Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Colon cancer poses a significant threat to the lives of several patients, impacting their quality of life, thus necessitating its urgent treatment. Lapatinib, a new generation of targeted anti-tumor drugs for clinical application, has yet to be studied for its molecular mechanisms in treating colon cancer.

Objectives

This study aimed to uncover the underlying molecular mechanisms through which lapatinib exerts its therapeutic effects in colon cancer treatment.

Methods

We accessed pertinent data on patients with colon cancer from the Cancer Genome Atlas (TCGA) database and performed bioinformatics analysis to derive valuable insights. The cell counting kit-8 (CCK8) assay was employed to assess whether lapatinib has a potential inhibitory effect on the growth and proliferation of HT-29 cells. Additionally, we employed western blot and real-time quantitative polymerase chain reaction methods to investigate whether lapatinib regulates the expression of the ferroptosis-associated protein GPX4 in HT-29 cells. Furthermore, we utilized specific assay kits to measure the levels of reactive oxygen species (ROS) and malondialdehyde in HT-29 cells treated with lapatinib, aiming to elucidate the precise pattern of cell damage induced by this compound.

Results

GPX4 exhibited high expression levels in tissues from patients with colon cancer and was significantly associated with patient prognosis and diagnosis. Lapatinib inhibited the growth and proliferation of the colon cancer cell line HT-29. Additionally, lapatinib suppressed the expression of GPX4 in HT-29 cells, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially restored its expression. Lapatinib induced an increase in intracellular ROS levels and malondialdehyde content in HT-29 cells, with Fer-1 partially restoring these levels.

Conclusion

Our findings demonstrated that lapatinib could effectively suppress the mRNA and protein expression of GPX4 in colon cancer cells, which elevates intracellular levels of ROS and malondialdehyde, ultimately inducing ferroptosis in these cells. This mechanism underscores the potential of lapatinib as a therapeutic strategy for targeting tumors.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206327756240830062531
2024-09-05
2024-12-26
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. CappellM.S. Pathophysiology, clinical presentation, and management of colon cancer.Gastroenterol. Clin. North Am.2008371124v.10.1016/j.gtc.2007.12.00218313537
    [Google Scholar]
  3. KalantzisI. NonniA. PavlakisK. DelichaE.M. MiltiadouK. KosmasC. ZirasN. GkoumasK. GakiopoulouH. Clinicopathological differences and correlations between right and left colon cancer.World J. Clin. Cases2020881424144310.12998/wjcc.v8.i8.142432368535
    [Google Scholar]
  4. MirónF.I. MeraV.S. TuriñoL.J.D. GonzálezP.I. RuizL.M. SantoyoS.J. Right and left colorectal cancer: differences in post-surgical-care outcomes and survival in elderly patients.Cancers20211311264710.3390/cancers1311264734071191
    [Google Scholar]
  5. DongJ. ChenH. Cardiotoxicity of anticancer therapeutics.Front. Cardiovasc. Med.20185910.3389/fcvm.2018.0000929473044
    [Google Scholar]
  6. HuangY. QinY. HeY. QiuD. ZhengY. WeiJ. ZhangL. YangD.H. LiY. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies.Drug Resist. Updat.20247410108210.1016/j.drup.2024.10108238569225
    [Google Scholar]
  7. SunH. LiX. LiuQ. ShengH. ZhuL. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery.J. Drug Target.202432667270610.1080/1061186X.2024.234912438682299
    [Google Scholar]
  8. ZhaoM. JingZ. ZhouL. ZhaoH. DuQ. SunZ. Pharmacokinetic research progress of anti-tumor drugs targeting for pulmonary administration.Curr. Drug Metab.202021141117112610.2174/138920022199920111119391033183196
    [Google Scholar]
  9. WangS. ZhouD. XuZ. SongJ. QianX. LvX. LuanJ. Anti-tumor drug targets analysis: current insight and future prospect.Curr. Drug Targets201920111180120210.2174/138945012066619040214532530947670
    [Google Scholar]
  10. CrisciS. AmitranoF. SaggeseM. MutoT. SarnoS. MeleS. VitaleP. RongaG. BerrettaM. Di FranciaR. Overview of current targeted anti-cancer drugs for therapy in onco-hematology.Medicina201955841410.3390/medicina5508041431357735
    [Google Scholar]
  11. D’AntonioJ. Chronic myelogenous leukemia.Clin. J. Oncol. Nurs.20059553553810.1188/05.CJON.535‑53816235580
    [Google Scholar]
  12. HeoY.A. Mirvetuximab soravtansine: first approval.Drugs202383326527310.1007/s40265‑023‑01834‑336656533
    [Google Scholar]
  13. AbazaY. McMahonC. GarciaJ.S. Advancements and challenges in the treatment of AML.Am. Soc. Clin. Oncol. Educ. Book2024443e43866210.1200/EDBK_43866238662975
    [Google Scholar]
  14. CappuynsS. CorbettV. YarchoanM. FinnR.S. LlovetJ.M. Critical appraisal of guideline recommendations on systemic therapies for advanced hepatocellular carcinoma.JAMA Oncol.202410339540410.1001/jamaoncol.2023.267737535375
    [Google Scholar]
  15. GalvanoA. GuariniA. IaconoF. CastigliaM. RizzoS. TarantiniL. GoriS. NovoG. BazanV. RussoA. An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy.Expert Opin. Drug Saf.201918648549610.1080/14740338.2019.161337131062991
    [Google Scholar]
  16. Franco-JuárezE.X. González-VillasanaV. Camacho-MollM.E. Rendón-GarlantL. Ramírez-FloresP.N. Silva-RamírezB. Peñuelas-UrquidesK. Cabello-RuizE.D. Castorena-TorresF. Bermúdez de LeónM. Mechanistic insights about sorafenib-, valproic acid- and metformin-induced cell death in hepatocellular carcinoma.Int. J. Mol. Sci.2024253176010.3390/ijms2503176038339037
    [Google Scholar]
  17. JabbourE. KantarjianH.M. AldossI. MontesinosP. LeonardJ.T. Gómez-AlmaguerD. BaerM.R. Gambacorti-PasseriniC. McCloskeyJ. MinamiY. PapayannidisC. RochaV. RousselotP. VachhaniP. WangE.S. WangB. HennessyM. VorogA. PatelN. YehT. RiberaJ.M. Ponatinib vs imatinib in frontline philadelphia chromosome–positive acute lymphoblastic leukemia.JAMA2024331211814182310.1001/jama.2024.478338722621
    [Google Scholar]
  18. JabbourE. ShortN.J. JainN. HuangX. Montalban-BravoG. BanerjeeP. RezvaniK. JiangX. KimK.H. Kanagal-ShamannaR. KhouryJ.D. PatelK. KadiaT.M. DaverN. ChienK. AlvaradoY. Garcia-ManeroG. IssaG.C. HaddadF.G. KwariM. ThankachanJ. DelumpaR. MacaronW. GarrisR. KonoplevaM. RavandiF. KantarjianH. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial.Lancet Haematol.2023101e24e3410.1016/S2352‑3026(22)00319‑236402146
    [Google Scholar]
  19. MotzerR.J. PortaC. EtoM. PowlesT. GrünwaldV. HutsonT.E. AlekseevB. RhaS.Y. MerchanJ. GohJ.C. LalaniA.K.A. De GiorgiU. MelicharB. HongS.H. GurneyH. Méndez-VidalM.J. KopyltsovE. TjulandinS. GordoaT.A. KozlovV. AlyasovaA. WinquistE. MarotoP. KimM. PeerA. ProcopioG. TakagiT. WongS. BedkeJ. SchmidingerM. Rodriguez-LopezK. BurgentsJ. HeC. OkparaC.E. McKenzieJ. ChoueiriT.K. MotzerR.J. ChoueiriT. HutsonT. NordquistL. SpigelD. MerchanJ. GeorgeS. SrinivasS. CurtiB. PippasA. HeathE. RaoS. GourdinT. HashmiM. BurhaniN. MolinaA. KoletskyA. AlterR. AlemanyC. GartrellB. CusnirM. VyasH. GraffS. SquillanteC. KnappM. PercentI. PatelV. SpitzD. HarknessC. MatranaM. OvertonL. RicheyS. RichardsD. GhaddarH. GalamagaR. HaukeR. HaggertyJ. HarrisR. JohnsM. KochuparambilS. KollmannsbergerC. ShayeganB. CanilC. WinquistE. SperlichC. BjarnasonG. BasappaN. LoidlW. HorningerW. SchmidingerM. D’HondtL. SchrijversD. RuttenA. SchattemanP. WynendaeleW. LuytenD. SiderisS. GennigensC. MelicharB. KatolickaJ. TomasekJ. PrausovaJ. BuchlerT. HoleckovaP. BarthelemyP. TosiD. AbbarB. NegrierS. OudardS. VoogE. ZanettaS. RollandF. BedkeJ. SiemerS. WirthM. SchleicherJ. De SantisM. BergmannL. StaehlerM. IvanyiP. LutzC. Von AmsbergG. BoegemannM. ZimmermannU. McDermottR. BamburyR. DonnellanP. BreathnachO. Leibowitz-AmitR. GoldmanO. PeerA. SaridD. NechushtanH. BergerR. NeimanV. CalabroF. PedrazzoliP. BoccardoF. HamzajA. RiccardiF. De GiorgiU. PignataS. SantarossaS. MassariF. ToniniG. AccetturaC. CarrozzaF. SabbatiniR. VerzoniE. BiscaldiE. SuelmannB. van den EertweghA. van ThienenH. KalinkaE. JassemJ. Sulzyc-BielickaV. MandziukS. TjulandinS. KaryakinO. AlyasovaA. AlekseevB. ZyrianovA. MatveevV. KopyltsovE. KozlovV. Arranz ArijaJ.A. GarciaP.B. Climent DuranM.A. ValderramaB.P. GonzalezE.E. Garcia del Muro SolansF.J. Garcia-Donas JimenezJ. GordoaT.A. Maroto ReyJ.P. GonzalezB.M. Mendez VidalM.J. VazquezJ.P. RodriguezC.S. PulidoE.G. CrespoG. NuñezN.F. MartinezI.D. BeyerJ. FischerN. GlenH. FrazerR. AllisonJ. PowlesT. MalikJ. RalphC. RudmanS. GeldartT. BamiasA. BakaS. GeorgouliasV. PapazisisK. KalofonosH. TimotheadouE. ByunS-S. LimB. RhaS.Y. SeoS.I. ChungJ. KimM. HongS-H. LeeJ.L. ParkS.H. KwonT.G. DavisI. WongS. ByardI. WeickhardtA. GurneyH. GohJ. OsawaT. MasumoriN. HatakeyamaS. SaitoM. TomitaY. MiuraY. NagataM. KimuraG. OyaM. TakagiT. NakamuraY. HasumiH. IwamuraM. KomiyaA. KomaruA. OyamaM. MatsukawaY. SogaN. KatoM. NozawaM. MiyakeM. NakanoY. EdamuraK. HinataN. OkazoeH. TakahashiM. EtoM. ObaK. KishidaT. UkimuraO. Lenvatinib plus pembrolizumab versus sunitinib in first-line treatment of advanced renal cell carcinoma: Final prespecified overall survival analysis of clear, a phase III study.J. Clin. Oncol.202442111222122810.1200/JCO.23.0156938227898
    [Google Scholar]
  20. WangX. WangL. YuQ. LiuZ. LiC. WangF. YuZ. The effectiveness of lapatinib in HER2-positive metastatic breast cancer patients pretreated with multiline anti-HER2 treatment: A retrospective study in China.Technol. Cancer Res. Treat.20212010.1177/1533033821103781234342244
    [Google Scholar]
  21. PressM.F. EllisC.E. GagnonR.C. GrobT.J. BuyseM. VillalobosI. LiangZ. WuS. BangY.J. QinS.K. ChungH.C. XuJ. ParkJ.O. JeziorskiK. AfenjarK. MaY. EstradaM.C. RobinsonD.M. SchererS.J. SauterG. HechtJ.R. SlamonD.J. HER2 Status in advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma for entry to the TRIO-013/LOGiC trial of lapatinib.Mol. Cancer Ther.201716122823810.1158/1535‑7163.MCT‑15‑088727811012
    [Google Scholar]
  22. MimuraK. KonoK. MaruyamaT. WatanabeM. IzawaS. ShibaS. MizukamiY. KawaguchiY. InoueM. KonoT. ChoudhuryA. KiesslingR. FujiiH. Lapatinib inhibits receptor phosphorylation and cell growth and enhances antibody‐dependent cellular cytotoxicity of EGFR‐ and HER2‐overexpressing esophageal cancer cell lines.Int. J. Cancer2011129102408241610.1002/ijc.2589621207425
    [Google Scholar]
  23. VoigtlaenderM. Schneider-MerckT. TrepelM. Lapatinib.Recent Results Cancer Res.2018211194410.1007/978‑3‑319‑91442‑8_230069757
    [Google Scholar]
  24. GuanM. TongY. GuanM. LiuX. WangM. NiuR. ZhangF. DongD. ShaoJ. ZhouY. Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression.Technol. Cancer Res. Treat.20181710.1177/153303461774941829343208
    [Google Scholar]
  25. ZhangW.J. LiY. WeiM.N. ChenY. QiuJ.G. JiangQ.W. YangY. ZhengD.W. QinW.M. HuangJ.R. WangK. ZhangW.J. WangY.J. YangD.H. ChenZ.S. ShiZ. Synergistic antitumor activity of regorafenib and lapatinib in preclinical models of human colorectal cancer.Cancer Lett.201738610010910.1016/j.canlet.2016.11.01127864115
    [Google Scholar]
  26. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  27. YanH. ZouT. TuoQ. XuS. LiH. BelaidiA.A. LeiP. Ferroptosis: mechanisms and links with diseases.Signal Transduct. Target. Ther.2021614910.1038/s41392‑020‑00428‑933536413
    [Google Scholar]
  28. ZhangW. LiuY. LiaoY. ZhuC. ZouZ. GPX4, ferroptosis, and diseases.Biomed. Pharmacother.202417411651210.1016/j.biopha.2024.11651238574617
    [Google Scholar]
  29. LiuP. ZhangZ. CaiY. LiZ. ZhouQ. ChenQ. Ferroptosis: Mechanisms and role in diabetes mellitus and its complications.Ageing Res. Rev.20249410220110.1016/j.arr.2024.10220138242213
    [Google Scholar]
  30. AholaS. LangerT. Ferroptosis in mitochondrial cardiomyopathy.Trends Cell Biol.202434215016010.1016/j.tcb.2023.06.00237419738
    [Google Scholar]
  31. ShahR. IbisB. KashyapM. BoussiotisV.A. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy.Metabolism202415115574710.1016/j.metabol.2023.15574738042522
    [Google Scholar]
  32. HuangH. TsuiY.M. HoD.W.H. ChungC.Y.S. SzeK.M.F. LeeE. CheungG.C.H. ZhangV.X. WangX. LyuX. NgI.O.L. LANCL1, a cell surface protein, promotes liver tumor initiation through FAM49B-Rac1 axis to suppress oxidative stress.Hepatology202479232334010.1097/HEP.000000000000052337540188
    [Google Scholar]
  33. UccheS. HayakawaY. Immunological aspects of cancer cell metabolism.Int. J. Mol. Sci.20242510528810.3390/ijms2510528838791327
    [Google Scholar]
  34. GaoY. LiuS. HuangY. LiF. ZhangY. Regulation of anti-tumor immunity by metal ion in the tumor microenvironment.Front. Immunol.202415137936510.3389/fimmu.2024.137936538915413
    [Google Scholar]
  35. BahcheliA.T. MinH.K. BayatiM. ZhaoH. FortunaA. DongW. DzneladzeI. ChanJ. ChenX. Guevara-HoyerK. DirksP.B. HuangX. ReimandJ. Pan-cancer ion transport signature reveals functional regulators of glioblastoma aggression.EMBO J.202443219622410.1038/s44318‑023‑00016‑x38177502
    [Google Scholar]
  36. LiD. LiY. The interaction between ferroptosis and lipid metabolism in cancer.Signal Transduct. Target. Ther.20205110810.1038/s41392‑020‑00216‑532606298
    [Google Scholar]
  37. SuY. ZhaoB. ZhouL. ZhangZ. ShenY. LvH. AlQudsyL.H.H. ShangP. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs.Cancer Lett.202048312713610.1016/j.canlet.2020.02.01532067993
    [Google Scholar]
  38. JinJ. FanZ. LongY. LiY. HeQ. YangY. ZhongW. LinD. LianD. WangX. XiaoJ. ChenY. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel.Phytomedicine202412215516510.1016/j.phymed.2023.15516537922791
    [Google Scholar]
  39. WuY. JiaC. LiuW. ZhanW. ChenY. LuJ. BaoY. WangS. YuC. ZhengL. SunL. SongZ. Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer.J. Adv. Res.2024S2090-12322400175910.1016/j.jare.2024.04.03338724006
    [Google Scholar]
  40. ZengF. YeL. ZhouQ. HeY. ZhangY. DengG. ChenX. LiuH. Inhibiting SCD expression by IGF1R during lorlatinib therapy sensitizes melanoma to ferroptosis.Redox Biol.20236110265310.1016/j.redox.2023.10265336889082
    [Google Scholar]
  41. YunZ.Y. WuD. WangX. HuangP. LiN. MIR ‐214‐3p overexpression‐triggered chondroitin polymerizing factor (CHPF) inhibition modulates the ferroptosis and metabolism in colon cancer.Kaohsiung J. Med. Sci.202440324425410.1002/kjm2.1280238190270
    [Google Scholar]
  42. JiX. ChenZ. LinW. WuQ. WuY. HongY. TongH. WangC. ZhangY. Esculin induces endoplasmic reticulum stress and drives apoptosis and ferroptosis in colorectal cancer via PERK regulating eIF2α/CHOP and Nrf2/HO-1 cascades.J. Ethnopharmacol.202432811813910.1016/j.jep.2024.11813938561058
    [Google Scholar]
  43. UramŁ. WróbelK. WalczakM. SzymaszekŻ. TwardowskaM. WołowiecS. Exploring the potential of lapatinib, fulvestrant, and paclitaxel conjugated with glycidylated pamam g4 dendrimers for cancer and parasite treatment.Molecules20232817633410.3390/molecules2817633437687164
    [Google Scholar]
  44. FehmT. MuellerV. Banys-PaluchowskiM. FaschingP.A. FriedlT.W.P. HartkopfA. HuoberJ. LoehbergC. RackB. RiethdorfS. SchneeweissA. WallwienerD. Meier-StiegenF. KrawczykN. JaegerB. ReinhardtF. HoffmannO. MuellerL. WimbergerP. RuckhaeberleE. BlohmerJ.U. CieslikJ.P. FrankenA. NiederacherD. NeubauerH. PantelK. JanniW. Efficacy of lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells—the DETECT III clinical trial.Clin. Chem.202470130731810.1093/clinchem/hvad14438175595
    [Google Scholar]
  45. NiJ. ChenK. ZhangJ. ZhangX. Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells.Biochem. Biophys. Res. Commun.202156715416010.1016/j.bbrc.2021.06.05134157442
    [Google Scholar]
  46. MansourH.M.F. MohamedA. KhattabM.M. El-KhatibA.S. Lapatinib ditosylate rescues motor deficits in rotenone-intoxicated rats: Potential repurposing of anti-cancer drug as a disease-modifying agent in Parkinson’s disease.Eur. J. Pharmacol.202395417587510.1016/j.ejphar.2023.17587537385578
    [Google Scholar]
  47. MaS. HensonE.S. ChenY. GibsonS.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells.Cell Death Dis.201677e230710.1038/cddis.2016.20827441659
    [Google Scholar]
  48. FuD. WangC. YuL. YuR. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling.Cell. Mol. Biol. Lett.20212612610.1186/s11658‑021‑00271‑y34098867
    [Google Scholar]
  49. GongD. ChenM. WangY. ShiJ. HouY. Role of ferroptosis on tumor progression and immunotherapy.Cell Death Discov.20228142710.1038/s41420‑022‑01218‑836289191
    [Google Scholar]
  50. XuT. LiuY. ZhaoZ. LiuJ. ChaiJ. YangY. ZuoS. LiM. JiaQ. Ferroptosis in cancer stem cells.Pathol. Res. Pract.202324515449210.1016/j.prp.2023.15449237119732
    [Google Scholar]
  51. WangX. TanX. ZhangJ. WuJ. ShiH. The emerging roles of MAPK-AMPK in ferroptosis regulatory network.Cell Commun. Signal.202321120010.1186/s12964‑023‑01170‑937580745
    [Google Scholar]
  52. Saint-GermainE. MignaccaL. VernierM. BobbalaD. IlangumaranS. FerbeyreG. SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes.Aging20179102137216210.18632/aging.10130629081404
    [Google Scholar]
  53. GeF. WangY. SharmaA. JaehdeU. EsslerM. SchmidM. Schmidt-WolfI.G.H. Computational analysis of heat shock proteins and ferroptosis-associated lncRNAs to predict prognosis in acute myeloid leukemia patients.Front. Genet.202314121827610.3389/fgene.2023.121827637600655
    [Google Scholar]
  54. QuZ. PangX. MeiZ. LiY. ZhangY. HuangC. LiuK. YuS. WangC. SunZ. LiuY. LiX. JiaY. DongY. LuM. JuT. WuF. HuangM. LiN. DouS. JiangJ. DongX. ZhangY. LiW. YangB. DuW. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury.Redox Biol.20247210314510.1016/j.redox.2024.10314538583415
    [Google Scholar]
  55. ElingN. ReuterL. HazinJ. Hamacher-BradyA. BradyN.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells.Oncoscience20152551753210.18632/oncoscience.16026097885
    [Google Scholar]
  56. LiY. XiaJ. ShaoF. ZhouY. YuJ. WuH. DuJ. RenX. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis.Biochem. Biophys. Res. Commun.202153487788410.1016/j.bbrc.2020.10.08333162029
    [Google Scholar]
  57. LiuM. ShiC. SongQ. KangM. JiangX. LiuH. PeiD. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma.Hepatol. Commun.2023710e024610.1097/HC9.000000000000024637695069
    [Google Scholar]
  58. CuiW. GuoM. LiuD. XiaoP. YangC. HuangH. LiangC. YangY. FuX. ZhangY. LiuJ. ShiS. CongJ. HanZ. XuY. DuL. YinC. ZhangY. SunJ. GuW. ChaiR. ZhuS. ChuB. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition.Nat. Cell Biol.202426112413710.1038/s41556‑023‑01314‑638168770
    [Google Scholar]
  59. WangZ. ErbB. Receptors and cancer.Methods Mol. Biol.2017165233510.1007/978‑1‑4939‑7219‑7_128791631
    [Google Scholar]
  60. PellatA. VaqueroJ. FouassierL. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology.Hepatology201867276277310.1002/hep.2935028671339
    [Google Scholar]
  61. KumarR. GeorgeB. CampbellM.R. VermaN. PaulA.M. Melo-AlvimC. RibeiroL. PillaiM.R. da CostaL.M. MoasserM.M. HER family in cancer progression: From discovery to 2020 and beyond.Adv. Cancer Res.202014710916010.1016/bs.acr.2020.04.00132593399
    [Google Scholar]
  62. KrishnamurtiU. SilvermanJ.F. HER2 in breast cancer: a review and update.Adv. Anat. Pathol.201421210010710.1097/PAP.000000000000001524508693
    [Google Scholar]
  63. ParkJ.W. NeveR.M. SzollosiJ. BenzC.C. Unraveling the biologic and clinical complexities of HER2.Clin. Breast Cancer20088539240110.3816/CBC.2008.n.04718952552
    [Google Scholar]
  64. LiX. XuY. DingY. LiC. ZhaoH. WangJ. MengS. Posttranscriptional upregulation of HER3 by HER2 mRNA induces trastuzumab resistance in breast cancer.Mol. Cancer201817111310.1186/s12943‑018‑0862‑530068375
    [Google Scholar]
  65. López-GuerreroJ.A. Llombart-CussacA. NogueraR. NavarroS. PellinA. AlmenarS. Vazquez-AlvadalejoC. Llombart-BoschA. HER2 amplification in recurrent breast cancer following breast‐conserving therapy correlates with distant metastasis and poor survival.Int. J. Cancer200611871743174910.1002/ijc.2149716217770
    [Google Scholar]
  66. CheangM.C.U. ChiaS.K. VoducD. GaoD. LeungS. SniderJ. WatsonM. DaviesS. BernardP.S. ParkerJ.S. PerouC.M. EllisM.J. NielsenT.O. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer.J. Natl. Cancer Inst.20091011073675010.1093/jnci/djp08219436038
    [Google Scholar]
  67. DanieleL. SapinoA. Anti-HER2 treatment and breast cancer: state of the art, recent patents, and new strategies.Recent Patents Anticancer Drug Discov.20094191810.2174/15748920978700248919149684
    [Google Scholar]
  68. WoodE.R. TruesdaleA.T. McDonaldO.B. YuanD. HassellA. DickersonS.H. EllisB. PennisiC. HorneE. LackeyK. AlligoodK.J. RusnakD.W. GilmerT.M. ShewchukL. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells.Cancer Res.200464186652665910.1158/0008‑5472.CAN‑04‑116815374980
    [Google Scholar]
  69. ScaltritiM. RojoF. OcañaA. AnidoJ. GuzmanM. CortesJ. Di CosimoS. Matias-GuiuX. Ramon y CajalS. ArribasJ. BaselgaJ. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer.J. Natl. Cancer Inst.200799862863810.1093/jnci/djk13417440164
    [Google Scholar]
  70. WangS. LiY. LinY. LiJ. GuoL. WangH. LinX. LiuZ. ZhangB. LiaoZ. ZhangZ. Bioinformatics analysis and experimental verification of the cancer-promoting effect of DHODH in clear cell renal cell carcinoma.Sci. Rep.20241411198510.1038/s41598‑024‑62738‑038796629
    [Google Scholar]
  71. García-LainezG. VayáI. MarínM.P. MirandaM.A. AndreuI. In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor.Arch. Toxicol.202195116917810.1007/s00204‑020‑02880‑632815004
    [Google Scholar]
  72. JiangL. ZengY. AiL. YanH. YangX. LuoP. YangB. XuZ. HeQ. Decreased HMGB1 expression contributed to cutaneous toxicity caused by lapatinib.Biochem. Pharmacol.202220111510510.1016/j.bcp.2022.11510535617997
    [Google Scholar]
  73. McGillM.R. KaufmannY. LoBiancoF.V. SchleiffM.A. Aykin-BurnsN. MillerG.P. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity.Livers20233231032110.3390/livers302002238037613
    [Google Scholar]
  74. ChenS. LiX. LiY. HeX. BryantM. QinX. LiF. SeoJ.E. GuoX. MeiN. GuoL. The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib.Toxicol. Sci.20241971697810.1093/toxsci/kfad09937788138
    [Google Scholar]
  75. DuK. LiuY. ZhangL. PengL. DongW. JiangY. NiuM. SunY. WuC. NiuY. DingY. Lapatinib combined with doxorubicin causes dose-dependent cardiotoxicity partially through activating the p38MAPK signaling pathway in zebrafish embryos.Biomed. Pharmacother.202417511663710.1016/j.biopha.2024.11663738653111
    [Google Scholar]
  76. SunL. WangH. XuD. YuS. ZhangL. LiX. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway.Bioengineered2022131486010.1080/21655979.2021.200498034898356
    [Google Scholar]
  77. LiuJ. LichtenbergT. HoadleyK.A. PoissonL.M. LazarA.J. CherniackA.D. KovatichA.J. BenzC.C. LevineD.A. LeeA.V. OmbergL. WolfD.M. ShriverC.D. ThorssonV. HuH. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbroE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. Angulo GonzalezA.M. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. Mora PineroE.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics.Cell20181732400416.e1110.1016/j.cell.2018.02.05229625055
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206327756240830062531
Loading
/content/journals/acamc/10.2174/0118715206327756240830062531
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): colon cancer; ferroptosis; GPX4; Lapatinib; ROS; targeted therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test