Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Sulfonamide derivatives are well-reported hCA IX inhibitors; however, they inhibit all types of hCA without any selectivity, leading to severe adverse effects. Hence, developing a novel non-sulfonamide class of tumor-associated hCA IX inhibitors through non-classical inhibition may provide greater selectivity and better pharmacokinetics.

Objective

The objective of this study was to develop non-sulfonamide derivatives as potential human carbonic anhydrase (hCA) inhibitors and develop a new series of chromene-linked bis-indole derivatives.

Methods

We synthesized and characterized the chromene-linked bis-indole derivatives and further evaluated them against four hCA isoforms, ., hCA I, hCA II, hCA IX, and hCA XII, and determined the ADMET parameters by the method.

Results

Most of the compounds showed significantly greater affinity and selectivity towards the tumor-associated hCA IX over other hCA isoforms within the lower micromolar to submicromolar range. In particular, the bromo-substituted bis-indole derivative showed an excellent inhibition of hCA IX isoform with an affinity () of 2.61 µM. In contrast, the cyano group substituted bis-indole derivative and also displayed a strong inhibition of hCA IX isoform with an affinity () of 2.73 µM. Many other potential candidates, including showed higher affinity at tumor-associated hCA IX with lower than 10 µM compared to other hCA isoforms.

Conclusion

Therefore, the chromene-linked bis-indole derivatives can serve as a novel non-sulfonamide class of tumor-associated hCA IX inhibitors.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206341087241029064945
2024-11-04
2025-04-06
Loading full text...

Full text loading...

References

  1. GaneshK. MassaguéJ. Targeting metastatic cancer.Nat. Med.2021271344410.1038/s41591‑020‑01195‑4 33442008
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.10 34322663
    [Google Scholar]
  4. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  5. NerellaS.G. ThackerP.S. ArifuddinM. SupuranC.T. Tumor associated carbonic anhydrase inhibitors: Rational approaches, design strategies, structure activity relationship and mechanistic insights.Eur. J. Med. Chem. Reports20241010013110.1016/j.ejmcr.2024.100131
    [Google Scholar]
  6. NerellaS.G. SinghP. ArifuddinM. SupuranC.T. Anticancer carbonic anhydrase inhibitors: A patent and literature update 2018-2022.Expert Opin. Ther. Pat.202232883384710.1080/13543776.2022.2083502 35616541
    [Google Scholar]
  7. AggarwalM. BooneC.D. KondetiB. McKennaR. Structural annotation of human carbonic anhydrases.J. Enzyme Inhib. Med. Chem.201328226727710.3109/14756366.2012.737323 23137351
    [Google Scholar]
  8. KakakhanC. TürkeşC. GüleçÖ. DemirY. ArslanM. ÖzkemahlıG. BeydemirŞ. Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase.Bioorg. Med. Chem.20237711711110.1016/j.bmc.2022.117111 36463726
    [Google Scholar]
  9. ThackerP.S. MohammedA. SupuranC.T. TiwariP.L. GoudN.S. SrikanthD. AngeliA. Synthesis and biological evaluation of coumarin carboxamides as selective and potent inhibitors of carbonic anhydrases IX and XII.Anticancer. Agents Med. Chem.202222142647265410.2174/1871520622666220304184525 35249507
    [Google Scholar]
  10. SinghP. KumarS.D. SridharG.N. SwainB. KumarS.S. AngeliA. ShaikA.B. MadhaviY.V. SupuranC.T. ArifuddinM. Ureidosulfocoumarin derivatives as selective and potent carbonic anhydrase ix and xii inhibitors.ChemMedChem2022175e20210072510.1002/cmdc.202100725 34898017
    [Google Scholar]
  11. ChandraK.M. GoudN.S. ArifuddinM. AlvalaM. AlvalaR. AngeliA. SupuranC.T. Synthesis and biological evaluation of novel 4,7-disubstituted coumarins as selective tumor-associated carbonic anhydrase IX and XII inhibitors.Bioorg. Med. Chem. Lett.20213912787710.1016/j.bmcl.2021.127877 33640442
    [Google Scholar]
  12. SupuranC.T. Multi- and poly-pharmacology of carbonic anhydrase inhibitors.Pharmacol. Rev.2024Epub ahead of print10.1124/pharmrev.124.001125
    [Google Scholar]
  13. AwadallahF.M. BuaS. MahmoudW.R. NadaH.H. NocentiniA. SupuranC.T. Inhibition studies on a panel of human carbonic anhydrases with N 1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails.J. Enzyme Inhib. Med. Chem.201833162963810.1080/14756366.2018.1446432 29536779
    [Google Scholar]
  14. SinghP. SridharG.N. SwainB. KumarS.S. CholiA. AngeliA. SinghK.B. MadhaviY.V. SupuranC.T. ArifuddinM. Synthesis of a new series of quinoline/pyridine indole-3-sulfonamide hybrids as selective carbonic anhydrase IX inhibitors.Bioorg. Med. Chem. Lett.20227012880910.1016/j.bmcl.2022.128809 35605838
    [Google Scholar]
  15. BonardiA. NocentiniA. BuaS. CombsJ. LomelinoC. AndringJ. LucariniL. SgambelloneS. MasiniE. McKennaR. GratteriP. SupuranC.T. Sulfonamide inhibitors of human carbonic anhydrases designed through a three-tails approach: Improving ligand/isoform matching and selectivity of action.J. Med. Chem.202063137422744410.1021/acs.jmedchem.0c00733 32519851
    [Google Scholar]
  16. AngeliA. KartsevV. PetrouA. PintealaM. BrovaretsV. VydzhakR. PanchishinS. GeronikakiA. SupuranC.T. Carbonic anhydrase inhibition with sulfonamides incorporating pyrazole- and pyridazinecarboxamide moieties provides examples of isoform-selective inhibitors.Molecules20212622702310.3390/molecules26227023 34834114
    [Google Scholar]
  17. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909 32326131
    [Google Scholar]
  18. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: An overview.RSC Advances20201072442474431110.1039/D0RA09198G 35557843
    [Google Scholar]
  19. KaushikN. KaushikN. AttriP. KumarN. KimC. VermaA. ChoiE. Biomedical importance of indoles.Molecules20131866620666210.3390/molecules18066620 23743888
    [Google Scholar]
  20. PeerzadaM.N. KhanP. AhmadK. HassanM.I. AzamA. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents.Eur. J. Med. Chem.2018155132310.1016/j.ejmech.2018.05.034 29852328
    [Google Scholar]
  21. GüzelÖ. MarescaA. ScozzafavaA. SalmanA. BalabanA.T. SupuranC.T. Carbonic anhydrase inhibitors. Synthesis of 2,4,6-trimethylpyridinium derivatives of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides acting as potent inhibitors of the tumor-associated isoform IX and XII.Bioorg. Med. Chem. Lett.200919112931293410.1016/j.bmcl.2009.04.068 19410461
    [Google Scholar]
  22. MohsinN.A. IrfanM. HassanS. SaleemU. Current strategies in development of new chromone derivatives with diversified pharmacological activities: A review.Pharm. Chem. J.202054324125710.1007/s11094‑020‑02187‑x 32836513
    [Google Scholar]
  23. PatilV.M. MasandN. VermaS. MasandV. Chromones: Privileged scaffold in anticancer drug discovery.Chem. Biol. Drug Des.202198594395310.1111/cbdd.13951 34519163
    [Google Scholar]
  24. AlneyadiA. NizamiZ.N. AburawiH.E. HisaindeeS. NawazM. AttoubS. RamadanG. BenhalilouN. Al AzzaniM. ElmahiY. AlmeqbaliA. MuhammedK. EidA.H. VijayanR. IratniR. Synthesis of new chromene derivatives targeting triple-negative breast cancer cells.Cancers (Basel)20231510268210.3390/cancers15102682 37345018
    [Google Scholar]
  25. RajV. LeeJ. 2H/4H-chromenes—A versatile biologically attractive scaffold.Front Chem.2020862310.3389/fchem.2020.00623 32850645
    [Google Scholar]
  26. AngeliA. KartsevV. PetrouA. PintealaM. BrovaretsV. SlyvchukS. PilyoS. GeronikakiA. SupuranC.T. Chromene-containing aromatic sulfonamides with carbonic anhydrase inhibitory properties.Int. J. Mol. Sci.20212210508210.3390/ijms22105082 34064890
    [Google Scholar]
  27. SequeiraL. DistintoS. MeledduR. GaspariM. AngeliA. CottigliaF. SecciD. OnaliA. SannaE. BorgesF. UriarteE. AlcaroS. SupuranC.T. MaccioniE. 2H-chromene and 7H-furo-chromene derivatives selectively inhibit tumour associated human carbonic anhydrase IX and XII isoforms.J. Enzyme Inhib. Med. Chem.2023381227018310.1080/14756366.2023.2270183 37870190
    [Google Scholar]
  28. KostopoulouI. TzaniA. PolyzosN.I. KaradendrouM.A. KritsiE. PontikiE. LiargkovaT. Hadjipavlou-LitinaD. ZoumpoulakisP. DetsiA. Exploring the 2′-Hydroxy-Chalcone framework for the development of dual antioxidant and soybean lipoxygenase inhibitory agents.Molecules2021269277710.3390/molecules26092777 34066803
    [Google Scholar]
  29. FengL. MaddoxM.M. AlamM.Z. TsutsumiL.S. NarulaG. BruhnD.F. WuX. SandhausS. LeeR.B. SimmonsC.J. Tse-DinhY.C. HurdleJ.G. LeeR.E. SunD. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives.J. Med. Chem.201457208398842010.1021/jm500853v 25238443
    [Google Scholar]
  30. RochaD.H.A. BatistaV.F. BalsaE.J.F. PintoD.C.G.A. SilvaA.M.S. Chromene- and quinoline-3-carbaldehydes: Useful intermediates in the synthesis of heterocyclic scaffolds.Molecules20202517379110.3390/molecules25173791 32825385
    [Google Scholar]
  31. ThackerP.S. SridharG.N. ArgulwarO.S. SomanJ. AngeliA. AlvalaM. ArifuddinM. SupuranC.T. Synthesis and biological evaluation of some coumarin hybrids as selective carbonic anhydrase IX and XII inhibitors.Bioorg. Chem.202010410427210.1016/j.bioorg.2020.104272 32961467
    [Google Scholar]
  32. BakchiB. KrishnaA.D. SreecharanE. GaneshV.B.J. NiharikaM. MaharshiS. PuttaguntaS.B. SigalapalliD.K. BhandareR.R. ShaikA.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective.J. Mol. Struct.2022125913271210.1016/j.molstruc.2022.132712
    [Google Scholar]
  33. BozdagM. FerraroniM. CartaF. VulloD. LucariniL. OrlandiniE. RosselloA. NutiE. ScozzafavaA. MasiniE. SupuranC.T. Structural insights on carbonic anhydrase inhibitory action, isoform selectivity, and potency of sulfonamides and coumarins incorporating arylsulfonylureido groups.J. Med. Chem.201457219152916710.1021/jm501314c 25310626
    [Google Scholar]
  34. AkdemirA. De MonteC. CarradoriS. SupuranC.T. Computational investigation of the selectivity of salen and tetrahydrosalen compounds towards the tumor-associated hCA XII isozyme.J. Enzyme Inhib. Med. Chem.201530111411810.3109/14756366.2014.892936 24666302
    [Google Scholar]
  35. SupuranC.T. BarboiuM. LucaC. PopE. BrewsterM.E. DinculescuA. Carbonic anhydrase activators. Part 14. Syntheses of mono and bis pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)- and 2-amino-5-(3-aminopropyl)-1,3,4-thiadiazole and their interaction with isozyme II.Eur. J. Med. Chem.1996317-859760610.1016/0223‑5234(96)89555‑9
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206341087241029064945
Loading
/content/journals/acamc/10.2174/0118715206341087241029064945
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test