Skip to content
2000
image of Amide Functionalized Novel Pyrrolo-pyrimidine Derivative as Anticancer Agents: Synthesis, Characterization and Molecular Docking Studies

Abstract

Background

The development of new therapies targeting crucial kinases involved in cancer progression is a promising area of research. Pyrazolo pyrimidine derivatives have emerged as potential candidates for this purpose.

Objective

This study aims to synthesize pyrazolo pyrimidine derivatives (5a-5r), evaluate their molecular docking against key kinases, and assess their anticancer activity.

Methods

The synthesis involved a multi-step procedure starting with the cyclization of 6-amino-2-methylpyrimidin-4(3H)-one (1) to form 2-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-4-ol (2). This was followed by chlorination to yield 4-chloro-2-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine (3) and nucleophilic substitution to produce 2-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-4-amine (4). The final derivatives (5a-5r) were synthesized through amide bond formation with various carboxylic acids using DCC and DMAP. Structural elucidation was confirmed NMR, mass spectrometry, and HRMS. Molecular docking studies were conducted against Janus kinase 1 (JAK1), Janus kinase 2 (JAK2), and cyclin-dependent kinase 4 (CDK4). Anticancer activity was evaluated against MCF-7, SET-2, and HCT-116 cell lines.

Results

Structural elucidation confirmed the successful synthesis of the derivatives. Molecular docking studies revealed promising binding affinities for selected derivatives, particularly those with heterocyclic substitutions. Anticancer activity evaluation showed diverse potency profiles, with several derivatives demonstrating IC50 values comparable to the reference drug, doxorubicin. Derivatives featuring nitro and heterocyclic moieties exhibited significant anticancer activity.

Conclusion

The synthesized pyrazolo pyrimidine derivatives showed potential as lead compounds for further development due to their promising binding affinities and significant anticancer activity, particularly those with nitro and heterocyclic moieties.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206333935241004070350
2024-11-06
2025-01-18
Loading full text...

Full text loading...

References

  1. WHO Global cancer burden growing, amidst mounting need for services. 2024 Available From: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  2. Baskar R. Lee K.A. Yeo R. Yeoh K.W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 2012 9 3 193 199 10.7150/ijms.3635 22408567
    [Google Scholar]
  3. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 10.1177/20503121211034366 34408877
    [Google Scholar]
  4. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  5. George I.A. Chauhan R. Dhawale R.E. Iyer R. Limaye S. Sankaranarayanan R. Venkataramanan R. Kumar P. Insights into therapy resistance in cervical cancer. Adv. Cancer Biol. Metastasis 2022 6 100074 10.1016/j.adcanc.2022.100074
    [Google Scholar]
  6. Groenland S.L. Martínez-Chávez A. van Dongen M.G.J. Beijnen J.H. Schinkel A.H. Huitema A.D.R. Steeghs N. Clinical Pharmacokinetics and Pharmacodynamics of the Cyclin-Dependent Kinase 4 and 6 Inhibitors Palbociclib, Ribociclib, and Abemaciclib. Clin. Pharmacokinet. 2020 59 12 1501 1520 10.1007/s40262‑020‑00930‑x 33029704
    [Google Scholar]
  7. Appeldoorn T.Y.J. Munnink T.H.O. Morsink L.M. Hooge M.N.L. Touw D.J. Pharmacokinetics and Pharmacodynamics of Ruxolitinib: A Review. Clin. Pharmacokinet. 2023 62 4 559 571 10.1007/s40262‑023‑01225‑7 37000342
    [Google Scholar]
  8. Beljanski V. Pemetrexed. Compreh. Pharmacol. Ref. 2007 1-5 1 5 10.1016/B978‑008055232‑3.63731‑6
    [Google Scholar]
  9. Liang X. Tang S. Liu X. Liu Y. Xu Q. Wang X. Saidahmatov A. Li C. Wang J. Zhou Y. Zhang Y. Geng M. Huang M. Liu H. Discovery of Novel Pyrrolo[2,3- d ]pyrimidine-based Derivatives as Potent JAK/HDAC Dual Inhibitors for the Treatment of Refractory Solid Tumors. J. Med. Chem. 2022 65 2 1243 1264 10.1021/acs.jmedchem.0c02111 33586434
    [Google Scholar]
  10. Zhang J. Xing S. Cui J. Wei X. Cao Z. Shao B. Jiang N. Zhai X. Structure‐guided design of potent JAK1‐selective inhibitors based on 4‐amino‐7 H ‐pyrrolo[2,3‐ d ]pyrimidine with anti‐inflammatory efficacy. Arch. Pharm. (Weinheim) 2024 357 4 2300591 10.1002/ardp.202300591 38185750
    [Google Scholar]
  11. Mao W. Wu H. Guo Q. Zheng X. Wei C. Liao Y. Shen L. Mi J. Li J. Chen S. Qian W. Synthesis and evaluation of hydrazinyl-containing pyrrolo[2,3-d]pyrimidine series as potent, selective and oral JAK1 inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett. 2022 74 128905 10.1016/j.bmcl.2022.128905 35870730
    [Google Scholar]
  12. Yang B. Quan Y. Zhao W. Ji Y. Yang X. Li J. Li Y. Liu X. Wang Y. Li Y. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors. J. Enzyme Inhib. Med. Chem. 2023 38 1 2169282 10.1080/14756366.2023.2169282 36656085
    [Google Scholar]
  13. Patil S.M. Patil V.A. Asgonkar K. Randive V. Mahadik I. QSAR, Molecular Docking & ADMET Studies of Pyrrolo[2,3-d] Pyrimidine Derivatives as CDK4 Inhibitors for the Treatment of Cancer. Curr. Indian Sci. 2023 01 4309 10.2174/012210299X258569231006094309
    [Google Scholar]
  14. Shi X. Quan Y. Wang Y. Wang Y. Li Y. Design, synthesis, and biological evaluation of 2,6,7-substituted pyrrolo[2,3-d]pyrimidines as cyclin dependent kinase inhibitor in pancreatic cancer cells. Bioorg. Med. Chem. Lett. 2021 33 127725 10.1016/j.bmcl.2020.127725 33316409
    [Google Scholar]
  15. Li Y. Du R. Nie Y. Wang T. Ma Y. Fan Y. Design, synthesis and biological assessment of novel CDK4 inhibitor with potent anticancer activity. Bioorg. Chem. 2021 109 104717 10.1016/j.bioorg.2021.104717 33647744
    [Google Scholar]
  16. Wang L.X. Liu X. Xu S. Tang Q. Duan Y. Xiao Z. Zhi J. Jiang L. Zheng P. Zhu W. Discovery of novel pyrrolo-pyridine/pyrimidine derivatives bearing pyridazinone moiety as c-Met kinase inhibitors. Eur. J. Med. Chem. 2017 141 538 551 10.1016/j.ejmech.2017.10.027 29107421
    [Google Scholar]
  17. Shirvani P. Fassihi A. Molecular modelling study on pyrrolo[2,3- b ]pyridine derivatives as c-Met kinase inhibitors: a combined approach using molecular docking, 3D-QSAR modelling and molecular dynamics simulation. Mol. Simul. 2020 46 16 1265 1280 10.1080/08927022.2020.1810853
    [Google Scholar]
  18. Xu D. Sun D. Wang W. Peng X. Zhan Z. Ji Y. Shen Y. Geng M. Ai J. Duan W. Discovery of pyrrolo[2,3-d]pyrimidine derivatives as potent Axl inhibitors: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2021 220 113497 10.1016/j.ejmech.2021.113497 33957388
    [Google Scholar]
  19. Zhao X. Huang W. Wang Y. Xin M. Jin Q. Cai J. Tang F. Zhao Y. Xiang H. Discovery of novel Bruton’s tyrosine kinase (BTK) inhibitors bearing a pyrrolo[2,3-d]pyrimidine scaffold. Bioorg. Med. Chem. 2015 23 4 891 901 10.1016/j.bmc.2014.10.043 25596757
    [Google Scholar]
  20. He L. Pei H. Zhang C. Shao M. Li D. Tang M. Wang T. Chen X. Xiang M. Chen L. Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d ]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur. J. Med. Chem. 2018 145 96 112 10.1016/j.ejmech.2017.12.079 29324347
    [Google Scholar]
  21. Xia Z. Huang R. Zhou X. Chai Y. Chen H. Ma L. Yu Q. Li Y. Li W. He Y. The synthesis and bioactivity of pyrrolo[2,3-d]pyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. Eur. J. Med. Chem. 2021 224 113711 10.1016/j.ejmech.2021.113711 34315040
    [Google Scholar]
  22. Kaspersen S.J. Han J. Nørsett K.G. Rydså L. Kjøbli E. Bugge S. Bjørkøy G. Sundby E. Hoff B.H. Identification of new 4-N-substituted 6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity. Eur. J. Pharm. Sci. 2014 59 69 82 10.1016/j.ejps.2014.04.011 24769040
    [Google Scholar]
  23. Sivaiah G. Raveesha R. Benaka Prasad S.B. Yogesh Kumar K. Raghu M.S. Alharti F.A. Prashanth M.K. Jeon B.H. Synthesis, biological evaluation and molecular docking studies of novel pyrrolo[2,3-d]pyrimidin-2-amine derivatives as EGFR inhibitors. J. Mol. Struct. 2023 1275 134728 10.1016/j.molstruc.2022.134728
    [Google Scholar]
  24. Alotaibi A.A. Alanazi M.M. Rahman A.F.M.M. Discovery of new pyrrolo[2,3-d]pyrimidine derivatives as potential multi-targeted kinase inhibitors and apoptosis inducers. Pharmaceuticals (Basel) 2023 16 9 1324 10.3390/ph16091324 37765132
    [Google Scholar]
  25. Metwally K. Abo-Dya N.E. Pyrrolo[2,3-d]pyrimidines as EGFR and VEGFR kinase inhibitors: a comprehensive SAR review. Curr. Med. Chem. 2024 31 36 5918 5936 10.2174/0929867331666230815115111 37581522
    [Google Scholar]
  26. Adel M. Serya R.A.T. Lasheen D.S. Abouzid K.A.M. Identification of new pyrrolo[2,3-d]pyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem. 2018 81 612 629 10.1016/j.bioorg.2018.09.001 30248512
    [Google Scholar]
  27. Alotaibi A.A. Asiri H.H. Rahman A.F.M.M. Alanazi M.M. Novel pyrrolo[2,3-d]pyrimidine derivatives as multi-kinase inhibitors with VEGFR-2 selectivity. J. Saudi Chem. Soc. 2023 27 5 101712 10.1016/j.jscs.2023.101712
    [Google Scholar]
  28. Musumeci F. Fallacara A.L. Brullo C. Grossi G. Botta L. Calandro P. Chiariello M. Kissova M. Crespan E. Maga G. Schenone S. Identification of new pyrrolo[2,3- d ]pyrimidines as Src tyrosine kinase inhibitors n vitro active against Glioblastoma. Eur. J. Med. Chem. 2017 127 369 378 10.1016/j.ejmech.2016.12.036 28076826
    [Google Scholar]
  29. Xu H. Wolf C. Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia. Chem. Commun. (Camb.) 2009 21 21 3035 3037 10.1039/b904188e 19462078
    [Google Scholar]
  30. World Intellectual Property Organization Method and apparatus for monitoring and controlling fluid flow in a tube. WO Patent 2015/191681A2
  31. Bender B.J. Gahbauer S. Luttens A. Lyu J. Webb C.M. Stein R.M. Fink E.A. Balius T.E. Carlsson J. Irwin J.J. Shoichet B.K. A practical guide to large-scale docking. Nat. Protoc. 2021 16 10 4799 4832 10.1038/s41596‑021‑00597‑z 34561691
    [Google Scholar]
  32. Riss T.L. Moravec R.A. Niles A.L. Cell viability assays. Assay Guidance Manual. Markossian S. Grossman A. Arkin M. Bethesda, MD Eli Lilly & Company and the National Center for Advancing Translational Sciences 2016
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206333935241004070350
Loading
/content/journals/acamc/10.2174/0118715206333935241004070350
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: molecular docking ; CDK ; Pyrrolo[2,3-d]pyrimidine ; JAK ; anticancer activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test