChangJ.T.C. WangH.M. NgS.H. HsuehC. LeeL.Y. LinC.H. ChenI.H. HuangS.F. ChengA.J. YenT-C. Analysis of risk factors of predictive local tumor control in oral cavity cancer.Ann. Surg. Oncol.200815391592210.1245/s10434‑007‑9761‑5
    [Google Scholar]
  35. DoL. PuthawalaA. SyedN. Interstitial brachytherapy as boost for locally advanced T4 head and neck cancer.Brachytherapy20098438539110.1016/j.brachy.2009.03.191
    [Google Scholar]
  36. GrimardL. EscheB. LamotheA. SpaansJ.N. Interstitial brachytherapy in the management of persistent head and neck disease after definitive external beam radiation therapy.Brachytherapy20098328428910.1016/j.brachy.2008.12.007
    [Google Scholar]
  37. BorgesG.Á. RêgoD.F. AssadD.X. ColettaR.D. De Luca CantoG. GuerraE.N.S. In vivo and in vitro effects of curcumin on head and neck carcinoma: A systematic review.J. Oral Pathol. Med.201746132010.1111/jop.12455
    [Google Scholar]
  38. Global status report on alcohol and health.Available from: https://www.who.int/publications/i/item/global-status-report-on-alcohol-and-health-2014
  39. MarzilianoA. TeckieS. DiefenbachM.A. Alcohol‐related head and neck cancer: Summary of the literature.Head Neck202042473273810.1002/hed.26023
    [Google Scholar]
  40. ShahriarS.M.S. MondalJ. HasanM.N. RevuriV. LeeD.Y. LeeY.K. Electrospinning nanofibers for therapeutics delivery.Nanomaterials (Basel)20199453210.3390/nano9040532
    [Google Scholar]
  41. ZielińskaA. KarczewskiJ. EderP. KolanowskiT. SzalataM. WielgusK. SzalataM. KimD. ShinS.R. SłomskiR. SoutoE.B. Scaffolds for drug delivery and tissue engineering: The role of genetics.J. Control. Release202335920722310.1016/j.jconrel.2023.05.042
    [Google Scholar]
  42. FuhrmannK. FuhrmannG. Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation.Curr. Opin. Colloid Interface Sci.201731677410.1016/j.cocis.2017.07.002
    [Google Scholar]
  43. FrenotA. HenrikssonM.W. WalkenströmP. Electrospinning of cellulose‐based nanofibers.J. Appl. Polym. Sci.200710331473148210.1002/app.24912
    [Google Scholar]
  44. AgarwalY. RajinikanthP.S. RanjanS. TiwariU. BalasubramnaiamJ. PandeyP. AryaD.K. AnandS. DeepakP. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies.Int. J. Biol. Macromol.202117637638610.1016/j.ijbiomac.2021.02.025
    [Google Scholar]
  45. KanaujiyaS. AryaD. PandeyP. SinghS. PandeyG. AnjumS. AnjumM.M. AliD. AlarifiS. MrV. SivakumarS. SrivastavaS. RajinikanthP.S. Resveratrol-Ampicillin dual-drug loaded Polyvinylpyrrolidone/Polyvinyl alcohol biomimic electrospun nanofiber enriched with collagen for efficient burn wound repair.Int. J. Nanomedicine2024195397541810.2147/IJN.S464046
    [Google Scholar]
  46. TripathiD SahooJ SharmaDK RamanSK. Ecologically validated UV method for etodolac estimation in pharmaceutical formulation using green hydrotropic solution and forced degradation study for stability detection.LANS202213114
    [Google Scholar]
  47. BarhoumA. PalK. RahierH. UludagH. KimI.S. BechelanyM. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications.Appl. Mater. Today20191713510.1016/j.apmt.2019.06.015
    [Google Scholar]
  48. YadavS AryaDK PandeyP AnandS GautamAK RanjanS SarafSA RajamanickamV.M. SinghS. ChidambaramK. AlqahtaniT. ECM mimicking biodegradable nanofibrous scaffold enriched with Curcumin/ZnO to accelerate diabetic wound healing via multifunctional bioactivity.Int. J. Nanomed.20221768436859
    [Google Scholar]
  49. AnandS RajinikanthP PandeyP DeepakP ThakurS AryaD.K. JaiswalS. Biomaterial-based nanofibers for drug delivery applications.Biomedical Research, Medicine, and DiseaseCRC Press2023531546
    [Google Scholar]
  50. DingY. LiW. ZhangF. LiuZ. Zanjanizadeh EzaziN. LiuD. SantosH.A. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy.Adv. Funct. Mater.2019292180285210.1002/adfm.201802852
    [Google Scholar]
  51. TeoW.E. InaiR. RamakrishnaS. Technological advances in electrospinning of nanofibers.Sci. Technol. Adv. Mater.201112101300210.1088/1468‑6996/12/1/013002
    [Google Scholar]
  52. SunG. SunL. XieH. LiuJ. Electrospinning of nanofibers for energy applications.Nanomaterials (Basel)20166712910.3390/nano6070129
    [Google Scholar]
  53. XueJ. WuT. DaiY. XiaY. Electrospinning and electrospun nanofibers: Methods, materials, and applications.Chem. Rev.201911985298541510.1021/acs.chemrev.8b00593
    [Google Scholar]
  54. DingY. XuW. XuT. ZhuZ. FongH. Theories and principles behind electrospinning. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning.Boca Raton, FL, USACRC Press2019225110.1201/9780429085765‑2
    [Google Scholar]
  55. de ManF.M. van EerdenR.A.G. Oomen-de HoopE. VeraartJ.N. van DoornN. van DoornL. van der GaastA. MathijssenR.H.J. Efficacy and toxicity of weekly carboplatin and paclitaxel as induction or palliative treatment in advanced esophageal cancer patients.Cancers (Basel)201911682610.3390/cancers11060826
    [Google Scholar]
  56. BhattaraiR.S. Comparison of electrospun and solvent cast PLA/PVA inserts as potential ocular drug delivery vehicles.University of Toledo2016
    [Google Scholar]
  57. ChiH.Y. ChangN.Y. LiC. ChanV. HsiehJ.H. TsaiY.H. LinT. Fabrication of gelatin nanofibers by electrospinning—Mixture of gelatin and polyvinyl alcohol.Polymers (Basel)20221413261010.3390/polym14132610
    [Google Scholar]
  58. CaoD. LiX. YangL. YanD. ShiY. FuZ. Controllable fabrication of micro/nanostructures by electrospinning from polystyrene/poly(vinyl alcohol) emulsion dispersions.J. Appl. Polym. Sci.2018135264628810.1002/app.46288
    [Google Scholar]
  59. MoydeenA.M. Ali PadushaM.S. AboelfetohE.F. Al-DeyabS.S. El-NewehyM.H. Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: Kinetics and in vitro release study.Int. J. Biol. Macromol.20181161250125910.1016/j.ijbiomac.2018.05.130
    [Google Scholar]
  60. ZareM. DavoodiP. RamakrishnaS. Electrospun shape memory polymer micro-/nanofibers and tailoring their roles for biomedical applications.Nanomaterials (Basel)202111493310.3390/nano11040933
    [Google Scholar]
  61. ArinsteinA. ZussmanE. Electrospun polymer nanofibers: Mechanical and thermodynamic perspectives.J. Polym. Sci., B, Polym. Phys.2011491069170710.1002/polb.22247
    [Google Scholar]
  62. RošicR. PelipenkoJ. KocbekP. BaumgartnerS. Bešter-RogačM. KristlJ. The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning.Eur. Polym. J.20124881374138410.1016/j.eurpolymj.2012.05.001
    [Google Scholar]
  63. LiY. LimC.T. KotakiM. Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system.Polymer (Guildf.)20155657258010.1016/j.polymer.2014.10.073
    [Google Scholar]
  64. PanX.Q. GongY.C. LiZ.L. LiY.P. XiongX.Y. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel.Int. J. Biol. Macromol.201913937738610.1016/j.ijbiomac.2019.07.224
    [Google Scholar]
  65. DengK. LiC. HuangS. XingB. JinD. ZengQ. HouZ. LinJ. Recent progress in near infrared light triggered photodynamic therapy.Small20171344170229910.1002/smll.201702299
    [Google Scholar]
  66. MehrabaniM. Jafarinejad-FarsangiS. RaeiszadehM. TarziM.E. sheikholeslamiM. NematollahiM.H. KhoshfekrV. JuybariK.B. MehrabaniM. Effects of the Ethanol and Ethyl Acetate extracts of terminalia chebula Retz. On proliferation, migration, and HIF-1α and CXCR-4 expression in MCF-7 cells: An in vitro study.Appl. Biochem. Biotechnol.202319553327334410.1007/s12010‑022‑04301‑z
    [Google Scholar]
  67. ElsadekN.E. NagahA. IbrahimT.M. ChopraH. GhonaimG.A. EmamS.E. CavaluS. AttiaM.S. Electrospun nanofibers revisited: An update on the emerging applications in nanomedicine.Materials (Basel)2022155193410.3390/ma15051934
    [Google Scholar]
  68. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers (Basel)2011331377139710.3390/polym3031377
    [Google Scholar]
  69. MinB. YouY. KimJ-M. LeeS.J. ParkW.H. Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts.Carbohydr. Polym.200457328529210.1016/j.carbpol.2004.05.007
    [Google Scholar]
  70. SissonA.L. EkinciD. LendleinA. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures.Polymer (Guildf.)201354174333435010.1016/j.polymer.2013.04.045
    [Google Scholar]
  71. ZhangH. JiY. YuanC. SunP. XuQ. LinD. HanZ. XuX. ZhouQ. DengJ. Fabrication of astaxanthin-loaded electrospun nanofiber-based mucoadhesive patches with water‐insoluble backing for the treatment of oral premalignant lesions.Mater. Des.202222311113110.1016/j.matdes.2022.111131
    [Google Scholar]
  72. AlahmmarM. PrabhakaranP. JaganathanS. NikN.A.N. Fabrication and characterization of polycaprolactone with retinoic acid and cerium oxide for anticancer applications.Biointerface Res. Appl. Chem.202313115
    [Google Scholar]
  73. JagtianiE. SabnisA.S. Recent advancements of electrospun nanofibers for cancer therapy.Polym. Bull.20238021215124210.1007/s00289‑022‑04153‑x
    [Google Scholar]
  74. LiuJ. DuC. ChenH. HuangW. LeiY. Nano‐Micron combined Hydrogel Microspheres: Novel answer for minimal invasive biomedical applications.Macromol. Rapid Commun.20244511230067010.1002/marc.202300670
    [Google Scholar]
  75. SiafakaP.I. Özcan BülbülE. DilsizP. KarantasI.D. OkurM.E. Üstündağ OkurN. Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: Current status and applications.J. Drug Target.202129547649010.1080/1061186X.2020.1859516
    [Google Scholar]
  76. NamS. LeeS.Y. ChoH.J. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma.J. Colloid Interface Sci.201750811212010.1016/j.jcis.2017.08.030
    [Google Scholar]
  77. LiuY. ChenX. YuD.G. LiuH. LiuY. LiuP. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin.Mol. Pharm.202118114170417810.1021/acs.molpharmaceut.1c00559
    [Google Scholar]
  78. GARUSINGHE U Flexible Nanocellulose-Nanoparticle Composites: Structures and Properties.Monash University2017
    [Google Scholar]
  79. Shikhi-AbadiP.G. IraniM. A review on the applications of electrospun chitosan nanofibers for the cancer treatment.Int. J. Biol. Macromol.202118379081010.1016/j.ijbiomac.2021.05.009
    [Google Scholar]
  80. NomuraN. SaijoK. KatoM. WangP.C. OhnoT. MatsumuraM. Improved MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay for the measurement of viable animal cell number in porous cellulose carriers.Biotechnol. Tech.1996101188388810.1007/BF00154678
    [Google Scholar]
  81. Reshma Syed Balasasirekha R, Optimisation and development of aegle marmelos incorporated prunus amaygdalus var dulcis gum capsule film.JAASR202134354110.46947/joaasr342021127
    [Google Scholar]
  82. PolákováL. ŠircJ. HobzováR. CocârțăA.I. HeřmánkováE. Electrospun nanofibers for local anticancer therapy: Review of in vivo activity.Int. J. Pharm.201955826828310.1016/j.ijpharm.2018.12.059
    [Google Scholar]
  83. GaoX. XuZ. LiuG. WuJ. Polyphenols as a versatile component in tissue engineering.Acta Biomater.2021119577410.1016/j.actbio.2020.11.004
    [Google Scholar]
  84. NamS. LeeJ.J. LeeS.Y. JeongJ.Y. KangW.S. ChoH.J. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy.Int. J. Pharm.20175261-222523410.1016/j.ijpharm.2017.05.004
    [Google Scholar]
  85. JiangL. LuoJ. HongD. GuoS. WangS. ZhouB. ZhouS. GeJ. Recent advances of Poly(lactic‐co‐glycolic acid)‐based nanoparticles for tumor‐targeted drug delivery.ChemistrySelect202273e20210352410.1002/slct.202103524
    [Google Scholar]
  86. LiB. YangX. Rutin-loaded cellulose acetate/poly(ethylene oxide) fiber membrane fabricated by electrospinning: A bioactive material.Mater. Sci. Eng. C202010911060110.1016/j.msec.2019.110601
    [Google Scholar]
  87. ShindeA. PanchalK. KatkeS. PaliwalR. ChaurasiyaA. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives.Therapie202277442544310.1016/j.therap.2021.10.010
    [Google Scholar]
  88. StrickleyR.G. Solubilizing excipients in oral and injectable formulations.Pharm. Res.200421220123010.1023/B:PHAM.0000016235.32639.23
    [Google Scholar]
  89. RavichandranS. RadhakrishnanJ. NandhiramanV. MariappanM. Ruthenium complex infused polycaprolactone (PCL-Ru) nanofibers and their in vitro anticancer activity against human tested cancer cell lines.Results in Chemistry2022410038010.1016/j.rechem.2022.100380
    [Google Scholar]
  90. JiangB. YangZ. ShiH. T JalilA. M SalehM. MiW. Potentiation of Curcumin-loaded zeolite Y nanoparticles/PCL-gelatin electrospun nanofibers for postsurgical glioblastoma treatment.J. Drug Deliv. Sci. Technol.20238010410510.1016/j.jddst.2022.104105
    [Google Scholar]
  91. SpizzirriU.G. AielloF. CarulloG. FacenteA. RestucciaD. Nanotechnologies: An innovative tool to release natural extracts with antimicrobial properties.Pharmaceutics202113223010.3390/pharmaceutics13020230
    [Google Scholar]
  92. LopesP.P. BarrocaN.B. Daniel-da-SilvaA.L. FerreiraL.B. Application of chitosan based materials for drug delivery.Front. Biomater. Chitosan Based Mater. Its Appl2017318124810.2174/9781681084855117030011
    [Google Scholar]
  93. RavichandranS. JegathaprathabanR. RadhakrishnanJ. UshaR. VijayanV. TeklemariamA. An investigation of electrospun Clerodendrum phlomidis leaves extract infused Polycaprolactone nanofiber for in vitro biological application.Bioinorg. Chem. Appl.202220221233544310.1155/2022/2335443
    [Google Scholar]
  94. WuQ. HuY. YuB. HuH. XuF.J. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy.J. Control. Release2023362194310.1016/j.jconrel.2023.08.019
    [Google Scholar]
  95. ZhangJ LiL JiangC XingC KimS-H LuJ. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds.Anticancer Agents Med. Chem.2012121012391254
    [Google Scholar]
  96. FanW. HuangP. ChenX. Overcoming the Achilles’ heel of photodynamic therapy.Chem. Soc. Rev.201645236488651910.1039/C6CS00616G
    [Google Scholar]
  97. MerlinJ.P.J. CrousA. AbrahamseH. Nano‐phototherapy: Favorable prospects for cancer treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024161e193010.1002/wnan.1930
    [Google Scholar]
  98. LiuX. ZhanW. GaoG. JiangQ. ZhangX. ZhangH. SunX. HanW. WuF.G. LiangG. Apoptosis-amplified assembly of porphyrin nanofiber enhances photodynamic therapy of oral tumor.J. Am. Chem. Soc.2023145147918793010.1021/jacs.2c13189
    [Google Scholar]
  99. PandeyM. ChoudhuryH. YingJ.N.S. LingJ.F.S. TingJ. TingJ.S.S. Zhia HwenI.K. SuenH.W. S KamarH.S. GorainB. JainN. M AminM.C.I. Mucoadhesive nanocarriers as a promising strategy to enhance intracellular delivery against oral cavity carcinoma.Pharmaceutics202214479510.3390/pharmaceutics14040795
    [Google Scholar]
  100. RedaR. WenM.M. El-KamelA. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis.Int. J. Nanomedicine2017122335235110.2147/IJN.S131253
    [Google Scholar]
  101. HalderJ. DubeyD. K RajwarT. MishraA. SatpathyB. SahooD. P YadavN. K RaiV. PradhanD. ManoharadasS. KarB. GhoshG. RathG. Local delivery of methotrexate/glycyrrhizin-loaded hyaluronic acid nanofiber for the management of oral cancer.Int. J. Pharm.202466012431110.1016/j.ijpharm.2024.124311
    [Google Scholar]
  102. ChoiJ.S. HanS.H. HyunC. YooH.S. Buccal adhesive nanofibers containing human growth hormone for oral mucositis.J. Biomed. Mater. Res. B Appl. Biomater.201610471396140610.1002/jbm.b.33487
    [Google Scholar]
  103. LiuY. XuY. ZhangX. LiuN. CongB. SunY. GuoM. LiuZ. JiangL. WangW. WuT. WangY. On-demand release of fucoidan from a multilayered nanofiber patch for the killing of oral squamous cancer cells and promotion of epithelial regeneration.J. Funct. Biomater.202213416710.3390/jfb13040167
    [Google Scholar]
  104. ColleyH.E. SaidZ. Santocildes-RomeroM.E. BakerS.R. D’ApiceK. HansenJ. MadsenL.S. ThornhillM.H. HattonP.V. MurdochC. Pre-clinical evaluation of novel mucoadhesive bilayer patches for local delivery of clobetasol-17-propionate to the oral mucosa.Biomaterials201817813414610.1016/j.biomaterials.2018.06.009
    [Google Scholar]
  105. KimS. HaoQ. JeongD.I. HuhJ.W. ChoiY.E. ChoH.J. Flash dissolving nanofiber membranes for chemo/cascade chemodynamic therapy of oral cancer.Mater. Des.202323111206310.1016/j.matdes.2023.112063
    [Google Scholar]
  106. ChuB. ChenD. MaS. YangY. ShangF. LvW. LiY. Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis.J. Biomater. Appl.202439322123410.1177/08853282241258311
    [Google Scholar]
  107. ParkJ. HaoQ. JeongD.I. KimH.J. KimS. LeeS.Y. ChuS. HyunU. ChoH.J. Cascade Hydroxyl radical-generating and Ferroptosis-inducing nanofiber system for the therapy of oral squamous cell carcinoma.Molecules20242916396410.3390/molecules29163964
    [Google Scholar]
  108. EdmansJ.G. OllingtonB. ColleyH.E. Santocildes-RomeroM.E. Siim MadsenL. HattonP.V. SpainS.G. MurdochC. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease.J. Control. Release202235014615710.1016/j.jconrel.2022.08.016
    [Google Scholar]
  109. LiuJ. LiM. LuoZ. DaiL. GuoX. CaiK. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy.Nano Today201715569010.1016/j.nantod.2017.06.010
    [Google Scholar]
  110. SridharR. LakshminarayananR. MadhaiyanK. AmuthaB.V. LimK.H.C. RamakrishnaS. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals.Chem. Soc. Rev.201544379081410.1039/C4CS00226A
    [Google Scholar]
  111. Torres-GinerS. Pérez-MasiáR. LagaronJ.M. A review on electrospun polymer nanostructures as advanced bioactive platforms.Polym. Eng. Sci.201656550052710.1002/pen.24274
    [Google Scholar]
  112. PantB. ParkM. ParkS.J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review.Pharmaceutics201911730510.3390/pharmaceutics11070305
    [Google Scholar]
  113. SinghA. RathG. SinghR. GoyalA.K. Nanofibers: An effective tool for controlled and sustained drug delivery.Curr. Drug Deliv.201815215516610.2174/1567201814666171002115230
    [Google Scholar]
  114. RenekerD.H. YarinA.L. ZussmanE. XuH. Electrospinning of nanofibers from polymer solutions and melts.Adv. Appl. Mech.2007414334610.1016/S0065‑2156(07)41002‑X
    [Google Scholar]
  115. TripathiD. SrivastavaM. RathourK. RaiA.K. WalP. SahooJ. TiwariR.K. PandeyP. A promising approach of Dermal targeting of antipsoriatic drugs via engineered nanocarriers drug delivery systems for tackling psoriasis.Drug Metab. Bioanal. Lett.20231628910410.2174/2949681016666230803150329
    [Google Scholar]
  116. AbbasianM. MassoumiB. Mohammad-RezaeiR. SamadianH. JaymandM. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering?Int. J. Biol. Macromol.201913467369410.1016/j.ijbiomac.2019.04.197
    [Google Scholar]
  117. BhattaraiR.S. BachuR.D. BodduS.H.S. BhaduriS. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery.Pharmaceutics2018111510.3390/pharmaceutics11010005
    [Google Scholar]
  118. HawthorneD. PannalaA. SandemanS. LloydA. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside.J. Drug Deliv. Sci. Technol.20227810393610.1016/j.jddst.2022.103936
    [Google Scholar]
  119. WangY. LiH. FengY. JiangP. SuJ. HuangC. Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease.Int. J. Nanomedicine20191496397610.2147/IJN.S182073
    [Google Scholar]
  120. KajdičS. PlaninšekO. GašperlinM. KocbekP. Electrospun nanofibers for customized drug-delivery systems.J. Drug Deliv. Sci. Technol.20195167268110.1016/j.jddst.2019.03.038
    [Google Scholar]
  121. GoonooN. Bhaw-LuximonA. JhurryD. Drug loading and release from electrospun biodegradable nanofibers.J. Biomed. Nanotechnol.20141092173219910.1166/jbn.2014.1885
    [Google Scholar]
  122. DesbrieresJ PeptuC OchiuzL SavinC PopaM VasiliuS Application of chitosan-based formulations in controlled drug delivery.Sustainable Agriculture Reviews 36SpringerCham20193624131410.1007/978‑3‑030‑16581‑9_7
    [Google Scholar]
  123. TripathiD. MishraS. RaiA.K. SahooJ. SharmaD.K. SinghY. Curcumin-loaded hydrotropic solid dispersion topical gel development and evaluation: A greener approach towards Transdermal delivery of drugs.Curr. Green Chem.202291263910.2174/2213346110666221020121020
    [Google Scholar]
  124. TorielloM. AfsariM. ShonH. TijingL. Progress on the fabrication and application of electrospun nanofiber composites.Membranes (Basel)202010920410.3390/membranes10090204
    [Google Scholar]
  125. AnupN. ChavanT. ChavanS. PolakaS. KalyaneD. AbedS.N. VenugopalaK.N. KaliaK. TekadeR.K. Reinforced electrospun nanofiber composites for drug delivery applications.J. Biomed. Mater. Res. A2021109102036206410.1002/jbm.a.37187
    [Google Scholar]
  126. HuangY. SongJ. YangC. LongY. WuH. Scalable manufacturing and applications of nanofibers.Mater. Today2019289811310.1016/j.mattod.2019.04.018
    [Google Scholar]
  127. BadmusM. LiuJ. WangN. RadacsiN. ZhaoY. Hierarchically electrospun nanofibers and their applications: A review.Nano Materials Science20213321323210.1016/j.nanoms.2020.11.003
    [Google Scholar]
  128. BodaS.K. FischerN.G. YeZ. AparicioC. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides.Biomacromolecules202021124945496110.1021/acs.biomac.0c01163
    [Google Scholar]
  129. BahrainianS. AbbaspourM. KouchakM. MoghadamP.T. A review on fast dissolving systems: From tablets to nanofibers.Jundishapur J. Nat. Pharm. Prod.201712
    [Google Scholar]
  130. PeptuC. RotaruR. IgnatL. HumelnicuA. HarabagiuV. PeptuC. LeonM.M. MituF. CojocaruE. BocaA. TambaB. Nanotechnology approaches for pain therapy through transdermal drug delivery.Curr. Pharm. Des.201521426125613910.2174/1381612821666151027152752
    [Google Scholar]
  131. SofiH.S. Abdal-hayA. IvanovskiS. ZhangY.S. SheikhF.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives.Mater. Sci. Eng. C202011111075610.1016/j.msec.2020.110756
    [Google Scholar]
  132. LubasovaD. NiuH. ZhaoX. LinT. Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers.RSC Advances2015567544815448710.1039/C5RA07514A
    [Google Scholar]
  133. BajiA. MaiY.W. WongS.C. AbtahiM. ChenP. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties.Compos. Sci. Technol.201070570371810.1016/j.compscitech.2010.01.010
    [Google Scholar]
  134. Opálková ŠiškováA. KozmaE. OpálekA. KronekováZ. KleinováA. NagyŠ. KronekJ. RydzJ. Eckstein AndicsováA. Diclofenac embedded in silk fibroin fibers as a drug delivery system.Materials (Basel)20201316358010.3390/ma13163580
    [Google Scholar]
  135. TripathiD. RamanS.K. SahooJ. SharmaD.K. RaiA.K. Technical applications of hydrotropes: Sustainable and green carriers.Biointerface Res. Appl. Chem.202313191
    [Google Scholar]
  136. TripathiD. M PrabhuB. SahooJ. KumariJ. Navigating the solution to drug formulation problems at research and development stages by Amorphous solid dispersion technology.Recent Adv. Drug Deliv. Formul.20241827999
    [Google Scholar]
  137. GhazalianM. AfsharS. RostamiA. RashediS. BahramiS.H. Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride.Colloids Surf. A Physicochem. Eng. Asp.202263612816310.1016/j.colsurfa.2021.128163
    [Google Scholar]
  138. KutikovA.B. SongJ. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications.ACS Biomater. Sci. Eng.20151746348010.1021/acsbiomaterials.5b00122
    [Google Scholar]
  139. SebeI. SzabóP. Kállai-SzabóB. ZelkóR. Incorporating small molecules or biologics into nanofibers for optimized drug release: A review.Int. J. Pharm.2015494151653010.1016/j.ijpharm.2015.08.054
    [Google Scholar]
  140. BalusamyB. CelebiogluA. SenthamizhanA. UyarT. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review.J. Control. Release202032648250910.1016/j.jconrel.2020.07.038
    [Google Scholar]
  141. PlackettD. LetchfordK. JacksonJ. BurtH. A review of nanocellulose as a novel vehicle for drug delivery.Nord. Pulp Paper Res. J.201429110511810.3183/npprj‑2014‑29‑01‑p105‑118
    [Google Scholar]
  142. TavakoliF. ShafieiH. GhasemikhahR. Kinetic and thermodynamics analysis: effect of eudragit polymer as drug release controller in electrospun nanofibers.Quarterly J. Iranian Chem. Commun.20208171180
    [Google Scholar]
  143. JiffrinR. RazakS.I.A. JamaludinM.I. HamzahA.S.A. MazianM.A. JayaM.A.T. NasrullahM.Z. MajrashiM. TheyabA. AldarmahiA.A. AwanZ. Abdel-DaimM.M. AzadA.K. Electrospun nanofiber composites for drug delivery: A review on current progresses.Polymers (Basel)20221418372510.3390/polym14183725
    [Google Scholar]
  144. WanjaleM.V. S JaikumarV. SivakumarK.C. Ann PaulR. JamesJ. KumarG.S.V. Supramolecular hydrogel based post-surgical implant system for hydrophobic drug delivery against glioma recurrence.Int. J. Nanomedicine2022172203222410.2147/IJN.S348559
    [Google Scholar]
  145. BabelA. LiD. XiaY. JenekheS.A. Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors.Macromolecules200538114705471110.1021/ma047529r
    [Google Scholar]
  146. ZamaniM. PrabhakaranM.P. RamakrishnaS. Advances in drug delivery via electrospun and electrosprayed nanomaterials.Int. J. Nanomedicine201329973017
    [Google Scholar]
  147. ChenM. LiY.F. BesenbacherF. Electrospun nanofibers‐mediated on‐demand drug release.Adv. Healthc. Mater.20143111721173210.1002/adhm.201400166
    [Google Scholar]
  148. AchilleosM Krasia‐ChristoforouT Thermoresponsive Electrospun Polymer-based (Nano)fibersTemperature-Responsive PolymersWiley2018329355
    [Google Scholar]
  149. KamsaniN.H. HarisM.S. PandeyM. TaherM. RullahK. Biomedical application of responsive ‘smart’ electrospun nanofibers in drug delivery system: A minireview.Arab. J. Chem.202114710319910.1016/j.arabjc.2021.103199
    [Google Scholar]
  150. WrightM.E.E. ParragI.C. YangM. SanterreJ.P. Electrospun polyurethane nanofiber scaffolds with ciprofloxacin oligomer versus free ciprofloxacin: Effect on drug release and cell attachment.J. Control. Release201725010711510.1016/j.jconrel.2017.02.008
    [Google Scholar]
  151. ChaturvediS. RastogiV. KumarM. An insight on nanofibers assisted localized delivery of anti-cancer drugs to breast for an effective breast cancer treatment.J. Drug Deliv. Sci. Technol.20249310544710.1016/j.jddst.2024.105447
    [Google Scholar]
  152. LinT.C. LinF.H. LinJ.C. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells.Acta Biomater.2012872704271110.1016/j.actbio.2012.03.045
    [Google Scholar]
  153. VeresT. VoniatisC. MolnárK. NesztorD. FehérD. FerenczA. GresitsI. ThuróczyG. MárkusB.G. SimonF. NemesN.M. García-HernándezM. ReinigerL. HorváthI. MáthéD. SzigetiK. TombáczE. Jedlovszky-HajduA. An implantable magneto-responsive poly (aspartamide) based electrospun scaffold for hyperthermia treatment.Nanomaterials (Basel)2022129147610.3390/nano12091476
    [Google Scholar]
  154. ValizadehA. AsghariS. AbbaspoorS. JafariA. RaeisiM. PilehvarY. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023156e190910.1002/wnan.1909
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206348821241119100134
Loading
/content/journals/acamc/10.2174/0118715206348821241119100134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test