Skip to content
2000
image of Composition and Biological Activity of Flavonoid-containing Fractions of an Extract from Gratiola officinalis L.

Abstract

Introduction

L. (hedge hyssop), a medicinal plant of the Scrophulariaceae family, has diuretic, purgative, and vermifuge properties. It is used as a herbal tea to treat chronic gastroenteritis, renal colic, jaundice, and intestinal worms. Previously, we have found that an extract from is nontoxic and has antitumor, antioxidant, antimicrobial, antiinflammatory, anticachexic, and other properties. Our aims in this study were to separate the extract into individual fractions, to identify the most biologically active fractions, and to examine the chemical composition of these fractions and their biological activity toward A498 renal carcinoma cells.

Methods

The extract was fractionated by reversed-phase high-performance liquid chromatography, and each fraction was tested for antitumor activity. The active fractions were characterized by UV–visible electron spectral analysis, circular dichroism analysis, Fourier transform infrared spectroscopy, high-performance liquid chromatography, electrospray ionization tandem mass spectrometry, and nuclear magnetic resonance spectroscopy.

Results

Two antitumor-active fractions of a flavonoid nature were isolated and chromatographically purified. On the basis of the nuclear magnetic resonance data, the aglycone fragment of the main component of one fraction was found to be structured as 2-(3,4-dimethoxyphenyl)-7-hydroxychroman-4-one, or 3',4'-dimethoxy-7-hydroxyflavanone.

Conclusion

The antitumor effect of the most active fraction containing 7-O-glucoside of apigenin, glycoside 7,3'-di-O-luteolin and trace amounts of eupatilin against renal carcinoma A498 cells was manifested in its cytotoxic, cytostatic, apoptotic and autophagosomal activities. In addition, we found 3-(1-2)-glucoside of soyaspogenol B, which is a pentacyclic triterpenoid in the structure.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206323280241029215900
2024-11-05
2025-01-18
Loading full text...

Full text loading...

References

  1. Sharma N. Dobhal M.P. Joshi Y.C. Chahar M.K. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011 5 9 1 12 10.4103/0973‑7847.79093 22096313
    [Google Scholar]
  2. Bown D. The Royal Horticultural Society New Encyclopedia of Herbs & Their Uses. London Dorling Kindersley 2002 488
    [Google Scholar]
  3. Launert E. The Hamlyn guide to edible and medicinal plants of Britain and Northern Europe. London Hamlyn 1989 288
    [Google Scholar]
  4. Navolokin N.A. Ivlichev A.V. Mudrak D.A. Afanas’eva G.A. Polukonova N.V. Tychina S.A. Bucharskaya A.B. Maslyakova G.N. Influence of flavonoid-containing extract (Gratiola officinalis L.) on the content of vitamin E and intensity of peroxidation processes in the blood of rats with transplanted liver cancer PC-1. Eksp. Klin. Farmakol. 2017 80 10 40 43 10.30906/0869‑2092‑2017‑80‑10‑40‑43
    [Google Scholar]
  5. Navolokin N.A. Polukonova N.V. Maslyakova G.N. Bucharskaya A.B. Durnova N.A. Effect of extracts of Gratiola officinalis and Zea mays on the tumor and the morphology of the internal organs of rats with transplanted liver cancer. Russ. Open Med. J. 2012 1 2 0203 10.15275/rusomj.2012.0203
    [Google Scholar]
  6. Polukonova N.V. Navolokin N.A. Raĭkova S.V. Masliakova G.N. Bucharskaia A.B. Durnova N.A. Shub G.M. [AntI-inflammatory, antipyretic and antimicrobial activity of flavonoid-containing extract of Gratiola officinalis L Eksp. Klin. Farmakol. 2015 78 1 34 38 10.30906/0869‑2092‑2015‑78‑1‑34‑38 25826873
    [Google Scholar]
  7. Rothenburger J. Haslinger E. Caffeic acid glycoside esters from Gratiola officinalis L. Liebigs Ann. Chem. 1994 1994 11 1113 1115 10.1002/jlac.199419941110
    [Google Scholar]
  8. Komarova M.N. Nikolaeva L.A. Regir V.G. Teslov L.S. Kharitonova N.P. Chatokhina R.K. Phytochemical analysis of medicinal plant raw materials. Method. instructions for laboratory classes. Blinova K.F. Sankt-Peterburg 1998 60
    [Google Scholar]
  9. Kaya G.I. Melzig M.F. Quantitative determination of cucurbitacin E and cucurbitacin I in homoeopathic mother tincture of Gratiola officinalis L. by HPLC. Pharmazie 2008 63 12 851 853 10.1691/ph.2008.8197 19177898
    [Google Scholar]
  10. Zia-Ul-Haq M. Kausar A. Shahid S.A. Qayum M. Ahmad S. Khan I. Phytopharmacological profile of Gratiola officinalis Linn.: A review. J. Med. Plants Res. 2012 6 16 3087 3092 10.5897/JMPR12.172
    [Google Scholar]
  11. Ali L. Rizvi T.S. Ahmad M. Shaheen F. New iridoid glycoside from Gratiola officinalis. J. Asian Nat. Prod. Res. 2012 14 12 1191 1195 10.1080/10286020.2012.734299 23134347
    [Google Scholar]
  12. Grayer-Barkmeijer R.J. Tomás-Barberán F.A. 8-Hydroxylated flavone O-glycosides and other flavonoids in chemotypes of Gratiola officinalis. Phytochemistry 1993 34 1 205 210 10.1016/S0031‑9422(00)90806‑9
    [Google Scholar]
  13. Polukonova N.V. Durnova N.A. Kurchatova M.N. Navolokin N.A. Golikov A.G. Chemical analysis of the new biological active composition from medicative herb hedge-hissop (Gratiola officinalis L.). Chem. Plant Raw Mat. 2014 4 165 173 10.14258/jcprm.1304165
    [Google Scholar]
  14. Šliumpaitė I. Venskutonis P.R. Murkovic M. Pukalskas A. Antioxidant properties and polyphenolics composition of common hedge hyssop (Gratiola officinalis L.). J. Funct. Foods 2013 5 4 1927 1937 10.1016/j.jff.2013.09.014
    [Google Scholar]
  15. Navolokin N. Mudrak D. Bucharskaya A. Matveeva O. Tychina S. Polukonova N. Maslyakova G. Effect of flavonoid-containing extracts on the growth of transplanted sarcoma 45, peripheral blood and bone marrow condition after oral and intramuscular administration in rats. Russ. Open Med. J. 2017 6 3 e0304 10.15275/rusomj.2017.0304
    [Google Scholar]
  16. Navolokin N.A. Mudrak D.A. Polukonova N.V. Bucharskaya A.B. Tychina S.A. Korchakov N.V. Maslyakova G.N. Effects of Gratiola officinalis L. extract containing flavonoids on pathomorphism of inoculated renal cancer in rats. Eksp. Klin. Farmakol. 2017 80 6 19 23 10.30906/0869‑2092‑2017‑80‑6‑19‑23
    [Google Scholar]
  17. Myl’nikov A.M. Polukonova N.V. Isaev D.S. Doroshenko A.A. Verkhovskii R.A. Nikolaeva N.A. Mudrak D.A. Navolokin N.A. Identification of pathways of A498 human kidney carcinoma cell death under the action of Gratiola officinalis L. extract and green tea flavonoids using fluorescence imaging techniques. Opt. Spectrosc. 2020 128 7 972 979 10.1134/S0030400X20070139
    [Google Scholar]
  18. Mylnikov A. Navolokin N. Mudrak D. Polukonova N. Bucharskaya A. Maslyakova G. Tumor cell death visualization of renal cell carcinoma under the combined effect of the Gratiola officinalis extract and cyclophosphamide using fluorescent staining methods. J. Innov. Opt. Health Sci. 2021 14 5 2142004 10.1142/S1793545821420049
    [Google Scholar]
  19. Navolokin N. Lomova M. Bucharskaya A. Godage O. Polukonova N. Shirokov A. Grinev V. Maslyakova G. Antitumor effects of microencapsulated Gratiola officinalis extract on breast carcinoma and human cervical cancer cells in vitro. Materials (Basel) 2023 16 4 1470 10.3390/ma16041470 36837099
    [Google Scholar]
  20. Navolokin N.A. Pathomorphosis and mechanisms of tumor cell death in cultures and grafted tumors under the influence of flavonoid-containing extracts. PhD Thesis, Volgograd 2020 Available from: https://www.volgmed.ru/uploads/dsovet/autoref/1-921-1582620498_navolokin_nikita_aleksandrovich.pdf
    [Google Scholar]
  21. Kapaev R.R. Toukach P.V. GRASS: semi-automated NMR-based structure elucidation of saccharides. Bioinformatics 2018 34 6 957 963 10.1093/bioinformatics/btx696 29092007
    [Google Scholar]
  22. Toukach P.V. Egorova K.S. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nucleic Acids Res. 2016 44 D1 D1229 D1236 10.1093/nar/gkv840 26286194
    [Google Scholar]
  23. Zhang L. Bhasin M. Schor-Bardach R. Wang X. Collins M.P. Panka D. Putheti P. Signoretti S. Alsop D.C. Libermann T. Atkins M.B. Mier J.W. Goldberg S.N. Bhatt R.S. Resistance of renal cell carcinoma to sorafenib is mediated by potentially reversible gene expression. PLoS One 2011 6 4 e19144 10.1371/journal.pone.0019144 21559452
    [Google Scholar]
  24. Sheng Y. Ng C.P. Lourie R. Shah E.T. He Y. Wong K.Y. Seim I. Oancea I. Morais C. Jeffery P.L. Hooper J. Gobe G.C. McGuckin M.A. MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. Int. J. Cancer 2017 140 10 2351 2363 10.1002/ijc.30651 28205224
    [Google Scholar]
  25. Navolokin N.A. Polukonova N.V. Mudrak D.A. Myl’nikov A.M. Baryshnikova M.A. Khochenkov D.A. Bucharskaya A.B. Polukonova A.V. Maslyakova G.N. Advantages and possibilities of fluorescence-based methods for the visualization of apoptosis and autophagy in human tumor cells in vitro. Opt. Spectrosc. 2019 126 6 693 702 10.1134/S0030400X19060171
    [Google Scholar]
  26. Kruskal W.H. Wallis W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952 47 260 583 621 10.1080/01621459.1952.10483441
    [Google Scholar]
  27. Yang Z. Ghoorun R.A. Fan X. Wu P. Bai Y. Li J. Chen H. Wang L. Wang J. High expression of Beclin-1 predicts favorable prognosis for patients with colorectal cancer. Clin. Res. Hepatol. Gastroenterol. 2015 39 1 98 106 10.1016/j.clinre.2014.06.014 25130795
    [Google Scholar]
  28. Panichpol K. Waterman P.G. Novel flavonoids from the stem of Popowia cauliflora. Phytochemistry 1978 17 8 1363 1367 10.1016/S0031‑9422(00)94590‑4
    [Google Scholar]
  29. Deodhar M. Black D.S. Kumar N. Acid catalyzed stereoselective rearrangement and dimerization of flavenes: synthesis of dependensin. Tetrahedron 2007 63 24 5227 5235 10.1016/j.tet.2007.03.173
    [Google Scholar]
  30. Lim S.S. Jung S.H. Ji J. Shin K.H. Keum S.R. Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. J. Pharm. Pharmacol. 2010 53 5 653 668 10.1211/0022357011775983 11370705
    [Google Scholar]
  31. Moorthy N.S.H.N. Singh R.J. Singh H.P. Gupta S.D. Synthesis, biological evaluation and in silico metabolic and toxicity prediction of some flavanone derivatives. Chem. Pharm. Bull. (Tokyo) 2006 54 10 1384 1390 10.1248/cpb.54.1384 17015974
    [Google Scholar]
  32. Kurchatova M.N. Durnova N.A. Polukonova N.V. The effect of flavonoids extracts on the dioxydin induction of micronuclei in red blood cells of outbred white mice. Proc. Voronezh State University. Series: Chem. Biol. Pharm. 2014 2 58 65
    [Google Scholar]
  33. Rothenburger J. Haslinger E. New cucurbitacine glycosides fromGratiola officinalis L. Monatsh. Chem. 1995 126 12 1331 1339 10.1007/BF00807062
    [Google Scholar]
  34. Stuppner H. Müller E.P. Structure revision of gratioside. Phytochemistry 1994 37 5 1483 1485 10.1016/S0031‑9422(00)90439‑4 7765766
    [Google Scholar]
  35. Nagaprashantha L.D. Vatsyayan R. Singhal J. Lelsani P. Prokai L. Awasthi S. Singhal S.S. 2′-Hydroxyflavanone inhibits proliferation, tumor vascularization and promotes normal differentiation in VHL-mutant renal cell carcinoma. Carcinogenesis 2011 32 4 568 575 10.1093/carcin/bgr021 21304051
    [Google Scholar]
  36. Awasthi S. Singhal S.S. Singhal J. Nagaprashantha L. Li H. Yuan Y.C. Liu Z. Berz D. Igid H. Green W.C. Tijani L. Tonk V. Rajan A. Awasthi Y. Singh S.P. Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget 2018 9 90 36202 36219 10.18632/oncotarget.26329
    [Google Scholar]
  37. Cherian J. Sehgal A. Singh S.K. Vamanu E. Singh M.P. 2′-Hydroxyflavanone: a bioactive compound that protects against cancers. Appl. Sci. (Basel) 2022 12 19 9543 10.3390/app12199543
    [Google Scholar]
  38. Bose C. Singh S.P. Igid H. Green W.C. Singhal S.S. Lee J. Palade P.T. Rajan A. Ball S. Tonk V. Hindle A. Tarbox M. Awasthi S. Topical 2′-Hydroxyflavanone for Cutaneous Melanoma. Cancers (Basel) 2019 11 10 1556 10.3390/cancers11101556 31615091
    [Google Scholar]
  39. Kobayashi T. Nakata T. Kuzumaki T. Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett. 2002 176 1 17 23 10.1016/S0304‑3835(01)00738‑8 11790449
    [Google Scholar]
  40. Casagrande F. Darbon J.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK111Abbreviations: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; PI 3-kinase, phosphatidylinositol 3-kinase; PKC, protein kinase C; DTT, dithiothreitol; RIPA, radioimmunoprecipitation assay buffer. Biochem. Pharmacol. 2001 61 10 1205 1215 10.1016/S0006‑2952(01)00583‑4 11322924
    [Google Scholar]
  41. Lim D.Y. Jeong Y. Tyner A.L. Park J.H.Y. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am. J. Physiol. Gastrointest. Liver Physiol. 2007 292 1 G66 G75 10.1152/ajpgi.00248.2006 16901994
    [Google Scholar]
  42. Li W.X. Cui C.B. Cai B. Wang H.Y. Yao X.S. Flavonoids from Vitex trifolia L. inhibit cell cycle progression at G 2/M phase and induce apoptosis in mammalian cancer cells. J. Asian Nat. Prod. Res. 2005 7 4 615 626 10.1080/10286020310001625085 16087636
    [Google Scholar]
  43. Chowdhury A.R. Sharma S. Mandal S. Goswami A. Mukhopadhyay S. Majumder H.K. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem. J. 2002 366 2 653 661 10.1042/bj20020098 12027807
    [Google Scholar]
  44. Helton E.S. Chen X. p53 modulation of the DNA damage response. J. Cell. Biochem. 2007 100 4 883 896 10.1002/jcb.21091 17031865
    [Google Scholar]
  45. Wu H. Huang M. Liu Y. Shu Y. Liu P. Luteolin Induces Apoptosis by Up-regulating miR-34a in Human Gastric Cancer Cells. Technol. Cancer Res. Treat. 2015 14 6 747 755 10.7785/tcrt.2012.500434 24988056
    [Google Scholar]
  46. Kang K.A. Piao M.J. Hyun Y.J. Zhen A.X. Cho S.J. Ahn M.J. Yi J.M. Hyun J.W. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Exp. Mol. Med. 2019 51 4 1 14 10.1038/s12276‑019‑0238‑y 30988303
    [Google Scholar]
  47. Madunić J. Madunić I.V. Gajski G. Popić J. Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018 413 11 22 10.1016/j.canlet.2017.10.041 29097249
    [Google Scholar]
  48. Kim S.M. Vetrivel P. Ha S.E. Kim H.H. Kim J.A. Kim G.S. Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell. J. Nutr. Biochem. 2020 83 108427 10.1016/j.jnutbio.2020.108427 32559585
    [Google Scholar]
  49. Smiljkovic M. Stanisavljevic D. Stojkovic D. Petrovic I. Marjanovic Vicentic J. Popovic J. Golic Grdadolnik S. Markovic D. Sankovic-Babice S. Glamoclija J. Stevanovic M. Sokovic M. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 2017 16 795 807 10.17179/excli2017‑300 28827996
    [Google Scholar]
  50. Chung C.S. Jiang Y. Cheng D. Birt D.F. Impact of adenomatous polyposis coli (APC) tumor supressor gene in human colon cancer cell lines on cell cycle arrest by apigenin. Mol. Carcinog. 2007 46 9 773 782 10.1002/mc.20306 17620292
    [Google Scholar]
  51. Lu, H.F Chie Y.J. Yang M.S. Lee C.S. Fu J.J. Yang J.S. Tan T.W. Wu S.H. Ma Y.S. Ip S.W. Chung J.G. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax- and Bcl-2-triggered mitochondrial pathway. Int. J. Oncol. 2010 36 6 1477 1484 10.3892/ijo_00000634 20428772
    [Google Scholar]
  52. Zhong W.F. Wang X.H. Pan B. Li F. Kuang L. Su Z.X. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol. Lett. 2016 12 4 2894 2899 10.3892/ol.2016.4989 27698876
    [Google Scholar]
  53. Liu H. Hao J. Wu C. Liu G. Wang X. Yu J. Liu Y. Zhao H. Eupatilin alleviates lipopolysaccharide-induced acute lung injury by inhibiting inflammation and oxidative stress. Med. Sci. Monit. 2019 25 8289 8296 10.12659/MSM.917406 31680664
    [Google Scholar]
  54. Zhang W. Popovich D.G. Effect of soyasapogenol A and soyasapogenol B concentrated extracts on HEP-G2 cell proliferation and apoptosis. J. Agric. Food Chem. 2008 56 8 2603 2608 10.1021/jf0731550 18361499
    [Google Scholar]
  55. El-Keiy M.M. Radwan A.M. Mohamed T.M. Cytotoxic effect of soy bean saponin against colon cancer. J. Biosci. Med. (Irvine) 2019 7 7 70 86 10.4236/jbm.2019.77006
    [Google Scholar]
  56. Ellington A.A. Berhow M. Singletary K.W. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis 2004 26 1 159 167 10.1093/carcin/bgh297 15471899
    [Google Scholar]
  57. Ellington A.A. Berhow M.A. Singletary K.W. Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 2006 27 2 298 306 10.1093/carcin/bgi214 16113053
    [Google Scholar]
  58. Wang L. Yun L. Wang X. Sha L. Wang L. Sui Y. Zhang H. RETRACTED: Endoplasmic reticulum stress triggered by Soyasapogenol B promotes apoptosis and autophagy in colorectal cancer. Life Sci. 2019 218 16 24 10.1016/j.lfs.2018.12.023 30553871
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206323280241029215900
Loading
/content/journals/acamc/10.2174/0118715206323280241029215900
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test