Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Acyl urea compounds have garnered significant attention in cancer therapeutics, particularly for their potential effectiveness against cancers that predominantly affect women, such as breast and ovarian cancers. The paper presents a report on the investigation of acyl urea compounds that are reported to involve a multi-faceted approach, including synthetic chemistry, biological assays, and computational modeling. A wealth of information on acyl urea and its purported effects on cancer affecting women has been gathered from different sources and condensed to provide readers with a broad understanding of the role of acyl urea in combating cancer. Acylureas demonstrate promising results by selectively inhibiting key molecular targets associated with cancer progressions, such as EGFR, ALK, HER2, and the Wnt/β-catenin signaling pathway. Specifically, targeting acyl ureas impedes tumor proliferation and metastasis while minimizing harm to healthy tissues, offering a targeted therapeutic approach with reduced side effects compared to conventional chemotherapy. Continued research and clinical trials are imperative to optimize the efficacy and safety profiles of acylurea-based therapies and broaden their applicability across various cancer types. Acyl urea compounds represent a promising class of therapeutics for the treatment of cancers in women, particularly due to their ability to selectively inhibit key molecular targets involved in tumor growth and progression. The combination of synthetic optimization, biological evaluation, and computational modeling has facilitated the identification of several lead compounds with significant anticancer potential. This abstract explores the therapeutic mechanisms and targeted pathways of acyl ureas in combating these malignancies, which will be useful for future studies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206330232240913100744
2024-09-24
2024-12-26
Loading full text...

Full text loading...

References

  1. KumariP. MishraR. MazumderR. MazumderA. SinghA. SinghG. TyagiP.K. An insight into common and advanced synthesis methodologies of acyl urea analogs targeting the CNS.Lett. Org. Chem.202421121006102210.2174/0115701786303718240409044341
    [Google Scholar]
  2. ChaudharyR. ShuaibM. HashimS.R. MishraP.S. Synthesis, characterization and antitumor potential of cinnamoyl urea derivatives.Asian J. Chem.201628241041410.14233/ajchem.2016.19403
    [Google Scholar]
  3. MishraR. MazumderA. MazumderR. MishraP.S. ChaudharyP. Docking study and result conclusion of heterocyclic derivatives having urea and acyl moiety.Asian J. Biomed. Pharm. Sci.20199671310.35841/2249‑622X.67.19‑082
    [Google Scholar]
  4. MartinezM.E. SchmelerK.M. LajousM. NewmanL.A. Cancer screening in low- and middle-income countries.Am. Soc. Clin. Oncol. Educ. Book2024443e43127210.1200/EDBK_43127238843475
    [Google Scholar]
  5. SagguS. RehmanH. AbbasZ.K. AnsariA.A. Recent incidence and descriptive epidemiological survey of breast cancer in Saudi Arabia.Saudi Med. J.201536101176118010.15537/smj.2015.10.1226826446327
    [Google Scholar]
  6. BasudanA. Breast cancer incidence patterns in the Saudi female population: A 17-year retrospective analysis.Medicina20225811161710.3390/medicina5811161736363574
    [Google Scholar]
  7. YeF. DewanjeeS. LiY. JhaN.K. ChenZ.S. KumarA. Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer.Mol. Cancer202322110510.1186/s12943‑023‑01805‑y37415164
    [Google Scholar]
  8. GideT.N. WilmottJ.S. ScolyerR.A. LongG.V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma.Clin. Cancer Res.20182461260127010.1158/1078‑0432.CCR‑17‑226729127120
    [Google Scholar]
  9. ThanopoulouE. KhaderL. CairaM. WardleyA. EttlJ. MigliettaF. NevenP. GuarneriV. Therapeutic strategies for the management of hormone receptor-positive, human epidermal growth factor receptor 2-positive (HR+/HER2+) breast cancer: a review of the current literature.Cancers (Basel)20201211331710.3390/cancers1211331733182657
    [Google Scholar]
  10. FontanaF. AnselmiM. LimontaP. Molecular mechanisms of cancer drug resistance: emerging biomarkers and promising targets to overcome tumor progression.Cancers (Basel)2022147161410.3390/cancers1407161435406386
    [Google Scholar]
  11. PalS.K. HurriaA. Impact of age, sex, and comorbidity on cancer therapy and disease progression.J. Clin. Oncol.201028264086409310.1200/JCO.2009.27.057920644100
    [Google Scholar]
  12. OglatA.A. HasanH. khalil, T.A.; Yahia, A.M.H.; Fawaz, A.H. Study of North Jordanian women’s knowledge of breast cancer causes and medical imaging screening advantages.Inform. Med. Unlocked20244710149010.1016/j.imu.2024.101490
    [Google Scholar]
  13. GubbelsJ.A.A. ClaussenN. KapurA.K. ConnorJ.P. PatankarM.S. The detection, treatment, and biology of epithelial ovarian cancer.J. Ovarian Res.201031810.1186/1757‑2215‑3‑820350313
    [Google Scholar]
  14. FaridiR. ZahraA. KhanK. IdreesM. Oncogenic potential of Human Papillomavirus (HPV) and its relation with cervical cancer.Virol. J.20118126910.1186/1743‑422X‑8‑26921635792
    [Google Scholar]
  15. EsmaeilzadehA.A. NasirzadehF. Uterus Cancer.Eurasian J. Chem. Med. Petroleum Res.2023256383
    [Google Scholar]
  16. McCaughanE. PrueG. ParahooK. McIlfatrickS. McKennaH. Exploring and comparing the experience and coping behaviour of men and women with colorectal cancer after chemotherapy treatment: a qualitative longitudinal study.Psychooncology2012211647110.1002/pon.187121132680
    [Google Scholar]
  17. CorralesL. RosellR. CardonaA.F. MartínC. Zatarain-BarrónZ.L. ArrietaO. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking.Crit. Rev. Oncol. Hematol.202014810289510.1016/j.critrevonc.2020.10289532062313
    [Google Scholar]
  18. KumarP. ManglaB. JavedS. AhsanW. MusyuniP. SivadasanD. AlqahtaniS.S. AggarwalG. A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy.Front. Pharmacol.202314114955410.3389/fphar.2023.114955437274111
    [Google Scholar]
  19. LiW. SunQ. SongL. GaoC. LiuF. ChenY. JiangY. Discovery of 1-(3-aryl-4-chlorophenyl)-3-(p -aryl)urea derivatives against breast cancer by inhibiting PI3K/Akt/mTOR and Hedgehog signalings.Eur. J. Med. Chem.201714172173310.1016/j.ejmech.2017.09.00229107429
    [Google Scholar]
  20. TossettaG. MarzioniD. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway.Pharmacol. Res.202218310636510.1016/j.phrs.2022.10636535901941
    [Google Scholar]
  21. BairdL. KenslerT.W. YamamotoM. Novel NRF2 ‐activated cancer treatments utilizing synthetic lethality.IUBMB Life202274121209123110.1002/iub.268036200139
    [Google Scholar]
  22. ListroR. RossinoG. PiaggiF. SonekanF.F. RossiD. LincianoP. CollinaS. Urea-based anticancer agents. Exploring 100-years of research with an eye to the future.Front Chem.20221099535110.3389/fchem.2022.99535136186578
    [Google Scholar]
  23. AlharbiW. Advancement and recent trends in seeking less toxic and more active anti-cancer drugs: Insights into thiourea based molecules.Main Group Chem.202221388590110.3233/MGC‑210183
    [Google Scholar]
  24. El-AtawyM.A. AlsubaieM.S. AlazmiM.L. HamedE.A. HannaD.H. AhmedH.A. OmarA.Z. Synthesis, characterization, and anticancer activity of new N, N′-Diarylthiourea derivative against breast cancer cells.Molecules20232817642010.3390/molecules2817642037687250
    [Google Scholar]
  25. TabatabaiS.A. NazariM. RezaeeE. A Comprehensive review of soluble epoxide hyådrolase inhibitors evaluating their structure-activity relationship.Mini Rev. Med. Chem.20232319911710.2174/138955752266622053115281235642113
    [Google Scholar]
  26. SubbaiahM.A.M. MeanwellN.A. Bio isosteres of the phenyl ring: recent strategic applications in lead optimization and drug design.J. Med. Chem.20216419140461412810.1021/acs.jmedchem.1c0121534591488
    [Google Scholar]
  27. Acosta-GuzmánP. Ojeda-PorrasA. Gamba-SánchezD. Contemporary approaches for amide bond formation.Adv. Synth. Catal.2023365244359439110.1002/adsc.202301018
    [Google Scholar]
  28. QianL. LinX. GaoX. KhanR.U. LiaoJ.Y. DuS. GeJ. ZengS. YaoS.Q. The dawn of a new era: targeting the “undruggables” with antibody-based therapeutics.Chem. Rev.2023123127782785310.1021/acs.chemrev.2c0091537186942
    [Google Scholar]
  29. LeeP.Y. Md AzhanF.S. LowT.Y. Biomarkers for colorectal cancer chemotherapy: Recent updates and future perspective.Malays. J. Pathol.202345331733138155375
    [Google Scholar]
  30. OhharaY. FukudaN. TakeuchiS. HonmaR. ShimizuY. KinoshitaI. Dosaka-AkitaH. Role of targeted therapy in metastatic colorectal cancer.World J. Gastrointest. Oncol.20168964265510.4251/wjgo.v8.i9.64227672422
    [Google Scholar]
  31. NikolaouS. QiuS. FiorentinoF. RasheedS. TekkisP. KontovounisiosC. The prognostic and therapeutic role of hormones in colorectal cancer: a review.Mol. Biol. Rep.20194611477148610.1007/s11033‑018‑4528‑630535551
    [Google Scholar]
  32. SurduS. Non-melanoma skin cancer: occupational risk from UV light and arsenic exposure.Rev. Environ. Health201429325526410.1515/reveh‑2014‑004025222586
    [Google Scholar]
  33. TobiasJ.S. HochhauserD. Cancer and its management.John Wiley & Sons201410.1002/9781118468753
    [Google Scholar]
  34. BaudinoT. Targeted cancer therapy: the next generation of cancer treatment.Curr. Drug Discov. Technol.201512132010.2174/157016381266615060214431026033233
    [Google Scholar]
  35. IlićI. CvetkovićJ. IlićR. CvetkovićL. MilićevićA. TodorovićS. RanđelovićP. Differences in histological subtypes of invasive lobular breast carcinoma according to immunohistochemical molecular classification.Diagnostics (Basel)202414666010.3390/diagnostics1406066038535080
    [Google Scholar]
  36. VenetisK. Breast cancer during pregnancy as a special type of early-onset breast cancer: analysis of the tumor immune microenvironment and risk profiles.Cells20221115228610.3390/cells11152286
    [Google Scholar]
  37. AlsnerJ. YilmazM. GuldbergP. HansenL.L. OvergaardJ. Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients.Clin. Cancer Res.20006103923393111051239
    [Google Scholar]
  38. AndersonW.F. JatoiI. TseJ. RosenbergP.S. Male breast cancer: a population-based comparison with female breast cancer.J. Clin. Oncol.201028223223910.1200/JCO.2009.23.816219996029
    [Google Scholar]
  39. FengY. SpeziaM. HuangS. YuanC. ZengZ. ZhangL. JiX. LiuW. HuangB. LuoW. LiuB. LeiY. DuS. VuppalapatiA. LuuH.H. HaydonR.C. HeT.C. RenG. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.00130258937
    [Google Scholar]
  40. ParkerM.G. Structure and function of estrogen receptors.Vitam. Horm.19955126728710.1016/S0083‑6729(08)61041‑97483324
    [Google Scholar]
  41. PlatetN. CathiardA.M. GleizesM. GarciaM. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion.Crit. Rev. Oncol. Hematol.2004511556710.1016/j.critrevonc.2004.02.00115207254
    [Google Scholar]
  42. MiricescuD. TotanA. Stanescu-SpinuI.I. BadoiuS.C. StefaniC. GreabuM. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects.Int. J. Mol. Sci.202022117310.3390/ijms2201017333375317
    [Google Scholar]
  43. GuptaS.C. KimJ.H. PrasadS. AggarwalB.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals.Cancer Metastasis Rev.201029340543410.1007/s10555‑010‑9235‑220737283
    [Google Scholar]
  44. MoyerC.L. BrownP.H. Targeting nuclear hormone receptors for the prevention of breast cancer.Front. Med. (Lausanne)202310120094710.3389/fmed.2023.120094737583424
    [Google Scholar]
  45. ZhouB. ZhangB. LiX. LiuX. LiH. LiD. CuiZ. GengH. ZhouL. New 2-aryl-9-methyl-β-carbolinium salts as potential acetylcholinesterase inhibitor agents: synthesis, bioactivity and structure–activity relationship.Sci. Rep.201881155910.1038/s41598‑018‑19999‑329367595
    [Google Scholar]
  46. SwarbrickM.E. BeswickP.J. GleaveR.J. GreenR.H. BinghamS. BountraC. CarterM.C. ChambersL.J. ChessellI.P. ClaytonN.M. CollinsS.D. CorfieldJ.A. HartleyC.D. KleanthousS. LambethP.F. LucasF.S. MathewsN. NaylorA. PageL.W. PayneJ.J. PeggN.A. PriceH.S. SkidmoreJ. StevensA.J. StockerR. StrattonS.C. StuartA.J. WisemanJ.O. Identification of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidinyl] amines and ethers as potent and selective cyclooxygenase-2 inhibitors.Bioorg. Med. Chem. Lett.200919154504450810.1016/j.bmcl.2009.02.08519520573
    [Google Scholar]
  47. HuynhH. NgoV.C. FargnoliJ. AyersM. SooK.C. KoongH.N. ThngC.H. OngH.S. ChungA. ChowP. PollockP. ByronS. TranE. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma.Clin. Cancer Res.200814196146615310.1158/1078‑0432.CCR‑08‑050918829493
    [Google Scholar]
  48. AroraS. AgarwalS. SinghalS. Anticancer activities of thiosemicarbazides/thiosemicarbazones: a review.Int. J. Pharm. Pharm. Sci.2014693441
    [Google Scholar]
  49. PietrobonoS. SteccaB. Targeting the oncoprotein smoothened by small molecules: focus on novel acylguanidine derivatives as potent smoothened inhibitors.Cells201871227210.3390/cells712027230558232
    [Google Scholar]
  50. MoreiraE. PaulinoE. InglesG.Á.H. FontesM.S. SaramagoM. de MoraesF. ThulerL.C.S. de MeloA.C. Efficacy of doxorubicin after progression on carboplatin and paclitaxel in advanced or recurrent endometrial cancer: a retrospective analysis of patients treated at the Brazilian National Cancer Institute (INCA).Med. Oncol.20183532010.1007/s12032‑018‑1086‑729387971
    [Google Scholar]
  51. CarlsonM.J. ThielK.W. LeslieK.K. Past, present, and future of hormonal therapy in recurrent endometrial cancer.Int. J. Womens Health2014642943524833920
    [Google Scholar]
  52. GreenA.K. FeinbergJ. MakkerV. A review of immune checkpoint blockade therapy in endometrial cancer.Am. Soc. Clin. Oncol. Educ. Book2020404023824410.1200/EDBK_28050332213091
    [Google Scholar]
  53. De BaccoF. LuraghiP. MedicoE. ReatoG. GirolamiF. PereraT. GabrieleP. ComoglioP.M. BoccaccioC. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.J. Natl. Cancer Inst.2011103864566110.1093/jnci/djr09321464397
    [Google Scholar]
  54. LiS. ZhaoY. WangK. GaoY. HanJ. CuiB. GongP. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors.Bioorg. Med. Chem.201321112843285510.1016/j.bmc.2013.04.01323628470
    [Google Scholar]
  55. ZhangC. ShengM. lvJ. CaoY. ChenD. JiaL. SunY. RenY. LiL. WengY. YuW. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia–reperfusion.Int. Immunopharmacol.2023124Pt B11104310.1016/j.intimp.2023.11104337844464
    [Google Scholar]
  56. RudinC.M. BrambillaE. Faivre-FinnC. SageJ. Small-cell lung cancer.Nat. Rev. Dis. Primers202171310.1038/s41572‑020‑00235‑033446664
    [Google Scholar]
  57. ErhunmwunseeL. WingS.E. ZouX. CooganP. PalmerJ.R. Lennie WongF. Neighborhood disadvantage and lung cancer risk in a national cohort of never smoking Black women.Lung Cancer2022173212710.1016/j.lungcan.2022.08.02236108579
    [Google Scholar]
  58. JorgeS.E.D.C. KobayashiS.S. CostaD.B. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data.Braz. J. Med. Biol. Res.2014471192993910.1590/1414‑431X2014409925296354
    [Google Scholar]
  59. ZhaoY. YeX. XiongZ. IhsanA. AresI. MartínezM. Lopez-TorresB. Martínez-LarrañagaM.R. AnadónA. WangX. MartínezM.A. Cancer metabolism: the role of ROS in DNA damage and induction of apoptosis in cancer cells.Metabolites202313779610.3390/metabo1307079637512503
    [Google Scholar]
  60. PalmirottaR. QuaresminiD. LoveroD. MannavolaF. DammaccoF. SilvestrisF. Gene fusion in NSCLC: ALK, ROS1, RET, and related treatments.Oncogenomics.Academic Press201944346410.1016/B978‑0‑12‑811785‑9.00031‑4
    [Google Scholar]
  61. MotofeiI.G. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation.Semin. Cancer Biol.202286Pt 360061510.1016/j.semcancer.2021.10.00334695580
    [Google Scholar]
  62. ZahraU. SaeedA. AbdulT. FlörkeU. ErbenM.F. Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review.RSC Advances20221220127101274510.1039/D2RA01781D35496330
    [Google Scholar]
  63. SookaiS. AkermanM.P. MunroO.Q. Chiral Au(III) chelates exhibit unique NCI-60 cytotoxicity profiles and interactions with human serum albumin.Dalton Trans.202453115089510410.1039/D3DT04024K38375922
    [Google Scholar]
  64. WangJ.Q. WangB. MaL.Y. ShiZ. LiuH.M. LiuZ. ChenZ.S. Enhancement of anticancer drug sensitivity in multidrug resistance cells overexpressing ATP-binding cassette (ABC) transporter ABCC10 by CP55, a synthetic derivative of 5-cyano-6-phenylpyrimidin.Exp. Cell Res.2021405211272810.1016/j.yexcr.2021.11272834246653
    [Google Scholar]
  65. SamarghandianS. BoskabadyM. DavoodiS. Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line.Pharmacogn. Mag.201062430931410.4103/0973‑1296.7179921120034
    [Google Scholar]
  66. AlvenS. NqoroX. BuyanaB. AderibigbeB.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer.Pharmaceutics202012540610.3390/pharmaceutics1205040632365495
    [Google Scholar]
  67. FongK.M. ZimmermanP.V. SmithP.J. Lung pathology: the molecular genetics of non-small cell lung cancer.Pathology199527429530110.1080/003130295001691738771143
    [Google Scholar]
  68. ChuQ. VincentM. LoganD. MackayJ.A. EvansW.K. Taxanes as first-line therapy for advanced non-small cell lung cancer: A systematic review and practice guideline.Lung Cancer200550335537410.1016/j.lungcan.2005.06.01016139391
    [Google Scholar]
  69. KönigD. SavicS. RothschildS.I. Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations.Cancers (Basel)202113480410.3390/cancers1304080433671873
    [Google Scholar]
  70. WenH. LinX. SunD. The association between different hormone replacement therapy use and the incidence of lung cancer: a systematic review and meta-analysis.J. Thorac. Dis.202214238139510.21037/jtd‑22‑4835280481
    [Google Scholar]
  71. S ChengE. Weber, M.; Steinberg, J.; Qin Yu, X. Lung cancer risk in never-smokers: An overview of environmental and genetic factors.Chin. J. Cancer Res.202133554856210.21147/j.issn.1000‑9604.2021.05.0234815629
    [Google Scholar]
  72. MundelR. DhadwalS. BhartiS. ChatterjeeM. A comprehensive overview of various cancer types and their progression.Handbook of Oncobiology: From Basic to Clinical Sciences.Springer2024
    [Google Scholar]
  73. Lortet-TieulentJ. RenteriaE. SharpL. WeiderpassE. ComberH. BaasP. BrayF. CoeberghJ.W. SoerjomataramI. Convergence of decreasing male and increasing female incidence rates in major tobacco-related cancers in Europe in 1988–2010.Eur. J. Cancer20155191144116310.1016/j.ejca.2013.10.01424269041
    [Google Scholar]
  74. StrebaL. PopoviciV. MihaiA. MititeluM. LupuC.E. MateiM. VladuI.M. IovănescuM.L. CioboatăR. CălărașuC. BusnatuȘ.S. StrebaC.T. Integrative approach to risk factors in simple chronic obstructive airway diseases of the lung or associated with metabolic syndrome-analysis and prediction.Nutrients20241612185110.3390/nu1612185138931206
    [Google Scholar]
  75. TomlinsonI. IlyasM. JohnsonV. DaviesA. ClarkG. TalbotI. BodmerW. A comparison of the genetic pathways involved in the pathogenesis of three types of colorectal cancer.J. Pathol.19981842148152
    [Google Scholar]
  76. TestaU. PelosiE. CastelliG. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.Med. Sci. (Basel)2018623110.3390/medsci602003129652830
    [Google Scholar]
  77. SladoljevK. PerinE. FerrariA.M. KlarićM. Brnčić-FischerA. EminovićS. Vrdoljak-MozetičD. BabarovicE. Relapsed ovarian high-grade serous carcinoma with long-term survival associated with synchronous primary squamous cell carcinoma of the colon.Proceed. obstet. gynecol.201882139810.17077/2154‑4751.1398
    [Google Scholar]
  78. MiettinenM. LasotaJ. Gastrointestinal stromal tumors (GISTs): definition, occurrence, pathology, differential diagnosis and molecular genetics.Pol. J. Pathol.200354132412817876
    [Google Scholar]
  79. KoniarisL.G. DrugasG. KatzmanP.J. SalloumR. Management of gastrointestinal lymphoma.J. Am. Coll. Surg.2003197112714110.1016/S1072‑7515(03)00002‑412831934
    [Google Scholar]
  80. BardhanK. LiuK. Epigenetics and colorectal cancer pathogenesis.Cancers (Basel)20135267671310.3390/cancers502067624216997
    [Google Scholar]
  81. HelwigE.B. Adenomas and the pathogenesis of cancer of the colon and rectum.Dis. Colon Rectum19592151710.1007/BF0261661313639806
    [Google Scholar]
  82. AbinayaR. SrinathS. SoundaryaS. SridharR. BalasubramanianK.K. BaskarB. Recent developments on synthesis strategies, SAR studies and biological activities of β-Carboline derivatives–an update.J. Mol. Struct.2022126113275010.1016/j.molstruc.2022.132750
    [Google Scholar]
  83. GutiérrezT.J. Editorial: Bioengineered nanoparticles in cancer therapy, Volume III.Front. Mol. Biosci.202411135608110.3389/fmolb.2024.135608138455767
    [Google Scholar]
  84. Al-MahadeenM.M. JaberA.M. Al-NajjarB.O. Design, synthesis and biological evaluation of novel 2-hydroxy-1 H-indene-1,3(2 H)-dione derivatives as FGFR1 inhibitors.Pharmacia2024711910.3897/pharmacia.71.e122127
    [Google Scholar]
  85. HuangH.L. LeeH.Y. TsaiA.C. PengC.Y. LaiM.J. WangJ.C. PanS.L. TengC.M. LiouJ.P. Anticancer activity of MPT0E028, a novel potent histone deacetylase inhibitor, in human colorectal cancer HCT116 cells in vitro and in vivo.PLoS One201278e4364510.1371/journal.pone.0043645
    [Google Scholar]
  86. BanerjeeS. AdhikariN. AminS.A. JhaT. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview.Eur. J. Med. Chem.201916421424010.1016/j.ejmech.2018.12.03930594678
    [Google Scholar]
  87. WangY. TortorellaM. Molecular design of dual inhibitors of PI3K and potential molecular target of cancer for its treatment: A review.Eur. J. Med. Chem.202222811403910.1016/j.ejmech.2021.11403934894440
    [Google Scholar]
  88. BiganzoliL. CuferT. BruningP. ColemanR. DuchateauL. CalvertA.H. GamucciT. TwelvesC. FargeotP. EpelbaumR. LohrischC. PiccartM.J. Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The european organization for research and treatment of cancer 10961 multicenter phase III trial.J. Clin. Oncol.200220143114312110.1200/JCO.2002.11.00512118025
    [Google Scholar]
  89. LumachiF. BrunelloA. MaruzzoM. BassoU. BassoS. Treatment of estrogen receptor-positive breast cancer.Curr. Med. Chem.201320559660410.2174/09298671380499930323278394
    [Google Scholar]
  90. ZhangT. XuJ. DengS. ZhouF. LiJ. ZhangL. LiL. WangQ.E. LiF. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data.PLoS One2018135e019635110.1371/journal.pone.019635129723215
    [Google Scholar]
  91. SmolleE. TaucherV. PichlerM. PetruE. LaxS. HaybaeckJ. Targeting signaling pathways in epithelial ovarian cancer.Int. J. Mol. Sci.20131459536955510.3390/ijms1405953623644885
    [Google Scholar]
  92. LambertJ.M. ChariR.V. Ado-trastuzumab emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer.J. Med. Chem.201457166949696410.1021/jm500766w
    [Google Scholar]
  93. ParmarM.K. LedermannJ.A. ColomboN. Du BoisA. DelaloyeJ.F. KristensenG.B. WheelerS. SwartA.M. QianW. TorriV. FlorianiI. JaysonG. LamontA. TropéC. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial.Lancet200336193752099210610.1016/S0140‑6736(03)13718‑X12826431
    [Google Scholar]
  94. RodriguesC. JoyL.R. SachithanandanS.P. KrishnaS. Notch signalling in cervical cancer.Exp. Cell Res.2019385211168210.1016/j.yexcr.2019.11168231634483
    [Google Scholar]
  95. CarusoG. TomaoF. ParmaG. LapresaM. MultinuF. PalaiaI. AlettiG. ColomboN. Poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer: lessons learned and future directions.Int. J. Gynecol. Cancer202333443144310.1136/ijgc‑2022‑00414936928097
    [Google Scholar]
  96. YakkalaP.A. PenumalluN.R. ShafiS. KamalA. Prospects of topoisomerase inhibitors as promising anti-cancer agents.Pharmaceuticals (Basel)20231610145610.3390/ph1610145637895927
    [Google Scholar]
  97. DurantiS. PietragallaA. DanieleG. NeroC. CiccaroneF. ScambiaG. LorussoD. Role of immune checkpoint inhibitors in cervical cancer: from preclinical to clinical data.Cancers (Basel)2021139208910.3390/cancers1309208933925884
    [Google Scholar]
  98. CetraroP. Plaza-DiazJ. MacKenzieA. Abadía-MolinaF. A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer.Cancers (Basel)2022147167110.3390/cancers1407167135406442
    [Google Scholar]
  99. SongM. ChanA.T. Environmental factors, gut microbiota, and colorectal cancer prevention.Clin. Gastroenterol. Hepatol.201917227528910.1016/j.cgh.2018.07.01230031175
    [Google Scholar]
  100. YermekovaS. OrazgaliyevaM. GoncharovaT. RakhimbekovaF. DushimovaZ. VasilievaT. Mutational damages in malignant lung tumors.Asian Pac. J. Cancer Prev.202324270971610.31557/APJCP.2023.24.2.70936853323
    [Google Scholar]
  101. LiB. JinJ. GuoD. TaoZ. HuX. Immune checkpoint inhibitors combined with targeted therapy: the recent advances and future potentials.Cancers (Basel)20231510285810.3390/cancers1510285837345194
    [Google Scholar]
  102. GrassilliE. CerritoM.G. Emerging actionable targets to treat therapy-resistant colorectal cancers.Cancer Drug Resist.202251366310.20517/cdr.2021.9635582524
    [Google Scholar]
  103. ClinicalTrials.2022Available from: https://clinicaltrials.gov/ (accessed on 9-9-2024)
/content/journals/acamc/10.2174/0118715206330232240913100744
Loading
/content/journals/acamc/10.2174/0118715206330232240913100744
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Acylurea; breast cancer; chemotherapy; colorectal cancer; signaling pathways; targets
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test