Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Mesoionic compound MI-D possesses important biological activities, such as anti-inflammatory and antitumoral against melanoma and hepatocarcinoma. Glioblastoma is the most aggressive and common central nervous system tumor in adults. Currently, chemotherapies are not entirely effective, and the survival of patients diagnosed with glioblastoma is extremely short.

Objective

In this study, we aimed to evaluate the cytotoxicity of MI-D in noninvasive A172 glioblastoma cells and establish which changes in functions linked to energy provision are associated with this effect.

Methods

Cells A172 were cultured under glycolysis and phosphorylation oxidative conditions and evaluated: viability by the MTT method, oxygen consumption by high-resolution respirometry, levels of pyruvate, lactate, citrate, and ATP, and glutaminase and citrate synthase activities by spectrophotometric methods.

Results

Under glycolysis-dependent conditions, MI-D caused significant cytotoxic effects with impaired cell respiration, reducing the maximal capacity of the electron transport chain. However, A172 cells were more susceptible to MI-D effects under oxidative phosphorylation-dependent conditions. At the IC inhibition of basal and maximal respiration of A172 cells was observed, without stimulation of the glycolytic pathway or Krebs cycle, along with inhibition of the activity of glutaminase enzyme, resulting in a 30% ATP deficit. Additionally, independent of metabolic conditions, MI-D treatment induced cell death in A172 cells by apoptosis machinery/processes.

Conclusion

The impairment of mitochondrial respiration by MI-D under the condition sustained by oxidative phosphorylation may enhance the cytotoxic effect on A172 glioma cells, although the mechanism of cell death relies on apoptosis.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206329159241010052746
2024-10-21
2025-03-07
Loading full text...

Full text loading...

References

  1. PaivaR.O. KneippL.F. Dos ReisC.M. EchevarriaA. Mesoionic compounds with antifungal activity against Fusarium verticillioides.BMC Microbiol.20151511110.1186/s12866‑015‑0340‑9 25649493
    [Google Scholar]
  2. ZhangJ. SongR. WuS. Discovery of pyrido[1,2-a]pyrimidinone mesoionic compounds incorporating a dithioacetal moiety as novel potential insecticidal agents.J. Agric. Food Chem.20216950151361514410.1021/acs.jafc.1c05823 34878774
    [Google Scholar]
  3. BrandtA.P. GozziG.J. PiresA.R.A. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2).Chem. Biol. Interact.201625615416010.1016/j.cbi.2016.07.007 27417255
    [Google Scholar]
  4. Senff-RibeiroA. EchevarriaA. SilvaE.F. FrancoC.R.C. VeigaS.S. OliveiraM.B.M. Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma.Br. J. Cancer200491229730410.1038/sj.bjc.6601946 15199390
    [Google Scholar]
  5. Corrêa-FerreiraM.L. Do RocioA.P.A. BarbosaI.R. The mesoionic compound MI-D changes energy metabolism and induces apoptosis in T98G glioma cells.Mol. Cell. Biochem.202247782033204510.1007/s11010‑022‑04423‑2 35420333
    [Google Scholar]
  6. NewtonC.G. RamsdenC.A. Meso-ionic heterocycles (1976–1980).Tetrahedron198238202965301110.1016/0040‑4020(82)80186‑5
    [Google Scholar]
  7. FerlayJ. ErvikM. LamF. Global cancer observatory: Cancer today.2024Available from: https://gco.iarc.fr/today
    [Google Scholar]
  8. Cancer Stat FactsS.E.E.R. Brain and other nervous system cancer.2023Available from: https://seer.cancer.gov/statfacts/html/brain.html
    [Google Scholar]
  9. Obara-MichlewskaM. SzeligaM. Targeting glutamine addiction in gliomas.Cancers (Basel)2020122310
    [Google Scholar]
  10. Le RhunE. PreusserM. RothP. Molecular targeted therapy of glioblastoma.Cancer Treat. Rev.20198010189610.1016/j.ctrv.2019.101896 31541850
    [Google Scholar]
  11. ZandersE.D. SvenssonF. BaileyD.S. Therapy for glioblastoma: Is it working?Drug Discov. Today20192451193120110.1016/j.drudis.2019.03.008 30878561
    [Google Scholar]
  12. MinnitiG. MuniR. LanzettaG. MarchettiP. EnriciR.M. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents.Anticancer Res.2009291251715184 20044633
    [Google Scholar]
  13. ColquhounA. Cell biology-metabolic crosstalk in glioma.Int. J. Biochem. Cell Biol.20178917118110.1016/j.biocel.2017.05.022 28549626
    [Google Scholar]
  14. CadenaS.M.S.C. CarnieriE.G.S. EchevarriaA. De OliveiraM.B.M. Effect of MI‐D, a new mesoionic compound, on energy‐linked functions of rat liver mitochondria.FEBS Lett.19984401-2465010.1016/S0014‑5793(98)01427‑6 9862422
    [Google Scholar]
  15. Senff-RibeiroA. EchevarriaA. SilvaE.F. VeigaS.S. OliveiraM.B.M. Antimelanoma activity of 1,3,4-thiadiazolium mesoionics: A structure–activity relationship study.Anticancer Drugs200415326927510.1097/00001813‑200403000‑00012 15014361
    [Google Scholar]
  16. GozziG.J. PiresA.R.A. ValdameriG. Selective cytotoxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2).PLoS One2015106e013004610.1371/journal.pone.0130046 26083249
    [Google Scholar]
  17. Trombetta-LimaM. WinnischoferS.M.B. DemasiM.A.A. Isolation and characterization of novel RECK tumor suppressor gene splice variants.Oncotarget2015632331203313310.18632/oncotarget.5305 26431549
    [Google Scholar]
  18. CorrẽaT.C.S. BrohemC.A. WinnischoferS.M.B. Downregulation of the RECK ‐tumor and metastasis suppressor gene in glioma invasiveness.J. Cell. Biochem.200699115616710.1002/jcb.20917 16791855
    [Google Scholar]
  19. GrynbergN. SantosA.C. EchevarriaA. Synthesis and in vivo antitumor activity of new heterocyclic derivatives of the 1,3,4-thiadiazolium-2-aminide class.Anticancer Drugs199781889110.1097/00001813‑199701000‑00012 9147617
    [Google Scholar]
  20. SouzaA.C. EchevarriaA. Electronic effects on 13C NMR chemical shifts of substituted 1,3,4‐thiadiazolium salts.Magn. Reson. Chem.200139418218610.1002/mrc.812
    [Google Scholar]
  21. ReillyT.P. BellevueF.H.III WosterP.M. SvenssonC.K. Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone.Biochem. Pharmacol.199855680381010.1016/S0006‑2952(97)00547‑9 9586952
    [Google Scholar]
  22. SladowskiD. SteerS.J. ClothierR.H. BallsM. An improved MIT assay.J. Immunol. Methods19931571-220320710.1016/0022‑1759(93)90088‑O 8423364
    [Google Scholar]
  23. KumarP NagarajanA UchilPD Analysis of cell viability by the lactate dehydrogenase assay.Cold Spring Harb Protoc201820186pdb.prot09549710.1101/pdb.prot095497 29858337
    [Google Scholar]
  24. RuasJ.S. Siqueira-SantosE.S. AmigoI. Rodrigues-SilvaE. KowaltowskiA.J. CastilhoR.F. Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells.PLoS One2016113e015096710.1371/journal.pone.0150967 26950698
    [Google Scholar]
  25. CzokR LamprechtW. Phosphoenolpyruvate and D-Glycerate-2- phosphate. Methods of enzymatic analysis1974
  26. GutmannI. WahlefeldA. L-(+)-lactate determination with lactate dehydrogenase and NAD.Methods in enzymatic analysis.New YorkAcademic Press197414641468
    [Google Scholar]
  27. BoardM. HummS. NewsholmeE.A. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells.Biochem. J.1990265250350910.1042/bj2650503 2302181
    [Google Scholar]
  28. CurthoysN.P. LowryO.H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney.J. Biol. Chem.1973248116216810.1016/S0021‑9258(19)44458‑X 4692829
    [Google Scholar]
  29. KennyJ. BaoY. HammB. Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase.Protein Expr. Purif.200331114014810.1016/S1046‑5928(03)00161‑X 12963351
    [Google Scholar]
  30. MarroquinL.D. HynesJ. DykensJ.A. JamiesonJ.D. WillY. Circumventing the crabtree effect: Replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants.Toxicol. Sci.200797253954710.1093/toxsci/kfm052 17361016
    [Google Scholar]
  31. AguerC. GambarottaD. MaillouxR.J. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells.PLoS One2011612e2853610.1371/journal.pone.0028536 22194845
    [Google Scholar]
  32. GohilV.M. ShethS.A. NilssonR. Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis.Nat. Biotechnol.20102824925510.1038/nbt.1606 20160716
    [Google Scholar]
  33. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  34. ComelliM. PretisI. BusoA. MavelliI. Mitochondrial energy metabolism and signalling in human glioblastoma cell lines with different PTEN gene status.J. Bioenerg. Biomembr.2018501335210.1007/s10863‑017‑9737‑5 29209894
    [Google Scholar]
  35. NguyenT. DuránR.V. Glutamine metabolism in cancer therapy.Cancer Drug Resist.20181126138
    [Google Scholar]
  36. ChlastakovaI LiskovaM KudelovaJ Dynamics of caspase3 activation and inhibition in embryonic micromasses evaluated by a photon-counting chemiluminescence approach. in vitro Cell Dev Biol Anim20124895459
    [Google Scholar]
  37. Rodrigues-SilvaE. Siqueira-SantosE.S. RuasJ.S. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity.J. Neurooncol.2017133351952910.1007/s11060‑017‑2482‑0 28540666
    [Google Scholar]
  38. MolinaJ.R. SunY. ProtopopovaM. An inhibitor of oxidative phosphorylation exploits cancer vulnerability.Nat. Med.20182471036104610.1038/s41591‑018‑0052‑4 29892070
    [Google Scholar]
  39. DottW. MistryP. WrightJ. CainK. HerbertK.E. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.Redox Biol.2014222423310.1016/j.redox.2013.12.028 24494197
    [Google Scholar]
  40. PorporatoP.E. FilighedduN. PedroJ.M.B.S. KroemerG. GalluzziL. Mitochondrial metabolism and cancer.Cell Res.201828326528010.1038/cr.2017.155 29219147
    [Google Scholar]
  41. WangX. ChenY. WangJ. LiuZ. ZhaoS. Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway.Tumour Biol.20143521641164710.1007/s13277‑013‑1226‑9 24197975
    [Google Scholar]
  42. PereiraR.A. PiresA.R.A. EchevarriaA. Sousa-PereiraD. NoletoG.R. SuterC.C.S.M. The toxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2) is associated with mitochondrial dysfunction.Chem. Biol. Interact.202134910967510.1016/j.cbi.2021.109675 34563518
    [Google Scholar]
  43. SheikhT.N. PatwardhanP.P. CremersS. SchwartzG.K. Targeted inhibition of glutaminase as a potential new approach for the treatment of NF1 associated soft tissue malignancies.Oncotarget2017855940549406810.18632/oncotarget.21573
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206329159241010052746
Loading
/content/journals/acamc/10.2174/0118715206329159241010052746
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 1,3,4-thiazolium mesoionic; A172 cells; Glioma; glycolysis; MI-D; respiratory chain
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test