Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

L. (hedge hyssop), a medicinal plant of the Scrophulariaceae family, has diuretic, purgative, and vermifuge properties. It is used as a herbal tea to treat chronic gastroenteritis, renal colic, jaundice, and intestinal worms. Previously, we have found that an extract from is nontoxic and has antitumor, antioxidant, antimicrobial, antiinflammatory, anticachexic, and other properties. Our aims in this study were to separate the extract into individual fractions, to identify the most biologically active fractions, and to examine the chemical composition of these fractions and their biological activity toward A498 renal carcinoma cells.

Methods

The extract was fractionated by reversed-phase high-performance liquid chromatography, and each fraction was tested for antitumor activity. The active fractions were characterized by UV-visible electron spectral analysis, circular dichroism analysis, Fourier transform infrared spectroscopy, high-performance liquid chromatography, electrospray ionization tandem mass spectrometry, and nuclear magnetic resonance spectroscopy.

Results

Two antitumor-active fractions of a flavonoid nature were isolated and chromatographically purified. On the basis of the nuclear magnetic resonance data, the aglycone fragment of the main component of one fraction was found to be structured as 2-(3,4-dimethoxyphenyl)-7-hydroxychroman-4-one, or 3',4'-dimethoxy-7-hydroxyflavanone.

Conclusion

The antitumor effect of the most active fraction containing 7-O-glucoside of apigenin, glycoside 7,3'-di-O-luteolin and trace amounts of eupatilin against renal carcinoma A498 cells was manifested in its cytotoxic, cytostatic, apoptotic and autophagosomal activities. In addition, we found 3-(1-2)-glucoside of soyaspogenol B, which is a pentacyclic triterpenoid in the structure.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206323280241029215900
2024-11-05
2025-03-29
Loading full text...

Full text loading...

References

  1. SharmaN. DobhalM.P. JoshiY.C. ChaharM.K. Flavonoids: A versatile source of anticancer drugs.Pharmacogn. Rev.20115911210.4103/0973‑7847.79093 22096313
    [Google Scholar]
  2. BownD. The Royal Horticultural Society New Encyclopedia of Herbs & Their Uses.LondonDorling Kindersley2002488
    [Google Scholar]
  3. LaunertE. The Hamlyn guide to edible and medicinal plants of Britain and Northern Europe.LondonHamlyn1989288
    [Google Scholar]
  4. NavolokinN.A. IvlichevA.V. MudrakD.A. Afanas’evaG.A. PolukonovaN.V. TychinaS.A. BucharskayaA.B. MaslyakovaG.N. Influence of flavonoid-containing extract (Gratiola officinalis L.) on the content of vitamin E and intensity of peroxidation processes in the blood of rats with transplanted liver cancer PC-1.Eksp. Klin. Farmakol.20178010404310.30906/0869‑2092‑2017‑80‑10‑40‑43
    [Google Scholar]
  5. NavolokinN.A. PolukonovaN.V. MaslyakovaG.N. BucharskayaA.B. DurnovaN.A. Effect of extracts of Gratiola officinalis and Zea mays on the tumor and the morphology of the internal organs of rats with transplanted liver cancer.Russ. Open Med. J.201212020310.15275/rusomj.2012.02033
    [Google Scholar]
  6. PolukonovaN.V. NavolokinN.A. RaĭkovaS.V. MasliakovaG.N. BucharskaiaA.B. DurnovaN.A. ShubG.M. AntI-inflammatory, antipyretic and antimicrobial activity of flavonoid-containing extract of Gratiola officinalis L.Eksp. Klin. Farmakol.2015781343810.30906/0869‑2092‑2015‑78‑1‑34‑38 25826873
    [Google Scholar]
  7. RothenburgerJ. HaslingerE. Caffeic acid glycoside esters from Gratiola officinalis L.Liebigs Ann. Chem.19941994111113111510.1002/jlac.199419941110
    [Google Scholar]
  8. KomarovaM.N. NikolaevaL.A. RegirV.G. TeslovL.S. KharitonovaN.P. ChatokhinaR.K. Phytochemical analysis of medicinal plant raw materials.Method. instructions for laboratory classes. BlinovaK.F. Sankt-Peterburg199860
    [Google Scholar]
  9. KayaG.I. MelzigM.F. Quantitative determination of cucurbitacin E and cucurbitacin I in homoeopathic mother tincture of Gratiola officinalis L. by HPLC.Pharmazie2008631285185310.1691/ph.2008.8197 19177898
    [Google Scholar]
  10. Zia-Ul-HaqM. KausarA. ShahidS.A. QayumM. AhmadS. KhanI. Phytopharmacological profile of Gratiola officinalis Linn.: A review.J. Med. Plants Res.20126163087309210.5897/JMPR12.172
    [Google Scholar]
  11. AliL. RizviT.S. AhmadM. ShaheenF. New iridoid glycoside from Gratiola officinalis.J. Asian Nat. Prod. Res.201214121191119510.1080/10286020.2012.734299 23134347
    [Google Scholar]
  12. Grayer-BarkmeijerR.J. Tomás-BarberánF.A. 8-Hydroxylated flavone O-glycosides and other flavonoids in chemotypes of Gratiola officinalis.Phytochemistry199334120521010.1016/S0031‑9422(00)90806‑9
    [Google Scholar]
  13. PolukonovaN.V. DurnovaN.A. KurchatovaM.N. NavolokinN.A. GolikovA.G. Chemical analysis of the new biological active composition from medicative herb hedge-hissop (Gratiola officinalis L.).Chem. Plant Raw Mat.2014416517310.14258/jcprm.1304165
    [Google Scholar]
  14. ŠliumpaitėI. VenskutonisP.R. MurkovicM. PukalskasA. Antioxidant properties and polyphenolics composition of common hedge hyssop (Gratiola officinalis L.).J. Funct. Foods2013541927193710.1016/j.jff.2013.09.014
    [Google Scholar]
  15. NavolokinN. MudrakD. BucharskayaA. MatveevaO. TychinaS. PolukonovaN. MaslyakovaG. Effect of flavonoid-containing extracts on the growth of transplanted sarcoma 45, peripheral blood and bone marrow condition after oral and intramuscular administration in rats.Russ. Open Med. J.201763e030410.15275/rusomj.2017.0304
    [Google Scholar]
  16. NavolokinN.A. MudrakD.A. PolukonovaN.V. BucharskayaA.B. TychinaS.A. KorchakovN.V. MaslyakovaG.N. Effects of Gratiola officinalis L. extract containing flavonoids on pathomorphism of inoculated renal cancer in rats.Eksp. Klin. Farmakol.2017806192310.30906/0869‑2092‑2017‑80‑6‑19‑23
    [Google Scholar]
  17. Myl’nikovA.M. PolukonovaN.V. IsaevD.S. DoroshenkoA.A. VerkhovskiiR.A. NikolaevaN.A. MudrakD.A. NavolokinN.A. Identification of pathways of A498 human kidney carcinoma cell death under the action of Gratiola officinalis L. extract and green tea flavonoids using fluorescence imaging techniques.Opt. Spectrosc.2020128797297910.1134/S0030400X20070139
    [Google Scholar]
  18. MylnikovA. NavolokinN. MudrakD. PolukonovaN. BucharskayaA. MaslyakovaG. Tumor cell death visualization of renal cell carcinoma under the combined effect of the Gratiola officinalis extract and cyclophosphamide using fluorescent staining methods.J. Innov. Opt. Health Sci.2021145214200410.1142/S1793545821420049
    [Google Scholar]
  19. NavolokinN. LomovaM. BucharskayaA. GodageO. PolukonovaN. ShirokovA. GrinevV. MaslyakovaG. Antitumor effects of microencapsulated Gratiola officinalis extract on breast carcinoma and human cervical cancer cells in vitro.Materials (Basel)2023164147010.3390/ma16041470 36837099
    [Google Scholar]
  20. NavolokinN.A. Pathomorphosis and mechanisms of tumor cell death in cultures and grafted tumors under the influence of flavonoid-containing extracts.PhD Thesis, Volgograd2020Available from: https://www.volgmed.ru/uploads/dsovet/autoref/1-921-1582620498_navolokin_nikita_aleksandrovich.pdf
    [Google Scholar]
  21. KapaevR.R. ToukachP.V. GRASS: semi-automated NMR-based structure elucidation of saccharides.Bioinformatics201834695796310.1093/bioinformatics/btx696 29092007
    [Google Scholar]
  22. ToukachP.V. EgorovaK.S. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts.Nucleic Acids Res.201644D1D1229D123610.1093/nar/gkv840 26286194
    [Google Scholar]
  23. ZhangL. BhasinM. Schor-BardachR. WangX. CollinsM.P. PankaD. PuthetiP. SignorettiS. AlsopD.C. LibermannT. AtkinsM.B. MierJ.W. GoldbergS.N. BhattR.S. Resistance of renal cell carcinoma to sorafenib is mediated by potentially reversible gene expression.PLoS One201164e1914410.1371/journal.pone.0019144 21559452
    [Google Scholar]
  24. ShengY. NgC.P. LourieR. ShahE.T. HeY. WongK.Y. SeimI. OanceaI. MoraisC. JefferyP.L. HooperJ. GobeG.C. McGuckinM.A. MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance.Int. J. Cancer2017140102351236310.1002/ijc.30651 28205224
    [Google Scholar]
  25. NavolokinN.A. PolukonovaN.V. MudrakD.A. Myl’nikovA.M. BaryshnikovaM.A. KhochenkovD.A. BucharskayaA.B. PolukonovaA.V. MaslyakovaG.N. Advantages and possibilities of fluorescence-based methods for the visualization of apoptosis and autophagy in human tumor cells in vitro.Opt. Spectrosc.2019126669370210.1134/S0030400X19060171
    [Google Scholar]
  26. KruskalW.H. WallisW.A. Use of ranks in one-criterion variance analysis.J. Am. Stat. Assoc.19524726058362110.1080/01621459.1952.10483441
    [Google Scholar]
  27. YangZ. GhoorunR.A. FanX. WuP. BaiY. LiJ. ChenH. WangL. WangJ. High expression of Beclin-1 predicts favorable prognosis for patients with colorectal cancer.Clin. Res. Hepatol. Gastroenterol.20153919810610.1016/j.clinre.2014.06.014 25130795
    [Google Scholar]
  28. PanichpolK. WatermanP.G. Novel flavonoids from the stem of Popowia cauliflora.Phytochemistry19781781363136710.1016/S0031‑9422(00)94590‑4
    [Google Scholar]
  29. DeodharM. BlackD.S. KumarN. Acid catalyzed stereoselective rearrangement and dimerization of flavenes: synthesis of dependensin.Tetrahedron200763245227523510.1016/j.tet.2007.03.173
    [Google Scholar]
  30. LimS.S. JungS.H. JiJ. ShinK.H. KeumS.R. Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues.J. Pharm. Pharmacol.201053565366810.1211/0022357011775983 11370705
    [Google Scholar]
  31. MoorthyN.S.H.N. SinghR.J. SinghH.P. GuptaS.D. Synthesis, biological evaluation and in silico metabolic and toxicity prediction of some flavanone derivatives.Chem. Pharm. Bull. (Tokyo)200654101384139010.1248/cpb.54.1384 17015974
    [Google Scholar]
  32. KurchatovaM.N. DurnovaN.A. PolukonovaN.V. The effect of flavonoids extracts on the dioxydin induction of micronuclei in red blood cells of outbred white mice.Proc. Voronezh State University. Series: Chem. Biol. Pharm.201425865
    [Google Scholar]
  33. RothenburgerJ. HaslingerE. New cucurbitacine glycosides fromGratiola officinalis L.Monatsh. Chem.1995126121331133910.1007/BF00807062
    [Google Scholar]
  34. StuppnerH. MüllerE.P. Structure revision of gratioside.Phytochemistry19943751483148510.1016/S0031‑9422(00)90439‑4 7765766
    [Google Scholar]
  35. NagaprashanthaL.D. VatsyayanR. SinghalJ. LelsaniP. ProkaiL. AwasthiS. SinghalS.S. 2′-Hydroxyflavanone inhibits proliferation, tumor vascularization and promotes normal differentiation in VHL-mutant renal cell carcinoma.Carcinogenesis201132456857510.1093/carcin/bgr021 21304051
    [Google Scholar]
  36. AwasthiS. SinghalS.S. SinghalJ. NagaprashanthaL. LiH. YuanY.C. LiuZ. BerzD. IgidH. GreenW.C. TijaniL. TonkV. RajanA. AwasthiY. SinghS.P. Anticancer activity of 2′-hydroxyflavanone towards lung cancer.Oncotarget2018990362023621910.18632/oncotarget.26329
    [Google Scholar]
  37. CherianJ. SehgalA. SinghS.K. VamanuE. SinghM.P. 2′-Hydroxyflavanone: a bioactive compound that protects against cancers.Appl. Sci. (Basel)20221219954310.3390/app12199543
    [Google Scholar]
  38. BoseC. SinghS.P. IgidH. GreenW.C. SinghalS.S. LeeJ. PaladeP.T. RajanA. BallS. TonkV. HindleA. TarboxM. AwasthiS. Topical 2′-hydroxyflavanone for cutaneous melanoma.Cancers (Basel)20191110155610.3390/cancers11101556 31615091
    [Google Scholar]
  39. KobayashiT. NakataT. KuzumakiT. Effect of flavonoids on cell cycle progression in prostate cancer cells.Cancer Lett.20021761172310.1016/S0304‑3835(01)00738‑8 11790449
    [Google Scholar]
  40. CasagrandeF. DarbonJ.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK111Abbreviations: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; PI 3-kinase, phosphatidylinositol 3-kinase; PKC, protein kinase C; DTT, dithiothreitol; RIPA, radioimmunoprecipitation assay buffer.Biochem. Pharmacol.200161101205121510.1016/S0006‑2952(01)00583‑4 11322924
    [Google Scholar]
  41. LimD.Y. JeongY. TynerA.L. ParkJ.H.Y. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin.Am. J. Physiol. Gastrointest. Liver Physiol.20072921G66G7510.1152/ajpgi.00248.2006 16901994
    [Google Scholar]
  42. LiW.X. CuiC.B. CaiB. WangH.Y. YaoX.S. Flavonoids from Vitex trifolia L. inhibit cell cycle progression at G 2/M phase and induce apoptosis in mammalian cancer cells.J. Asian Nat. Prod. Res.20057461562610.1080/10286020310001625085 16087636
    [Google Scholar]
  43. ChowdhuryA.R. SharmaS. MandalS. GoswamiA. MukhopadhyayS. MajumderH.K. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I.Biochem. J.2002366265366110.1042/bj20020098 12027807
    [Google Scholar]
  44. HeltonE.S. ChenX. p53 modulation of the DNA damage response.J. Cell. Biochem.2007100488389610.1002/jcb.21091 17031865
    [Google Scholar]
  45. WuH. HuangM. LiuY. ShuY. LiuP. Luteolin induces apoptosis by up-regulating miR-34a in human gastric cancer cells.Technol. Cancer Res. Treat.201514674775510.7785/tcrt.2012.500434 24988056
    [Google Scholar]
  46. KangK.A. PiaoM.J. HyunY.J. ZhenA.X. ChoS.J. AhnM.J. YiJ.M. HyunJ.W. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells.Exp. Mol. Med.201951411410.1038/s12276‑019‑0238‑y 30988303
    [Google Scholar]
  47. MadunićJ. MadunićI.V. GajskiG. PopićJ. Garaj-VrhovacV. Apigenin: A dietary flavonoid with diverse anticancer properties.Cancer Lett.2018413112210.1016/j.canlet.2017.10.041 29097249
    [Google Scholar]
  48. KimS.M. VetrivelP. HaS.E. KimH.H. KimJ.A. KimG.S. Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell.J. Nutr. Biochem.20208310842710.1016/j.jnutbio.2020.108427 32559585
    [Google Scholar]
  49. SmiljkovicM. StanisavljevicD. StojkovicD. PetrovicI. MarjanovicV.J. PopovicJ. GolicG.S. MarkovicD. Sankovic-BabiceS. GlamoclijaJ. StevanovicM. SokovicM. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions.EXCLI J.20171679580710.17179/excli2017‑300 28827996
    [Google Scholar]
  50. ChungC.S. JiangY. ChengD. BirtD.F. Impact of adenomatous Polyposis coli (APC) tumor supressor gene in human colon cancer cell lines on cell cycle arrest by apigenin.Mol. Carcinog.200746977378210.1002/mc.20306 17620292
    [Google Scholar]
  51. LuH.F. ChieY.J. YangM.S. LeeC.S. FuJ.J. YangJ.S. TanT.W. WuS.H. MaY.S. IpS.W. ChungJ.G. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax- and Bcl-2-triggered mitochondrial pathway.Int. J. Oncol.20103661477148410.3892/ijo_00000634 20428772
    [Google Scholar]
  52. ZhongW.F. WangX.H. PanB. LiF. KuangL. SuZ.X. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways.Oncol. Lett.20161242894289910.3892/ol.2016.4989 27698876
    [Google Scholar]
  53. LiuH. HaoJ. WuC. LiuG. WangX. YuJ. LiuY. ZhaoH. Eupatilin alleviates lipopolysaccharide-induced acute lung injury by inhibiting inflammation and oxidative stress.Med. Sci. Monit.2019258289829610.12659/MSM.917406 31680664
    [Google Scholar]
  54. ZhangW. PopovichD.G. Effect of soyasapogenol A and soyasapogenol B concentrated extracts on HEP-G2 cell proliferation and apoptosis.J. Agric. Food Chem.20085682603260810.1021/jf0731550 18361499
    [Google Scholar]
  55. El-KeiyM.M. RadwanA.M. MohamedT.M. Cytotoxic effect of soy bean saponin against colon cancer.J. Biosci. Med. (Irvine)201977708610.4236/jbm.2019.77006
    [Google Scholar]
  56. EllingtonA.A. BerhowM. SingletaryK.W. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins.Carcinogenesis200426115916710.1093/carcin/bgh297 15471899
    [Google Scholar]
  57. EllingtonA.A. BerhowM.A. SingletaryK.W. Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells.Carcinogenesis200627229830610.1093/carcin/bgi214 16113053
    [Google Scholar]
  58. WangL. YunL. WangX. ShaL. WangL. SuiY. ZhangH. RETRACTED: Endoplasmic reticulum stress triggered by Soyasapogenol B promotes apoptosis and autophagy in colorectal cancer.Life Sci.2019218162410.1016/j.lfs.2018.12.023 30553871
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206323280241029215900
Loading
/content/journals/acamc/10.2174/0118715206323280241029215900
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test