Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Breast cancer is a significant global health challenge, contributing substantially to cancer-related deaths. Conventional treatment methods, including hormone therapy, chemotherapy, surgical interventions, and radiation, have long been utilized. However, these traditional treatments are often associated with serious side effects and drug resistance, limiting their efficacy.

Aim

This review aims to explore the potential of medicinal plants used in breast cancer management in East Africa, focusing on their bioactive compounds and anticancer properties.

Methods

A comprehensive literature search was conducted to examine the effectiveness of medicinal plants in treating breast cancer across Kenya, Ethiopia, Uganda, Tanzania, and Rwanda. Relevant studies published between 2003 and 2023 were identified using keywords related to breast cancer and medicinal plants. The search was performed across multiple databases, including Google Scholar, PubMed, Scopus, Web of Science Core Collection, and Science Direct.

Results

Numerous natural compounds found in East African medicinal plants including (Lemongrass,) Tabebuia avellanedae, (African Cherry), , , (Ashwagandha, (Turmeric), (Mangosteen, (Grapevine), (Java Plum), (Drumstick Tree), (Tea), (Soybean), , Madagascar Periwinkle), (Wild Currant) exhibit significant anticancer properties. These compounds have demonstrated the ability to reduce breast cancer aggressiveness, inhibit cancer cell proliferation, and modulate cancer-related pathways. Current research focuses on these natural and dietary compounds to develop more effective strategies for treating breast cancer.

Conclusion

The findings suggested that East African medicinal plants hold promise as complementary treatments for breast cancer, offering potential benefits such as affordability, cultural appropriateness, and sustainability. Further research into these plants and their bioactive compounds could revolutionize breast cancer treatment, improving survival rates and addressing the rising incidence of breast cancer-related fatalities.

Other

The review underscores the importance of continued research, conservation, and the integration of ancient healing methods to fully harness the potential of East African flora in breast cancer management.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206338557240909081833
2024-09-18
2024-12-26
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. Lopez-GonzalezL. Sanchez CendraA. Sanchez CendraC. Roberts CervantesE.D. EspinosaJ.C. PekarekT. Fraile-MartinezO. García-MonteroC. Rodriguez-SlockerA.M. Jiménez-ÁlvarezL. GuijarroL.G. Aguado-HencheS. MonserratJ. Alvarez-MonM. PekarekL. OrtegaM.A. Diaz-PedreroR. Exploring biomarkers in breast cancer: Hallmarks of diagnosis, treatment, and follow-up in clinical practice.Medicina (Kaunas)202460116810.3390/medicina6001016838256428
    [Google Scholar]
  3. WatkinsE.J. Overview of breast cancer.JAAPA20193210131710.1097/01.JAA.0000580524.95733.3d31513033
    [Google Scholar]
  4. BurguinA. DiorioC. DurocherF. Breast cancer treatments: Updates and new challenges.J. Pers. Med.202111880810.3390/jpm1108080834442452
    [Google Scholar]
  5. MaksymowiczM. MachowiecP. KorzeniowskaA. BaranN. BielakA. NowakA. CywkaŁ. SzwedW. NowakA. BoguszK. Adverse effects in the management of breast cancer – Recent studies.J. Educ. Health Sport2023371112410.12775/JEHS.2023.37.01.001
    [Google Scholar]
  6. ObeaguE.I. BabarQ. VincentC.C.N. UdenzeC.L. EzeR. OkaforC.J. IfionuB.I. AmaezeA.A. AmaezeF.N. Therapeutic targets in breast cancer signaling: A review.J. Pharm. Res. Int.20213356A829910.9734/jpri/2021/v33i56A33889
    [Google Scholar]
  7. ZhuJ. JiaoD. WangC. LuZ. ChenX. LiL. SunX. QinL. GuoX. ZhangC. QiaoJ. YanM. CuiS. LiuZ. Neoadjuvant efficacy of three targeted therapy strategies for HER2-positive breast cancer based on the same chemotherapy regimen.Cancers (Basel)20221418450810.3390/cancers1418450836139667
    [Google Scholar]
  8. FadhalE. Unraveling the significance of signal transduction pathways: Key players in cancer development and progression.J. Cancer Ther. Res.2023311910.52793/JCTR.2023.3(1)‑28
    [Google Scholar]
  9. LinW.H. CooperL.M. AnastasiadisP.Z. Cadherins and catenins in cancer: Connecting cancer pathways and tumor microenvironment.Front. Cell Dev. Biol.202311113701310.3389/fcell.2023.113701337255594
    [Google Scholar]
  10. AttiqA. AfzalS. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment.Front. Pharmacol.202314125572710.3389/fphar.2023.125572737680708
    [Google Scholar]
  11. HeK. GanW.J. Wnt/β-Catenin signaling pathway in the development and progression of colorectal cancer.Cancer Manag. Res.20231543544810.2147/CMAR.S41116837250384
    [Google Scholar]
  12. ShoebM. Anticancer agents from medicinal plants.Bangladesh J. Pharmacol.200812354110.3329/bjp.v1i2.486
    [Google Scholar]
  13. NewmanD.J. CraggG.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b0105526852623
    [Google Scholar]
  14. EkponoE.U. AjaP.M. IbiamU.A. AlumE.U. EkponoU.E. Ethanol root-extract of Sphenocentrum jollyanum restored altered haematological markers in plasmodium berghei-infected mice.Earthline J. Chem. Sci.20192218920310.34198/ejcs.2219.189203
    [Google Scholar]
  15. ErisaK. RaphaelI. UgwuO.P.C. AlumE.U. Exploration of medicinal plants used in the management of Malaria in Uganda.NIJRMS202341101108
    [Google Scholar]
  16. OfforC. Ugwu OkechukwuP.C. Alum EstherU. The anti-diabetic effect of ethanol leaf-extract of Allium sativum on albino rats.2014411310.5829/idosi.ijpms.2014.4.1.1103.
    [Google Scholar]
  17. AjaP. AniO. OfforC. OrjiO. AlumE. Evaluation of anti-diabetic effect and liver enzymes activity of ethanol extract of Pterocarpus santalinoides in alloxan induced diabetic albino rats.Glab. J. Biotech. Biochem.2015102778310.5829/idosi.gjbb.2015.10.02.93128
    [Google Scholar]
  18. Paul-ChimaU.O. ErisaK. RaphaelI. Emmanuel IO. UgoA.E. Michael BO. SubbarayanS. SankarapandiyanV. Exploring indigenous medicinal plants for managing Diabetes mellitus in Uganda: Ethnobotanical insights, pharmacotherapeutic strategies, and national development alignment.INOSR Exp. Sci.202312221422410.59298/INOSRES/2023/2.17.1000
    [Google Scholar]
  19. UgwuO.P.C. AlumE.U. OkonM.B. AjaP.M. ObeaguE.I. OnyenekeE.C. Ethanol root extract and fractions of Sphenocentrum jollyanum abrogate hyperglycaemia and low body weight in streptozotocin-induced diabetic Wistar albino rats.RPS Phar. Pharm. Rep.202322rqad01010.1093/rpsppr/rqad010
    [Google Scholar]
  20. AgbaforK.N. OnuohaS.C. OminyiM. OrinyaO.F. EzeaniN. AlumE. Antidiabetic, hypolipidemic and antiathrogenic properties of leaf extracts of Ageratum conyzoides in streptozotocin-induced diabetic rats.Middle East J. Sci. Res.2015231024182423
    [Google Scholar]
  21. AsogwaF.C. OkoyeC.O.B. Ugwu OkechukwuP.C. Alum EstherU. NzubechukwuE. Alum EstherU. Egwu ChineduO. Phytochemistry and antimicrobial assay of Jatropha curcas extracts on some clinically isolated bacteria: A comparative analysis.Europ. J. Appl. Sci.201571121610.5829/idosi.ejas.2015.7.1.1125
    [Google Scholar]
  22. AjaP.M. ChiadikaobiC.D. AguP.C. AleB.A. AniO.G. EkponoE.U. OgwoniH.A. AwokeJ.N. OgbuP.N. AjaL. NwiteF.E. UkachiO.U. OrjiO.U. NwekeP.C. EgwuC.O. EkponoE.U. EwaG.O. IgwenyiI.O. TusubiraD. OfforC.E. MaduagwunaE.K. AlumE.U. UtiD.E. NjokuA. AtokiV.A. AwuchiC.G. Cucumeropsis mannii seed oil ameliorates bisphenol‐A‐induced adipokines dysfunctions and dyslipidemia.Food Sci. Nutr.20231162642265310.1002/fsn3.327137324904
    [Google Scholar]
  23. UtiD.E. IbiamU.A. OmangW.A. UdeozorP.A. UmoruG.U. NwadumS.K. BawaI. AlumE.U. MordiJ.C. OkoroE.O. ObetenU.N. OnweE.N. ZakariS. OpotuO.R. AjaP.M. Buchholzia coriacea leaves attenuated dyslipidemia and oxidative stress in hyperlipidemic rats and its potential targets] in silico.Pharm. Fronts202353e141e15210.1055/s‑0043‑1772607
    [Google Scholar]
  24. IbiamU.A. AlumE.U. OrjiO.U. AjaP.M. NwamakaE.N. UgwuO.P.C. EkponoE.U. Anti-inflammatory effects of Buchholzia coriacea ethanol leaf-extract and fractions in freund’s adjuvant-induced rheumatoid arthritic albino rats.Indo Glob. J. Pharm. Sci.201856341635710.5281/zenodo.1311167
    [Google Scholar]
  25. EzeaniN.N. IbiamU.A. OrjiO.U. IgwenyiI.O. AlokeC. AlumE. Mmaduabuchi AjaP. Chima UgwuO.P. Effects of aqueous and ethanol root extracts of Olax subscopioidea on inflammatory parameters in complete Freund’s adjuvant-collagen type II induced arthritic albino rats.Pharmacogn. J.2019111162510.5530/pj.2019.1.4
    [Google Scholar]
  26. AlokeC. IbiamU.A. ObasiN.A. OrjiO.U. EzeaniN.N. AjaP.M. AlumE.U. MordiJ.C. Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund’s adjuvant‐induced rheumatoid arthritis in rats.J. Food Biochem.2019437e1291210.1111/jfbc.1291231353723
    [Google Scholar]
  27. AjaP.M. AguP.C. EzehE.M. AwokeJ.N. OgwoniH.A. DeusdeditT. EkponoE.U. IgwenyiI.O. AlumE.U. UgwujaE.I. IbiamA.U. AfiukwaC.A. AdegboyegaA.E. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: De novo synthesis of test compounds, molecular docking, and ADMET studies.Bull. Natl. Res. Cent.20214519910.1186/s42269‑021‑00554‑6
    [Google Scholar]
  28. IbiamU.A. UtiD.E. EjeogoC.C. OrjiO.U. AjaP.M. NwamakaE.N. AlumE.U. ChukwuC. AlokeC. ChinedumK.E. AguP. NwobodoV. In vivo and in silico assessment of ameliorative effects of Xylopia aethiopica on testosterone propionate-induced benign prostatic hyperplasia.Pharm. Fronts202352e64e7610.1055/s‑0043‑1768477
    [Google Scholar]
  29. Alum EstherU. OyikaM. Ugwu OkechukwuP.C. AjaP.M. ObeaguE.I. EgwuC. OkonM. Comparative analysis of mineral constituents of ethanol leaf and seed extracts of Datura stramonium.202381143151
    [Google Scholar]
  30. IbiamU.A. AlumE.U. AjaP.M. OrjiO.U. NwamakaE.N. UgwuO.P.C. Comparative analysis of chemical composition of Buchholzia coriacea ethanol leaf-extract, aqueous and ethylacetate fractions.Indo J. Pharm. Sci.20185763586369
    [Google Scholar]
  31. AlumE.U. AjaW. UgwuO.P.C. ObeaguE.I. OkonM.B. Assessment of vitamin composition of ethanol leaf and seed extracts of Datura stramonium.Avicenna J. Med. Biochem.2023111929710.34172/ajmb.2023.2421
    [Google Scholar]
  32. Ugwu OkechukwuP.C. UgoE.U. ObeaguE.I. Alum EstherU. AjaP.M. IfeanyiE. BenO.M. Anti-nutritional and gas chromatography-mass spectrometry (GC-MS) analysis of ethanol root extract and fractions of Sphenocentrum jollyanum.RPS Pharm. Pharmacol.202322rqad007.10.1093/rpsppr/rqad007
    [Google Scholar]
  33. HuangX. LiangC. YangH. LiX. DengX. LiangX. LiL. HuangZ. LuD. MaY. LuoZ. Curcumin induces apoptosis and inhibits the growth of adrenocortical carcinoma: Identification of potential candidate genes and pathways by transcriptome analysis.Oncol. Lett.202121647610.3892/ol.2021.1273733907586
    [Google Scholar]
  34. SakK. Chemotherapy and dietary phytochemical agents.Chemother. Res. Pract.2012201211110.1155/2012/28257023320169
    [Google Scholar]
  35. AlumE.U. UgwuO.P.C. AjaP.M. ObeaguE.I. InyaJ.E. OnyeijeA.P. AguE. AwuchiC.G. Restorative effects of ethanolic leaf extract of Datura stramonium against methotrexate-induced hematological impairments.Cogent Food Agric.202391225877410.1080/23311932.2023.2258774
    [Google Scholar]
  36. AlumE. InyaJ. P.CU. ObeaguE. ChinyereA. OrjiO. OnyemaO. Ethanolic leaf extract of Datura stramonium attenuates methotrexate-induced biochemicalalterations in wistar albino rats.RPS Pharm. Pharmacol. Rep.20232rqac01110.1093/rpsppr/rqac011
    [Google Scholar]
  37. AlumE.U. FamurewaA.C. OrjiO.U. AjaP.M. NwiteF. OhucheS.E. UkasoanyaS.C. NnajiL.O. JoshuaD. IgweK.U. ChimaS.F. Nephroprotective effects of Datura stramonium leaves against methotrexate nephrotoxicity via attenuation of oxidative stress-mediated inflammation and apoptosis in rats.Avicenna J. Phytomed.202313437738710.22038/AJP.2023.2190337663387
    [Google Scholar]
  38. GiaquintoA.N. SungH. MillerK.D. KramerJ.L. NewmanL.A. MinihanA. JemalA. SiegelR.L. Breast cancer statistics, 2022.CA Cancer J. Clin.202272652454110.3322/caac.2175436190501
    [Google Scholar]
  39. AlumE.U. UmoruG.U. UtiD.E. AjaP.M. UgwuO.P. OrjiO.U. NwaliB.U. EzeaniN.N. EdwinN. OrinyaF.O. Hepato-protective effect of ethanol leaf extract of Datura stramonium in alloxan-induced diabetic albino rats.J. Chem. Soc. Niger.202247581910.46602/jcsn.v47i5.819
    [Google Scholar]
  40. NwadumS.K. IbiamU.A. UtiD.E. UmoruG.U. UdoudohM.P. AjaP.M. AlumE.U. MordiC.J. EkponoE.U. ObetenU.N. OmangW.A. AgadaS.A. Cocos nucifera water ameliorated hepatic complications and attenuated oxidative stress in cadmium-induced hepatotoxicity.Asian J. Biol. Sci.202316452253610.3923/ajbs.2023.522.536
    [Google Scholar]
  41. IacopettaD. CeramellaJ. BaldinoN. SinicropiM. CatalanoA. Targeting breast cancer: An overlook on current strategies.Int. J. Mol. Sci.2023244364310.3390/ijms2404364336835056
    [Google Scholar]
  42. SatherleyL. LloydD.E. Breast cancer.Medicine (Abingdon)2023511424710.1016/j.mpmed.2022.10.008
    [Google Scholar]
  43. BegumS.A. RaniS.J. YeruvaV. Modern methods for breast cancer diagnosis and classification: A current update.Uttar Pradesh J. Zool.2023441918920410.56557/upjoz/2023/v44i193635
    [Google Scholar]
  44. O’SullivanC.C. LoprinziC.L. HaddadT.C. Updates in the evaluation and management of breast cancer.Mayo Clin. Proc.201893679480710.1016/j.mayocp.2018.03.02529866283
    [Google Scholar]
  45. ShapiraA. LivneyY.D. BroxtermanH.J. AssarafY.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance.Drug Resist. Updat.201114315016310.1016/j.drup.2011.01.00321330184
    [Google Scholar]
  46. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  47. AmjadM.T. ChidharlaA. KasiA. Cancer Chemotherapy.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  48. CheongA. McGrathS. CuttsS. Anthracyclines.WikiJ. Med.201851110.15347/wjm/2018.001
    [Google Scholar]
  49. HussenN.H. HasanA.H. MuhammedG.O. YassinA.Y. SalihR.R. EsmailP.A. AlanaziM.M. JamalisJ. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies.Curr. Org. Chem.202327436337710.2174/1385272827666230423144150
    [Google Scholar]
  50. Arrillaga-RomanyI. MonjeM. WenP.Y. Neurologic complications of oncologic therapy.Handbook of Neuro-Oncology Neuroimaging.Academic Press201610.1016/B978‑0‑12‑800945‑1.00015‑X.
    [Google Scholar]
  51. TkaczukK. YaredJ. Update on taxane development: New analogs and new formulations.Drug Des. Devel. Ther.201237137110.2147/DDDT.S28997
    [Google Scholar]
  52. ChenH. ZhangM. DengY. Long noncoding RNAs in taxane resistance of breast cancer.Int. J. Mol. Sci.202324151225310.3390/ijms24151225337569629
    [Google Scholar]
  53. Sousa-PimentaM. EstevinhoL.M. SzopaA. BasitM. KhanK. ArmaghanM. IbrayevaM. Sönmez GürerE. CalinaD. HanoC. Sharifi-RadJ. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel.Front. Pharmacol.202314115730610.3389/fphar.2023.115730637229270
    [Google Scholar]
  54. ŠkubníkJ. PavlíčkováV. RumlT. RimpelováS. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy.Plants202110356910.3390/plants1003056933802861
    [Google Scholar]
  55. MarupudiN.I. HanJ.E. LiK.W. RenardV.M. TylerB.M. BremH. Paclitaxel: A review of adverse toxicities and novel delivery strategies.Expert Opin. Drug Saf.20076560962110.1517/14740338.6.5.60917877447
    [Google Scholar]
  56. MontagnaG. FerraroE. PilewskieM.L. Neoadjuvant chemotherapy for nonmetastatic breast cancer.Adv. Oncol.202221476110.1016/j.yao.2022.01.004
    [Google Scholar]
  57. ChanY.H.Y. KwokC.C.H. TseD.M.S. LeeH.M. TamP.Y. CheungP.S.Y. Preoperative considerations and benefits of neoadjuvant chemotherapy: Insights from a 12-year review of the Hong Kong breast cancer registry.Hong Kong Med. J.202329319820710.12809/hkmj21933337019476
    [Google Scholar]
  58. AntoniniM. MattarA. PannainG.D. GebrimL.H. FerraroO. LopesR.C.G. RealJ.M. Integrative review of clinical trials and meta-analysis of the main studies of neoadjuvant chemotherapy in the treatment of breast cancer in the past 30 years.Mastology202333e2023002710.29289/2594539420230027
    [Google Scholar]
  59. KellyC.M. HortobagyiG.N. Adjuvant chemotherapy in early-stage breast cancer: What, when, and for whom?Surg. Oncol. Clin. N. Am.201019364966810.1016/j.soc.2010.03.00720620933
    [Google Scholar]
  60. McCarthyN.J. SwainS.M. Update on adjuvant chemotherapy for early breast cancer.Oncology (Williston Park)20001491267128011033824
    [Google Scholar]
  61. Orrantia-BorundaE. Anchondo-NuñezP. Acuña-AguilarL.E. Gómez-VallesF.O. Ramírez-ValdespinoC.A. Subtypes of breast cancer.Breast Cancer. MayrovitzH.N. Exon Publications202236122153
    [Google Scholar]
  62. EngA. McCormackV. dos-Santos-SilvaI. Receptor-defined subtypes of breast cancer in indigenous populations in Africa: A systematic review and meta-analysis.PLoS Med.2014119e100172010.1371/journal.pmed.100172025202974
    [Google Scholar]
  63. HackbartH. CuiX. LeeJ.S. Androgen receptor in breast cancer and its clinical implication.Transl. Breast Cancer Res.202343010.21037/tbcr‑23‑4437946721
    [Google Scholar]
  64. MercoglianoM.F. BruniS. MauroF.L. SchillaciR. Emerging targeted therapies for HER2-positive breast cancer.Cancers (Basel)2023157198710.3390/cancers1507198737046648
    [Google Scholar]
  65. ObidiroO. BattogtokhG. AkalaE.O. Triple negative breast cancer treatment options and limitations: Future outlook.Pharmaceutics2023157179610.3390/pharmaceutics1507179637513983
    [Google Scholar]
  66. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑532517735
    [Google Scholar]
  67. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑036344672
    [Google Scholar]
  68. MondalJ. PanigrahiA.K. Khuda-BukhshA.R. Conventional chemotherapy: Problems and scope for combined therapies with certain herbal products and dietary supplements. Austin.J. Mol. Cell Biol.20141110
    [Google Scholar]
  69. SaldanhaS.N. TollefsbolT.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes.J. Oncol.2012201219246410.1155/2012/192464
    [Google Scholar]
  70. LiaoG.S. ApayaM.K. ShyurL.F. Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy.Evid. Based Complement. Alternat. Med.2013201343794810.1155/2013/437948
    [Google Scholar]
  71. AsiimweJ.B. NagendrappaP.B. AtukundaE.C. KamatenesiM.M. NamboziG. ToloC.U. OgwangP.E. SarkiA.M. Prevalence of the use of herbal medicines among patients with cancer: A systematic review and meta-analysis.Evid. Based Complement. Alternat. Med.20212021996303810.1155/2021/9963038
    [Google Scholar]
  72. OmaraT. OderoM.P. ObakiroS.B. Medicinal plants used for treating cancer in Kenya: An ethnopharmacological overview.Bull. Natl. Res. Cent.202246114810.1186/s42269‑022‑00840‑x
    [Google Scholar]
  73. IsbilenO. VolkanE. Anticancer activities of Allium sativum L. against MCF-7 and MDA-MB-231 breast cancer cell lines mediated by caspase-3 and caspase-9.Cyprus J. Med. Sci.20215430531210.5152/cjms.2020.1848
    [Google Scholar]
  74. MaitishaG. AimaitiM. AnZ. LiX. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway.Mol. Biol. Rep.202148117261727210.1007/s11033‑021‑06722‑134626309
    [Google Scholar]
  75. Al-AsmariA.K. AlbalawiS.M. AtharM.T. KhanA.Q. Al-ShahraniH. IslamM. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines.PLoS One2015108e013581410.1371/journal.pone.013581426288313
    [Google Scholar]
  76. TalibW.H. AwajanD. AlqudahA. AlsawwafR. AlthunibatR. Abu AlRoosM. Al SafadiA. Abu AsabS. HadiR.W. Al KuryL.T. Targeting cancer hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic basis and therapeutic targets.Molecules2024296137310.3390/molecules2906137338543009
    [Google Scholar]
  77. MoremaneM.M. AbrahamsB. TilokeC. Moringa oleifera: A review on the antiproliferative potential in breast cancer cells.Curr. Issues Mol. Biol.20234586880690210.3390/cimb4508043437623253
    [Google Scholar]
  78. AjibareA.C. EbuehiO.A.T. AdisaR.A. SofidiyaM.O. OlugbuyiroJ.A.O. AkinyedeK.A. IyiolaH.A. AdegokeY.A. OmoruyiS.I. EkpoO.E. Fractions of Hoslundia opposita Vahl and hoslundin induced apoptosis in human cancer cells via mitochondrial-dependent reactive oxygen species (ROS) generation.Biomed. Pharmacother.202215311347510.1016/j.biopha.2022.11347536076500
    [Google Scholar]
  79. SinghM.K. DhongadeH. TripathiD.K. Orthosiphon pallidus, a potential treatment for patients with breast cancer.J. Pharmacopuncture201720426527310.3831/KPI.2017.20.03230151296
    [Google Scholar]
  80. OmaraT. KipropA.K. RamkatR.C. CherutoiJ. KagoyaS. Moraa NyangenaD. Azeze TeboT. NteziyaremyeP. Nyambura KaranjaL. JepchirchirA. MaiyoA. Jematia KiptuiB. MbabaziI. Kiwanuka NakiguliC. NakabuyeB.V. Chepkemoi KoskeM. Medicinal plants used in traditional management of cancer in Uganda: A review of ethnobotanical surveys, phytochemistry, and anticancer studies.Evid. Based Complement. Alternat. Med.202020201352908110.1155/2020/352908132256639
    [Google Scholar]
  81. IbrahimM. KaushikN. SowemimoA. OdukoyaO. Review of the phytochemical and pharmacological studies of the Genus Markhamia.Pharmacogn. Rev.20161019505910.4103/0973‑7847.17654727041874
    [Google Scholar]
  82. MatataD. NgassapaO. MoshiM. MachumiF. OosthuizenK. SwanepoelB. VenablesL. KoekemoerT. HeydenreichM. KazyobaP. Van de VenterM. In vitro antioxidant and cytotoxic activity of the root extract of Aspilia mossambicensis (Oliv) wild (Asteraceae).J. Med. Plants Res.20201461362410.5897/JMPR2020.6993
    [Google Scholar]
  83. ObakiroS.B. KipropA. K’owinoI. AndimaM. OworR.O. ChachaR. KigonduE. Phytochemical, cytotoxicity, and antimycobacterial activity evaluation of extracts and compounds from the stem bark of Albizia coriaria Welw ex.Oliver. Evid. Based Complement. Alternat. Med.20222022714851110.1155/2022/7148511
    [Google Scholar]
  84. LiuR. ChoiH.S. KimS.L. KimJ.H. YunB.S. LeeD.S. 6-methoxymellein isolated from carrot (Daucus carota L.) targets breast cancer stem cells by regulating NF-κB signaling.Molecules20202519437410.3390/molecules2519437432977636
    [Google Scholar]
  85. WaghA.S. ButleS.R. Preliminary phytochemical analysis and in vitro anticancer activity of Spathodea campanulata P.Beauv. Asian J. Pharm. Pharmacol.20195S1374110.31024/ajpp.2019.5.s1.3
    [Google Scholar]
  86. IlangoS. SahooD.K. PaitalB. KathirvelK. GabrielJ.I. SubramaniamK. JayachandranP. DashR.K. HatiA.K. BeheraT.R. MishraP. NirmaladeviR. A review on Annona muricata and its anticancer activity.Cancers (Basel)20221418453910.3390/cancers1418453936139697
    [Google Scholar]
  87. NabendeP.N. NamukhosiP. Safety and anti-proliferative activity of Prunus africana, Warburgia stuhlmannii and Maytenus senegalensis extracts in breast and colon cancer cell lines.Masters Thesis, Jomo Kenyatta University of Agriculture and Technology2015
    [Google Scholar]
  88. SakthiveK.M. KannanN. AngelineA. GuruvayoorappanC. Anticancer activity of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica against Dalton’s ascitic lymphoma induced solid and ascitic tumor model.Asian Pac. J. Cancer Prev.20121383989399510.7314/APJCP.2012.13.8.398923098505
    [Google Scholar]
  89. PatelF. UpadhyayK. MammenD. RobinE. RamachandranA.V. BaxiD. Phytochemical composition and antiproliferative activity of Opuntia elatior Mill.: In vitro and in silico studies on breast cancer cell line MCF-7.J. Appl. Biol. Biotechnol.20231211712710.7324/JABB.2024.144233
    [Google Scholar]
  90. AnagoA.D. Gaetan SegboJ.A. GnangnonF. AkpoviC.D. AgbanglaC. Some medicinal plants with anti-breast cancer activity and the input of phytotherapy in the treatment of breast cancer.Eur. Sci. J.20231918666610.19044/esj.2023.v19n18p66
    [Google Scholar]
  91. SundararajanP. DeyA. SmithA. DossA.G. RajappanM. NatarajanS. Studies of anticancer and antipyretic activity of Bidens pilosa whole plant.Afr. Health Sci.200661273016615823
    [Google Scholar]
  92. SinghG. PasssariA.K. SinghP. LeoV.V. SubbarayanS. KumarB. SinghB.P. lalhlenmawia, H.; Kumar, N.S. Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS.BMC Complement. Altern. Med.201717149210.1186/s12906‑017‑2000‑029145848
    [Google Scholar]
  93. BartolomeA.P. VillaseñorI.M. YangW.C. Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology.Evid. Based Complement. Alternat. Med.2013201315110.1155/2013/34021523935661
    [Google Scholar]
  94. BasimS. KasimA. Cytotoxic activity of the ethyl acetate extract of Iraqi carica papaya leaves in breast and lung cancer cell lines.Asian Pac. J. Cancer Prev.202324258158610.31557/APJCP.2023.24.2.58136853308
    [Google Scholar]
  95. Ugwu OkechukwuP.C. AlumE.U. IbiamU.A. UgwujaE. AjaP.M. IgwenyiI. OrjiO. ChinyereA. NwamE.N. EgwuC. Antioxidant effect of Buchholzia coriacea ethanol leaf-extract and fractions on freund’s adjuvant-induced arthritis in albino rats: A comparative study.Slov. Vet. Res.2022591314510.26873/SVR‑1150‑2022
    [Google Scholar]
  96. ObeaguE.I. ObeaguG.U. EzeonwumeluJ.O.C. AlumE.U. UgwuO.P.C. Paul-ChimaO. Antioxidants and pregnancy: Impact on maternal and fetal health.NIJBAS202341172510.59298/NIJBAS/2023/1.3.11111
    [Google Scholar]
  97. OfforC. AlumE. P.CU. Determination of ascorbic acid contents of fruits and vegetables.2015510310.5829/idosi.ijpms.2015.5.1.1105
    [Google Scholar]
  98. Alum EstherU. DianaM.C. OkonM. UtiD. ObeaguE.I. AjaP.M. OkechukwuE.I. Phytochemical composition of Datura stramonium ethanol leaf and seed extracts: A comparative study.2023101118125
    [Google Scholar]
  99. ThakurV.S. DebG. BabcookM.A. GuptaS. Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention.AAPS J.201416115116310.1208/s12248‑013‑9548‑524307610
    [Google Scholar]
  100. AggarwalR. JhaM. ShrivastavaA. JhaA.K. Natural compounds: Role in reversal of epigenetic changes.Biochemistry (Mosc.)201580897298910.1134/S000629791508002726547065
    [Google Scholar]
  101. ChlebowskiR.T. Current concepts in breast cancer chemoprevention. Polish Archiv.Intern. Med.2014124419119910.20452/pamw.219024618912
    [Google Scholar]
  102. LephartE.D. Modulation of aromatase by phytoestrogens.Enzyme Res.2015201559465610.1155/2015/594656
    [Google Scholar]
  103. Küpeli AkkolE. BardakciH. BarakT.H. AschnerM. Şeker KaratoprakG. KhanH. HussainY. Herbal ingredients in the prevention of breast cancer: Comprehensive review of potential molecular targets and role of natural products.Oxid. Med. Cell. Longev.20222022512310.1155/2022/6044640
    [Google Scholar]
  104. BorinT. AngaraK. RashidM. AchyutB. ArbabA. Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis.Int. J. Mol. Sci.20171812266110.3390/ijms1812266129292756
    [Google Scholar]
  105. MitraS. DashR. Natural products for the management and prevention of breast cancer.Evid. Based Complement. Alternat. Med.20182018832469610.1155/2018/8324696
    [Google Scholar]
  106. KunoT. TsukamotoT. HaraA. TanakaT. Cancer chemoprevention through the induction of apoptosis by natural compounds.J. Biophys. Chem.20123215617310.4236/jbpc.2012.32018
    [Google Scholar]
  107. Dall’AcquaS. Natural products as antimitotic agents.Curr. Top. Med. Chem.201414202272228510.2174/156802661466614113009531125434355
    [Google Scholar]
  108. AkbarA. AzmatR. BatoolM. AlmutairiB.O. Nadeem RiazM. Rhoifolin protects cisplatin mediated pulmonary toxicity via attenuation of oxidative stress, inflammatory response, apoptosis and histopathological damages.J. King Saud Univ. Sci.202436510314910.1016/j.jksus.2024.103149
    [Google Scholar]
  109. BorgesV.F. ChanA. LinN.U. TondaM.E. ShilkrutM. AlemanyC.A. A phase 1b/2 dose escalation and expansion study of OP-1250 in combination with ribociclib or alpelisib in patients with advanced and/or metastatic estrogen receptor–positive (ER+)/HER2-negative (HER2-) breast cancer.J. Clin. Oncol.20234116_supplTPS1127TPS112710.1200/JCO.2023.41.16_suppl.TPS1127
    [Google Scholar]
  110. SchlamI. Chavez-MacGregorM. Best of the year: Advanced breast cancer in 2023.Breast20247410367710.1016/j.breast.2024.10367738401422
    [Google Scholar]
  111. MirandaS.E.M. de Alcantara LemosJ. OttoniF.M. CassaliG.D. TownsendD.M. de Aguiar FerreiraC. AlvesR.J. FerreiraL.A.M. de BarrosA.L.B. Preclinical evaluation of L-fucoside from lapachol-loaded nanoemulsion as a strategy to breast cancer treatment.Biomed. Pharmacother.202417011605410.1016/j.biopha.2023.11605438150876
    [Google Scholar]
  112. ZhangZ. BaiL. LuC. LiX. WuY. ZhangX. ShenY. Lapachol inhibits the growth of lung cancer by reversing M2-like macrophage polarization via activating NF-κB signaling pathway.Cell. Signal.202311211090210.1016/j.cellsig.2023.11090237751828
    [Google Scholar]
  113. WangH. WangZ. ZhangZ. LiuJ. HongL. β-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: Mechanisms of action and future prospects.Adv. Nutr.20231451085111010.1016/j.advnut.2023.05.01337247842
    [Google Scholar]
  114. BaoX. ZhangY. ZhangH. XiaL. Molecular mechanism of β-sitosterol and its derivatives in tumor progression.Front. Oncol.20221292697510.3389/fonc.2022.92697535756648
    [Google Scholar]
  115. WangH. LiuJ. ZhangZ. PengJ. WangZ. YangL. WangX. HuS. HongL. β-sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer.Free Radic. Biol. Med.202421413715710.1016/j.freeradbiomed.2024.02.00438364944
    [Google Scholar]
  116. WangS. ChangX. ZhangJ. LiJ. WangN. YangB. PanB. ZhengY. WangX. OuH. WangZ. Ursolic acid inhibits breast cancer metastasis by suppressing glycolytic metabolism via activating SP1/caveolin-1 signaling.Front. Oncol.20211174558410.3389/fonc.2021.74558434568078
    [Google Scholar]
  117. ZhangY. MaX. LiH. ZhuangJ. FengF. LiuL. LiuC. SunC. Identifying the effect of ursolic acid against triple-negative breast cancer: Coupling network pharmacology with experiments verification.Front. Pharmacol.20211268577310.3389/fphar.2021.68577334858165
    [Google Scholar]
  118. YuanR. TanY. SunP.H. QinB. LiangZ. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC.Front. Pharmacol.202314112289010.3389/fphar.2023.112289036937842
    [Google Scholar]
  119. GoelA. Current understanding and future prospects on Berberine for anticancer therapy.Chem. Biol. Drug Des.2023102117720010.1111/cbdd.1423136905314
    [Google Scholar]
  120. DevarajanN. NathanJ. MathangiR. MahendraJ. GanesanS.K. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management.J. Biochem. Mol. Toxicol.2023373e2327810.1002/jbt.2327836588295
    [Google Scholar]
  121. JoilD. TavhareS.D. Role of withaferin A in the management of breast cancer: A comprehensive review.Int. J. Ayurvedic Med.202314361662310.47552/ijam.v14i3.3687
    [Google Scholar]
  122. KumarS. MathewS.O. AharwalR.P. TulliH.S. MohanC.D. SethiG. AhnK.S. WebberK. SandhuS.S. BishayeeA. WithaferinA. WithaferinA. A pleiotropic anticancer agent from the indian medicinal plant Withania somnifera (L.) Dunal.Pharmaceuticals (Basel)202316216010.3390/ph1602016037259311
    [Google Scholar]
  123. DevabattulaG. PandaB. YadavR. GoduguC. The potential pharmacological effects of natural product withaferin A in cancer: Opportunities and challenges for clinical translation.Planta Med.202490644045310.1055/a‑2289‑960038588695
    [Google Scholar]
  124. HuangM. ZhaiB.T. FanY. SunJ. ShiY.J. ZhangX.F. ZouJ.B. WangJ.W. GuoD.Y. Targeted drug delivery systems for curcumin in breast cancer therapy.Int. J. Nanomedicine2023184275431110.2147/IJN.S41068837534056
    [Google Scholar]
  125. ZhaoP. QiuJ. PanC. TangY. ChenM. SongH. YangJ. HaoX. Potential roles and molecular mechanisms of bioactive ingredients in curcumae rhizoma against breast cancer.Phytomedicine202311415481010.1016/j.phymed.2023.15481037075623
    [Google Scholar]
  126. ZhuJ. LiQ. WuZ. XuY. JiangR. Curcumin for treating breast cancer: A review of molecular mechanisms, combinations with anticancer drugs, and nanosystems.Pharmaceutics20241617910.3390/pharmaceutics1601007938258090
    [Google Scholar]
  127. MehraA. SangwanR. OwusuE. Xanthone derivatives: A pharmacological panorama of versatility.Curr. Bioact. Compd.202420202410.2174/0115734072278162240406123303
    [Google Scholar]
  128. FarghadaniR. NaiduR. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC).Biomed. Pharmacother.202316511517010.1016/j.biopha.2023.11517037481930
    [Google Scholar]
  129. RamakrishnanS. Mad NasirN. StanslasJ. Imran Faisal HamdiA. Alif Mohammad LatifM. Farhana BaharuddinF. One-pot two-component synthesis of halogenated xanthone, 3-o substituted xanthone, and prenylated xanthone derivatives as aromatase inhibitors.Results Chem.2023510078910.1016/j.rechem.2023.100789
    [Google Scholar]
  130. SongB. WangW. TangX. GohR.M.W.J. ThuyaW.L. HoP.C.L. ChenL. WangL. Inhibitory potential of resveratrol in cancer metastasis: From biology to therapy.Cancers (Basel)20231510275810.3390/cancers1510275837345095
    [Google Scholar]
  131. Cotino-NájeraS. HerreraL.A. Domínguez-GómezG. Díaz-ChávezJ. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer.Front. Pharmacol.202314128750510.3389/fphar.2023.128750538026933
    [Google Scholar]
  132. GolmohammadiM. ZamanianM.Y. JalalS.M. NoraldeenS.A.M. Ramírez-CoronelA.A. OudahaK.H. ObaidR.F. AlmullaA.F. BazmandeganG. KamiabZ. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action.Food Sci. Nutr.202311127458746810.1002/fsn3.369938107139
    [Google Scholar]
  133. LuG. WangX. ChengM. WangS. MaK. The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art.Biomed. Pharmacother.202316511513210.1016/j.biopha.2023.11513237423169
    [Google Scholar]
  134. MaugeriA. CalderaroA. PatanèG.T. NavarraM. BarrecaD. CirmiS. FeliceM.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms.Int. J. Mol. Sci.2023243295210.3390/ijms2403295236769274
    [Google Scholar]
  135. SethiG. RathP. ChauhanA. RanjanA. ChoudharyR. RamniwasS. SakK. AggarwalD. RaniI. TuliH.S. Apoptotic mechanisms of quercetin in liver cancer: Recent trends and advancements.Pharmaceutics202315271210.3390/pharmaceutics1502071236840034
    [Google Scholar]
  136. KciukM. AlamM. AliN. RashidS. GłowackaP. SundarajR. CelikI. YahyaE.B. DubeyA. ZerrougE. KontekR. Epigallocatechin-3-gallate therapeutic potential in cancer: Mechanism of action and clinical implications.Molecules20232813524610.3390/molecules2813524637446908
    [Google Scholar]
  137. SidhuD. VasundharaM. DeyP. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies.Phytomedicine202412315520710.1016/j.phymed.2023.15520738000106
    [Google Scholar]
  138. MalikP. SinghR. KumarM. MalikA. MukherjeeT.K. Understanding the phytoestrogen genistein actions on breast cancer: Insights on estrogen receptor equivalence, pleiotropic essence and emerging paradigms in bioavailability modulation.Curr. Top. Med. Chem.202323151395141310.2174/156802662366623010316302336597609
    [Google Scholar]
  139. KonstantinouE.K. GioxariA. DimitriouM. PanoutsopoulosG.I. PanagiotopoulosA.A. Molecular pathways of genistein activity in breast cancer cells.Int. J. Mol. Sci.20242510555610.3390/ijms2510555638791595
    [Google Scholar]
  140. ChahatJ. JhaK.T. BhatiaR. ChawlaP.A. Alkaloids as additional weapons in the fight against breast cancer: A review.Curr. Med. Chem.202431325113514810.2174/092986733166623091116252737702171
    [Google Scholar]
  141. Gjorgieva AckovaD. MaksimovaV. SmilkovK. ButtariB. AreseM. SasoL. Alkaloids as natural NRF2 inhibitors: Chemoprevention and cytotoxic action in cancer.Pharmaceuticals (Basel)202316685010.3390/ph1606085037375797
    [Google Scholar]
  142. ZhangJ. WuY. LiY. LiS. LiuJ. YangX. XiaG. WangG. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism.Phytomedicine202412915560010.1016/j.phymed.2024.15560038614043
    [Google Scholar]
  143. KumarV. SharmaK. SachanR. AlhayyaniS. Al-abbasiF.A. SinghR. AnwarF. Co‐drug development of gallic acid and metformin targeting the pro‐inflammatory cytokines for the treatment of breast cancer.J. Biochem. Mol. Toxicol.2023374e2330010.1002/jbt.2330036703564
    [Google Scholar]
  144. Keyvani-GhamsariS. RahimiM. KhorsandiK. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent.Food Sci. Nutr.202311105856587210.1002/fsn3.361537823155
    [Google Scholar]
  145. RajiE. VahedianV. GolshanradP. NahavandiR. BehshoodP. SoltaniN. GharibiM. RashidiM. MaroufiN.F. The potential therapeutic effects of Galbanic acid on cancer.Pathol. Res. Pract.202324815468610.1016/j.prp.2023.15468637487315
    [Google Scholar]
  146. MaiB. HanL. ZhongJ. ShuJ. CaoZ. FangJ. ZhangX. GaoZ. XiaoF. Rhoifolin alleviates alcoholic liver disease in vivo and in vitro via inhibition of the TLR4/NF-κB signaling pathway.Front. Pharmacol.20221387889810.3389/fphar.2022.87889835685625
    [Google Scholar]
  147. SuknoppakitP. WangteeraprasertA. SimanurakO. SomranJ. ParhiraS. PekthongD. SrisawangP. Calotropis gigantea stem bark extract activates HepG2 cell apoptosis through ROS and its effect on cytochrome P450.Heliyon202395e1637510.1016/j.heliyon.2023.e1637537251821
    [Google Scholar]
  148. YanX.X. ZhaoY.Q. HeY. DisayathanoowatT. PandithH. IntaA. YangL.X. Cytotoxic and pro-apoptotic effects of botanical drugs derived from the indigenous cultivated medicinal plant Paris polyphylla var. yunnanensis.Front. Pharmacol.202314110082510.3389/fphar.2023.110082536778018
    [Google Scholar]
  149. LimaK.M.M. Calandrini de AzevedoL.F. RissinoJ.D. ValeV.V. CostaE.V.S. DolabelaM.F. NagamachiC.Y. PieczarkaJ.C. Anticancer potential and safety profile of β-lapachone in vitro.Molecules2024296139510.3390/molecules2906139538543031
    [Google Scholar]
  150. KimJ. KimM.M. Effect of lapachol on the inhibition of matrix metalloproteinase related to the invasion of human fibrosarcoma cells.Curr. Mol. Pharmacol.202114462062610.2174/187446721366620100512223033019942
    [Google Scholar]
  151. VundruS.S. KaleR.K. SinghR.P. β-sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells.BMC Complement. Altern. Med.201313128010.1186/1472‑6882‑13‑28024160369
    [Google Scholar]
  152. KhwazaV. OyedejiO.O. AderibigbeB.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update.Int. J. Mol. Sci.20202116592010.3390/ijms2116592032824664
    [Google Scholar]
  153. AlmatroodiS.A. AlsahliM.A. RahmaniA.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways.Molecules20222718588910.3390/molecules2718588936144625
    [Google Scholar]
  154. JiangX. JiangZ. JiangM. SunY. Berberine as a potential agent for the treatment of colorectal cancer.Front. Med. (Lausanne)2022988699610.3389/fmed.2022.88699635572960
    [Google Scholar]
  155. MallipeddiH. ThyagarajanA. SahuR.P. Implications of withaferin-A for triple-negative breast cancer chemoprevention.Biomed. Pharmacother.202113411112410.1016/j.biopha.2020.11112433434782
    [Google Scholar]
  156. KhanA. SiddiquiS. MasseyS. SalujaD. HusainS.A. IqbalM.A. Abstract P6-11-16: Withaferin A induces metabolic crisis in breast cancer cell lines via decreasing c-myc expression: Potential therapeutic implication.Cancer Res202383(5-Supplement), P6-111610.1158/1538‑7445.SABCS22‑P6‑11‑16
    [Google Scholar]
  157. AtteeqM. Evaluating anticancer properties of withaferin A: A potent phytochemical.Front. Pharmacol.20221397532010.3389/fphar.2022.97532036339589
    [Google Scholar]
  158. WangY. YuJ. CuiR. LinJ. DingX. Curcumin in treating breast cancer: A review.SLAS Technol.201621672373110.1177/221106821665552427325106
    [Google Scholar]
  159. FarghadaniR. NaiduR. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer.Int. J. Mol. Sci.2022234214410.3390/ijms2304214435216255
    [Google Scholar]
  160. FuM. QiuS.X. XuY. WuJ. ChenY. YuY. XiaoG. A new xanthone from the pericarp of Garcinia mangostana.Nat. Prod. Commun.20138121733173410.1177/1934578X130080121924555285
    [Google Scholar]
  161. YangL. XuZ. WangW. Garcinone-E exhibits anticancer effects in HeLa human cervical carcinoma cells mediated via programmed cell death, cell cycle arrest and suppression of cell migration and invasion.AMB Express202010112610.1186/s13568‑020‑01060‑032676834
    [Google Scholar]
  162. JangJ.Y. ImE. KimN.D. Mechanism of resveratrol-induced programmed cell death and new drug discovery against cancer: A review.Int. J. Mol. Sci.202223221368910.3390/ijms23221368936430164
    [Google Scholar]
  163. KursvietieneL. KopustinskieneD.M. StanevicieneI. MongirdieneA. KubováK. MasteikovaR. BernatonieneJ. Anti-cancer properties of resveratrol: A focus on its impact on mitochondrial functions.Antioxidants20231212205610.3390/antiox1212205638136176
    [Google Scholar]
  164. ČižmárikováM. MichalkováR. MirossayL. MojžišováG. ZigováM. BardelčíkováA. MojžišJ. Ellagic acid and cancer hallmarks: Insights from experimental evidence.Biomolecules20231311165310.3390/biom1311165338002335
    [Google Scholar]
  165. RatherR.A. BhagatM. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health.Cancer Med.20209249181919210.1002/cam4.141131568659
    [Google Scholar]
  166. LotfiN. YousefiZ. GolabiM. KhalilianP. GhezelbashB. MontazeriM. ShamsM.H. BaghbadoraniP.Z. EskandariN. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update.Front. Immunol.202314107753110.3389/fimmu.2023.107753136926328
    [Google Scholar]
  167. ChengZ. ZhangZ. HanY. WangJ. WangY. ChenX. ShaoY. ChengY. ZhouW. LuX. WuZ. A review on anti-cancer effect of green tea catechins.J. Funct. Foods20207410417210.1016/j.jff.2020.104172
    [Google Scholar]
  168. OhJ.W. MuthuM. PushparajS.S.C. GopalJ. Anticancer therapeutic effects of green tea catechins (GTCs) when integrated with antioxidant natural components.Molecules2023285215110.3390/molecules2805215136903395
    [Google Scholar]
  169. KimS.H. KimC.W. JeonS.Y. GoR.E. HwangK.A. ChoiK.C. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models.Lab. Anim. Res.201430414315010.5625/lar.2014.30.4.14325628724
    [Google Scholar]
  170. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑935655306
    [Google Scholar]
  171. GonçalvesB.M.F. DuarteN. RamalheteC. BarbosaF. MadureiraA.M. FerreiraM.J.U. Monoterpene indole alkaloids with anticancer activity from Tabernaemontana species.Phytochem. Rev.202410.1007/s11101‑024‑09964‑6
    [Google Scholar]
  172. JiangY. PeiJ. ZhengY. MiaoY. DuanB. HuangL. Gallic acid: A potential anti-cancer agent.Chin. J. Integr. Med.202228766167110.1007/s11655‑021‑3345‑234755289
    [Google Scholar]
  173. KimJ.W. ChoiJ. ParkM.N. KimB. Apoptotic effect of gallic acid via regulation of p-p38 and ER stress in PANC-1 and MIA PaCa-2 cells pancreatic cancer cells.Int. J. Mol. Sci.202324201523610.3390/ijms24201523637894916
    [Google Scholar]
  174. LabbozzettaM. NotarbartoloM. PomaP. MauriciA. IngugliaL. MarchettiP. RizziM. BaruchelloR. SimoniD. D’AlessandroN. Curcumin as a possible lead compound against hormone-independent, multidrug-resistant breast cancer.Ann. N. Y. Acad. Sci.20091155127828310.1111/j.1749‑6632.2009.03699.x19250217
    [Google Scholar]
  175. FarooqiA.A. QureshiM.Z. KhalidS. AttarR. MartinelliC. SabitaliyevichU.Y. NurmurzayevichS.B. TavernaS. PoltronieriP. XuB. Regulation of cell signaling pathways by berberine in different cancers: Searching for missing pieces of an incomplete jig-saw puzzle for an effective cancer therapy.Cancers (Basel)201911447810.3390/cancers1104047830987378
    [Google Scholar]
  176. LiuY. TangZ.G. LinY. QuX.G. LvW. WangG.B. LiC.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells.Biomed. Pharmacother.201792333810.1016/j.biopha.2017.05.04428528183
    [Google Scholar]
  177. QinW. ZhangK. ClarkeK. WeilandT. SauterE.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue.Nutr. Cancer201466227027710.1080/01635581.2014.86891024447120
    [Google Scholar]
  178. KimS.H. ParkH.J. MoonD.O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway.Oncol. Lett.20171364427443210.3892/ol.2017.595028599444
    [Google Scholar]
  179. GernapudiR. GernapudiR. ZhouQ. Chemopreventive activities of shikonin in breast cancer.Biochem. Pharmacol. (Los Angel.)201434e16310.4172/2167‑0501.1000e163
    [Google Scholar]
  180. PengS.J. LiJ. ZhouY. TuoM. QinX.X. YuQ. ChengH. LiY.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells.Genet. Mol. Res.20171621310.4238/gmr1602943428407181
    [Google Scholar]
  181. KucukO. Soy foods, isoflavones, and breast cancer.Cancer2017123111901190310.1002/cncr.3061428263364
    [Google Scholar]
  182. DebG. ThakurV.S. LimayeA.M. GuptaS. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells.Mol. Carcinog.201554648549910.1002/mc.2212124481780
    [Google Scholar]
  183. AtwellL.L. ZhangZ. MoriM. FarrisP.E. VettoJ.T. NaikA.M. OhK.Y. ThuillierP. HoE. ShannonJ. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy.Cancer Prev. Res. (Phila.)20158121184119110.1158/1940‑6207.CAPR‑15‑011926511489
    [Google Scholar]
  184. WangW. LvM. WangY. ZhangJ. Development of novel application of 3,3′-diindolylmethane: Sensitizing multidrug resistance human breast cancer cells to γ-irradiation.Pharm. Biol.201654123164316810.1080/13880209.2016.119219827307186
    [Google Scholar]
  185. News & BlogAvailable from: https://www.ncikenya.go.ke/
  186. MachariaL.W. MureithiM.W. AnzalaO. Cancer in Kenya: Types and infection-attributable. Data from the adult population of two National referral hospitals (2008-2012).AAS Open Res.201812510.12688/aasopenres.12910.532382698
    [Google Scholar]
  187. OmaraT. KipropA.K. WangilaP. WacooA.P. KagoyaS. NteziyaremyeP. Peter OderoM. Kiwanuka NakiguliC. Baker ObakiroS. The scourge of aflatoxins in Kenya: A 60-year review (1960 to 2020).J. Food Qual.2021202113110.1155/2021/8899839
    [Google Scholar]
  188. BourhiaM. Abdelaziz ShahatA. Mohammed AlmarfadiO. Ali NaserF. Mostafa AbdelmageedW. Ait Haj SaidA. El GueddariF. NaamaneA. BenbacerL. KhlilN. Ethnopharmacological survey of herbal remedies used for the treatment of cancer in the greater Casablanca-Morocco.Evid. Based Complement. Alternat. Med.20192019161345710.1155/2019/1613457
    [Google Scholar]
  189. KuruppuA.I. ParanagamaP. GoonasekaraC.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka.Saudi Pharm. J.201927456557310.1016/j.jsps.2019.02.00431061626
    [Google Scholar]
  190. AyeleT.T. A review on traditionally used medicinal plants/herbs for cancer therapy in Ethiopia: Current status, challenge and future perspectives.Org. Chem. Curr. Res.201872100019210.4172/2161‑0401.1000192
    [Google Scholar]
  191. Abu-DarwishM.S. EfferthT. Medicinal plants from near east for cancer therapy.Front. Pharmacol.201895610.3389/fphar.2018.0005629445343
    [Google Scholar]
  192. NigatuT. DanielS. EndalamawG. BeyeneP. StinaO. Cytotoxicity of selected Ethiopian medicinal plants used in traditional breast cancer treatment against breast-derived cell lines.J. Med. Plants Res.201913918819810.5897/JMPR2019.6772
    [Google Scholar]
  193. KefalewA. AsfawZ. KelbessaE. Ethnobotany of medicinal plants in Ada’a District, East Shewa Zone of Oromia Regional State, Ethiopia.J. Ethnobiol. Ethnomed.20151112510.1186/s13002‑015‑0014‑625889311
    [Google Scholar]
  194. BelaynehA. BussaN.F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia.J. Ethnobiol. Ethnomed.20141011810.1186/1746‑4269‑10‑1824499509
    [Google Scholar]
  195. ArayaS. AberaB. GidayM. Study of plants traditionally used in public and animal health management in Seharti Samre District, Southern Tigray, Ethiopia.J. Ethnobiol. Ethnomed.20151112210.1186/s13002‑015‑0015‑525889411
    [Google Scholar]
  196. ChekoleG. AsfawZ. KelbessaE. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia.J. Ethnobiol. Ethnomed.2015111410.1186/1746‑4269‑11‑425572933
    [Google Scholar]
  197. TugumeP. KakudidiE.K. BuyinzaM. NamaalwaJ. KamatenesiM. MucunguziP. KalemaJ. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda.J. Ethnobiol. Ethnomed.2016121510.1186/s13002‑015‑0077‑426762159
    [Google Scholar]
  198. LutotiS. KaggwaB. KambaP.F. MukonzoJ. SesaaziC.D. KatuuraE. Ethnobotanical survey of medicinal plants used in breast cancer treatment by traditional health practitioners in Central Uganda.J. Multidiscip. Healthc.20231663565110.2147/JMDH.S38725636919184
    [Google Scholar]
  199. GaobotseG. VenkataramanS. BrownP.D. MasisiK. KwapeT.E. NkweD.O. RantongG. MakhzoumA. The use of African medicinal plants in cancer management.Front. Pharmacol.202314112238810.3389/fphar.2023.112238836865913
    [Google Scholar]
  200. EsubalewS.T. BeleteA. LulekalE. GabrielT. EngidaworkE. AsresK. Review of ethnobotanical and ethnopharmacological evidences of some Ethiopian medicinal plants traditionally used for the treatment of cancer.Ethiop. J. Health Dev.201731161187
    [Google Scholar]
  201. HassanE.M. MatloubA.A. AboutablM.E. IbrahimN.A. MohamedS.M. Assessment of anti-inflammatory, antinociceptive, immunomodulatory, and antioxidant activities of Cajanus cajan L. seeds cultivated in Egypt and its phytochemical composition.Pharm. Biol.20165481380139110.3109/13880209.2015.107838326452527
    [Google Scholar]
  202. Cancer is a leading cause of death in Tanzania.Available from: https://www.tanzaniacancercare.org/
  203. MtowaA.C. Delay in seeking referral treatment among breast cancer patients at ocean road cancer institute and Muhimbili national hospitals Dar Es Salaam, Tanzania.J. Public Health Inform.201461e2910.5210/ojphi.v6i1.5067
    [Google Scholar]
  204. MatataD.Z. NgassapaO.D. MachumiF. MoshiM.J. Screening of plants used as traditional anticancer remedies in mkuranga and same districts, tanzania, using brine shrimp toxicity bioassay.Evid. Based Complement. Alternat. Med.20182018303461210.1155/2018/3034612
    [Google Scholar]
  205. KueteV. KruscheB. YounsM. VoukengI. FankamA.G. TankeoS. LacmataS. EfferthT. Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts.J. Ethnopharmacol.2011134380381210.1016/j.jep.2011.01.03521291988
    [Google Scholar]
  206. NabatanziA.M. NkadimengS. LallN. KabasaJ.D.J. McGawL. Ethnobotany, phytochemistry and pharmacological activity of Kigelia africana (Lam.) Benth. (Bignoniaceae).Plants20209675310.3390/plants906075332549404
    [Google Scholar]
  207. WHO report on cancer: Setting priorities, investing wisely and providing care for all.2020Available from: https://www.who.int/publications/i/item/9789240001299
  208. PaceL.E. DusengimanaJ.M.V. HategekimanaV. HabinezaH. BigirimanaJ.B. TapelaN. MutumbiraC. MpanumusingoE. BrockJ.E. MeserveE. UwumugambiA. DillonD. KeatingN.L. ShulmanL.N. MpungaT. Benign and malignant breast disease at Rwanda’s first public cancer referral center.Oncologist201621557157510.1634/theoncologist.2015‑038827009935
    [Google Scholar]
  209. CumberS.N. NchanjiK.N. Tsoka-GwegweniJ.M. Breast cancer among women in sub-Saharan Africa: Prevalence and a situational analysis.South. Afr. J. Gynaecol. Oncol201792353710.1080/20742835.2017.1391467
    [Google Scholar]
  210. FakudzeN. SarbadhikaryP. GeorgeB. AbrahamseH. Ethnomedicinal uses, phytochemistry, and anticancer potentials of African medicinal fruits: A comprehensive review.Pharmaceuticals (Basel)2023168111710.3390/ph1608111737631032
    [Google Scholar]
  211. ThomfordN.E. SenthebaneD.A. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206338557240909081833
Loading
/content/journals/acamc/10.2174/0118715206338557240909081833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test