Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background and Objective

Benzothiazole derivatives, a class of heterocyclic compounds, exhibited diverse biological activities influenced by substituents in the thiazole ring. This study aimed to synthesize these compounds with two functional groups to investigate their potential as anticancer agents, particularly against breast cancer. While previous research demonstrated the efficacy of 2-substituted benzothiazoles against glioma and cervical and pancreatic cancer cells, there is a gap in studies targeting breast cancer.

Methods

The synthesized compounds were tested using MCF-7, MDA-MB-231, and MCF-10A cell lines, with Doxorubicin as the positive control. Various assays were conducted, including Annexin V/PI, cell cycle analysis, wound healing, and measurement of mitochondrial membrane potential. Protein expression of EGFR and transcription levels of apoptosis-related genes (Bax and Bcl-xL) and cancer progression-related genes (JAK, STAT3, ERK, AKT, mTOR) were analyzed. Additionally, the balance between antioxidants and oxidants was evaluated by measuring TAS and TOS levels.

Results

Our findings revealed that benzothiazole compounds significantly inhibited breast cancer cell growth by reducing cell motility, disrupting mitochondrial membrane potential, and inducing cell cycle arrest in the sub-G1 phase. These compounds increased reactive oxygen species accumulation, leading to cell death. Furthermore, they decreased EGFR protein levels, increased Bax gene transcription, and downregulated the expression of genes such as JAK, STAT3, ERK, AKT, and mTOR.

Conclusion

In conclusion, benzothiazole derivatives exhibited potent inhibitory effects on breast cancer by promoting apoptosis, downregulating EGFR activity, and modulating key signaling pathways, including JAK/STAT, ERK/MAPK, and PI3K/Akt/mTOR. These results highlighted the potential of benzothiazole derivatives as novel therapeutic agents for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206335840241018053929
2024-10-29
2025-03-29
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. MichaelsE. WorthingtonR.O. RusieckiJ. Breast cancer.Med. Clin. North Am.2023107227128410.1016/j.mcna.2022.10.007 36759097
    [Google Scholar]
  3. MalayilR. ChhichholiyaY. VasudevaK. SinghH.V. SinghT. SinghS. MunshiA. Oncogenic metabolic reprogramming in breast cancer: Focus on signaling pathways and mitochondrial genes.Med. Oncol.202340617410.1007/s12032‑023‑02037‑2 37170010
    [Google Scholar]
  4. VazquezA. KamphorstJ.J. MarkertE.K. SchugZ.T. TarditoS. GottliebE. Cancer metabolism at a glance.J. Cell Sci.2016129183367337310.1242/jcs.181016 27635066
    [Google Scholar]
  5. ÜremişN. ÜremişM.M. ÇiğremişY. TosunE. BaysarA. TürközY. Cucurbitacin I exhibits anticancer efficacy through induction of apoptosis and modulation of JAK/STAT3, MAPK/ERK, and AKT/MTOR signaling pathways in HEPG2 cell line.J. Food Biochem.20224610e1433310.1111/jfbc.14333 35866877
    [Google Scholar]
  6. ÜremişM.M. ÜremişN. TosunE. DurhanM. ÇiğremişY. BaysarA. TürközY. Cucurbitacin D inhibits the proliferation of HepG2 cells and induces apoptosis by modulating JAK/STAT3, PI3K/Akt/mTOR and MAPK signaling pathways.Curr. Cancer Drug Targets2022221193194410.2174/1568009622666220623141158 35786188
    [Google Scholar]
  7. FuY. LiuS. YinS. NiuW. XiongW. TanM. LiG. ZhouM. The reverse Warburg effect is likely to be an achilles’ heel of cancer that can be exploited for cancer therapy.Oncotarget2017834578135782510.18632/oncotarget.18175 28915713
    [Google Scholar]
  8. SchlotterC.M. VogtU. AllgayerH. BrandtB. Molecular targeted therapies for breast cancer treatment.Breast Cancer Res.200810421110.1186/bcr2112 18671839
    [Google Scholar]
  9. HsuJ.L. HungM.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer.Cancer Metastasis Rev.201635457558810.1007/s10555‑016‑9649‑6 27913999
    [Google Scholar]
  10. LauK.H. TanA.M. ShiY. New and emerging targeted therapies for advanced breast cancer.Int. J. Mol. Sci.2022234228810.3390/ijms23042288 35216405
    [Google Scholar]
  11. MaennlingA.E. TurM.K. NiebertM. KlockenbringT. ZeppernickF. GattenlöhnerS. Meinhold-HeerleinI. HussainA.F. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials.Cancers (Basel)20191112182610.3390/cancers11121826 31756933
    [Google Scholar]
  12. AzzamR.A. OsmanR.R. ElgemeieG.H. Efficient synthesis and docking studies of novel benzothiazole-Based pyrimidinesulfonamide scaffolds as new antiviral agents and Hsp90α inhibitors.ACS Omega2020531640165510.1021/acsomega.9b03706 32010839
    [Google Scholar]
  13. SiddiquiN. PandeyaS.N. KhanS.A. StablesJ. RanaA. AlamM. ArshadM.F. BhatM.A. Synthesis and anticonvulsant activity of sulfonamide derivatives-hydrophobic domain.Bioorg. Med. Chem. Lett.200717125525910.1016/j.bmcl.2006.09.053 17046248
    [Google Scholar]
  14. LuoB. LiD. ZhangA.L. GaoJ.M. Synthesis, antifungal activities and molecular docking studies of benzoxazole and benzothiazole derivatives.Molecules20182310245710.3390/molecules23102457 30257495
    [Google Scholar]
  15. NaazF. SrivastavaR. SinghA. SinghN. VermaR. SinghV.K. SinghR.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole.Bioorg. Med. Chem.201826123414342810.1016/j.bmc.2018.05.015 29778528
    [Google Scholar]
  16. MishraV.R. GhanavatkarC.W. MaliS.N. QureshiS.I. ChaudhariH.K. SekarN. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives.Comput. Biol. Chem.20197833033710.1016/j.compbiolchem.2019.01.003 30639681
    [Google Scholar]
  17. ShafiS. MahboobM. MulakayalaN. MulakayalaC. VanajaG. KalleA.M. PalluR. AlamM.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities.Eur. J. Med. Chem.20124932433310.1016/j.ejmech.2012.01.032 22305614
    [Google Scholar]
  18. UremisN. UremisM.M. TolunF.I. CeylanM. DoganerA. KurtA.H. Synthesis of 2-substituted benzothiazole derivatives and their in vitro anticancer effects and antioxidant activities against pancreatic cancer cells.Anticancer Res.2017371163816389 29061823
    [Google Scholar]
  19. CeylanM. ErkanS. YagliogluA.S. AkdoganN. KoçE. Antiproliferative evaluation of some 2‐[2‐(2‐Phenylethenyl)‐cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles: DFT and molecular docking study.Chem. Biodivers.2020174e190067510.1002/cbdv.201900675 32141675
    [Google Scholar]
  20. ÜremişM.M. YağlıoğluA.Ş. BudakY. CeylanM. Synthesis, characterization, in vitro antiproliferative and cytotoxicity effects of a new class of 2-((1R,2S)-2-((E)-4-substitutedstyryl) cyclooctyl)benzo[d]thiazole derivatives.Organic Communications201710319020010.25135/acg.oc.18.17.02.009
    [Google Scholar]
  21. SethS. A comprehensive review on recent advances in synthesis & pharmacotherapeutic potential of benzothiazoles.Antiinflamm. Antiallergy Agents Med. Chem.20151429811210.2174/1871523014666150528110703 26017385
    [Google Scholar]
  22. GaoD. JinN. FuY. ZhuY. WangY. WangT. ChenY. ZhangM. XiaoQ. HuangM. LiY. Rational drug design of benzothiazole-based derivatives as potent signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors.Eur. J. Med. Chem.202121611333310.1016/j.ejmech.2021.113333 33689932
    [Google Scholar]
  23. KimJ. HongS.H. JeonS.H. ParkM.H. ShinC.G. The novel benzothiazole derivative pb11 induces apoptosis via the PI3K/AKT signaling pathway in human cancer cell lines.Int. J. Mol. Sci.2021225271810.3390/ijms22052718 33800261
    [Google Scholar]
  24. KamalA. FaazilS. RamaiahM.J. AshrafM. BalakrishnaM. PushpavalliS.N.C.V.L. PatelN. Pal-BhadraM. Synthesis and study of benzothiazole conjugates in the control of cell proliferation by modulating Ras/MEK/ERK-dependent pathway in MCF-7 cells.Bioorg. Med. Chem. Lett.201323205733573910.1016/j.bmcl.2013.07.068 23999041
    [Google Scholar]
  25. MokhtarA.M. El-MesseryS.M. GhalyM.A. HassanG.S. Targeting EGFR tyrosine kinase: Synthesis, in vitro antitumor evaluation, and molecular modeling studies of benzothiazole-based derivatives.Bioorg. Chem.202010410425910.1016/j.bioorg.2020.104259 32919134
    [Google Scholar]
  26. VijayakumarK. SountharrajanS. SuganyaE. Synthesis, characterization, and evaluation of cancer prevention activity of novel modified heterocyclic compounds.Asian Pac. J. Cancer Prev.2018191247252 29374409
    [Google Scholar]
  27. MatesM. FletcherG.G. FreedmanO.C. EisenA. GandhiS. TrudeauM.E. DentS.F. Systemic targeted therapy for her2-positive early female breast cancer: A systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline.Curr. Oncol.20152211Suppl. 111412210.3747/co.22.2322 25848335
    [Google Scholar]
  28. ŞahinB. YağlıoğluA.S. CeylanM. Synthesis and cytotoxic activities of novel 2-(1,5-bis(aryl) penta-1,4-dien-2-yl) benzo[d]thiazol derivatives.Organic Communications2016936572
    [Google Scholar]
  29. FindikE. Synthesis of the novel benzothiazole compounds from 7-benzylidenebicyclo [3.2.0] hept-2-en-6-ones and 2-aminobenzenethiol.Turk. J. Chem.20123619310010.3906/kim‑1105‑67
    [Google Scholar]
  30. ÜremişM.M. ÜremişN. TürközY. Cucurbitacin E shows synergistic effect with sorafenib by inducing apoptosis in hepatocellular carcinoma cells and regulates Jak/Stat3, ERK/MAPK, PI3K/Akt/mTOR signaling pathways.Steroids202319810926110.1016/j.steroids.2023.109261 37355001
    [Google Scholar]
  31. ÜremişM.M. GültekinS. ÜremişN. AfakT. ÇiğremişY. GülM. AydinM. ZaymanE. TürközY. Protective role of vitamin E against acrylamide-induced testicular toxicity from pregnancy to adulthood: insights into oxidative stress and aromatase regulation.Naunyn Schmiedebergs Arch. Pharmacol.20233972829841 37515736
    [Google Scholar]
  32. ErelO. A new automated colorimetric method for measuring total oxidant status.Clin. Biochem.200538121103111110.1016/j.clinbiochem.2005.08.008 16214125
    [Google Scholar]
  33. MartinG.S. Cell signaling and cancer.Cancer Cell20034316717410.1016/S1535‑6108(03)00216‑2 14522250
    [Google Scholar]
  34. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  35. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  36. LiC. FanZ. LinX. CaoM. SongF. SongF. Parity and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis.Cancer Epidemiol.20217510205010.1016/j.canep.2021.102050 34706325
    [Google Scholar]
  37. O’BrienK.M. ColeS.R. TseC.K. PerouC.M. CareyL.A. FoulkesW.D. DresslerL.G. GeradtsJ. MillikanR.C. Intrinsic breast tumor subtypes, race, and long-term survival in the carolina breast cancer study.Clin. Cancer Res.201016246100611010.1158/1078‑0432.CCR‑10‑1533 21169259
    [Google Scholar]
  38. HaqueR. AhmedS.A. InzhakovaG. ShiJ. AvilaC. PolikoffJ. BernsteinL. EngerS.M. PressM.F. Impact of breast cancer subtypes and treatment on survival: An analysis spanning two decades.Cancer Epidemiol. Biomarkers Prev.201221101848185510.1158/1055‑9965.EPI‑12‑0474 22989461
    [Google Scholar]
  39. HarbeckN. GnantM. Breast cancer.Lancet2017389100741134115010.1016/S0140‑6736(16)31891‑8 27865536
    [Google Scholar]
  40. YadavR.K. KumarR. SinghH. MazumdarA. Salahuddin.; Chauhan, B.; Abdullah, M.M. Recent insights on synthetic methods and pharmacological potential in relation with structure of benzothiazoles.Med. Chem.202319432536010.2174/1573406418666220820110551 35993459
    [Google Scholar]
  41. MortimerC.G. WellsG. CrochardJ.P. StoneE.L. BradshawT.D. StevensM.F. WestwellA.D. Antitumor benzothiazoles. 26.(1) 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines.J. Med. Chem.200649117918510.1021/jm050942k 16392802
    [Google Scholar]
  42. Abdel-MohsenH.T. Abd El-MeguidE.A. El KerdawyA.M. MahmoudA.E.E. AliM.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer.Arch. Pharm. (Weinheim)20203534190034010.1002/ardp.201900340 32045054
    [Google Scholar]
  43. BarbarossaA. CeramellaJ. CarocciA. IacopettaD. RosatoA. LimongelliF. CarrieriA. BonofiglioD. SinicropiM.S. Benzothiazole-phthalimide hybrids as anti-breast cancer and antimicrobial agents.Antibiotics (Basel)20231212165110.3390/antibiotics12121651 38136685
    [Google Scholar]
  44. MohamedL.W. TaherA.T. RadyG.S. AliM.M. MahmoudA.E. Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF ‐7 cancer cell line.Chem. Biol. Drug Des.201789456657610.1111/cbdd.12879 27700014
    [Google Scholar]
  45. IrfanA. BatoolF. ZahraN.S.A. IslamA. OsmanS.M. NocentiniA. AlissaS.A. SupuranC.T. Benzothiazole derivatives as anticancer agents.J. Enzyme Inhib. Med. Chem.202035126527910.1080/14756366.2019.1698036 31790602
    [Google Scholar]
  46. AltinozE. OnerZ. ElbeH. UremisN. UremisM. Linalool exhibits therapeutic and protective effects in a rat model of doxorubicin-induced kidney injury by modulating oxidative stress.Drug Chem. Toxicol.20224552024203010.1080/01480545.2021.1894751 33682561
    [Google Scholar]
  47. TsuruoT. NaitoM. TomidaA. FujitaN. MashimaT. SakamotoH. HagaN. Molecular targeting therapy of cancer: Drug resistance, apoptosis and survival signal.Cancer Sci.2003941152110.1111/j.1349‑7006.2003.tb01345.x 12708468
    [Google Scholar]
  48. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms19020448 29393886
    [Google Scholar]
  49. RodriguesJ.R. CharrisJ. CamachoJ. BarazarteA. GamboaN. AntunesF. Cytotoxic effects of N′-formyl-2-(5-nitrothiophen-2-yl) benzothiazole-6-carbohydrazide in human breast tumor cells by induction of oxidative stress.Anticancer Res.201232727212726 22753731
    [Google Scholar]
  50. XuejiaoS. YongX. NingyuW. LidanZ. XuanhongS. YouzhiX. TinghongY. YaojieS. YongxiaZ. LuotingY. A novel benzothiazole derivative YLT322 induces apoptosis via the mitochondrial apoptosis pathway in vitro with anti-tumor activity in solid malignancies.PLoS One201385e6390010.1371/journal.pone.0063900 23737957
    [Google Scholar]
  51. SinghM. ModiA. NarayanG. SinghS.K. Benzothiazole derivatives bearing amide moiety.Anticancer Drugs201627651953210.1097/CAD.0000000000000357 26945135
    [Google Scholar]
  52. OpritaA. BaloiS.C. StaicuG.A. AlexandruO. TacheD.E. DanoiuS. MicuE.S. SevastreA.S. Updated insights on EGFR signaling pathways in glioma.Int. J. Mol. Sci.202122258710.3390/ijms22020587 33435537
    [Google Scholar]
  53. GabrM.T. El-GoharyN.S. El-BendaryE.R. El-KerdawyM.M. Synthesis and in vitro antitumor activity of new series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives.Eur. J. Med. Chem.20148557659210.1016/j.ejmech.2014.07.097 25127150
    [Google Scholar]
  54. ArenaF. Clinical implications of recent studies using mTOR inhibitors to treat advanced hormone receptor-positive breast cancer.Cancer Manag. Res.2014638939510.2147/CMAR.S56802 25336989
    [Google Scholar]
  55. RugoH.S. LereboursF. CiruelosE. DrullinskyP. Ruiz-BorregoM. NevenP. ParkY.H. PratA. BachelotT. JuricD. TurnerN. SophosN. ZarateJ.P. ArceC. ShenY.M. TurnerS. KanakamedalaH. HsuW.C. ChiaS. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study.Lancet Oncol.202122448949810.1016/S1470‑2045(21)00034‑6 33794206
    [Google Scholar]
  56. TurnerS. ChiaS. KanakamedalaH. HsuW.C. ParkJ. ChandiwanaD. RidolfiA. YuC.L. ZarateJ.P. RugoH.S. Effectiveness of alpelisib + fulvestrant compared with real-world standard treatment among patients with HR+, HER2–, PIK3CA -Mutated Breast Cancer.Oncologist2021267e1133e114210.1002/onco.13804 33909934
    [Google Scholar]
  57. LiuY. YangT. LiH. LiM-H. LiuJ. WangY-T. YangS-X. ZhengJ. LuoX-Y. LaiY. YangP. LiL-M. ZouQ. BD 750, a benzothiazole derivative, inhibits T cell proliferation by affecting the JAK 3/STAT 5 signalling pathway.Br. J. Pharmacol.2013168363264310.1111/j.1476‑5381.2012.02172.x 22906008
    [Google Scholar]
  58. XieL. HuangJ. ChenX. YuH. LiK. YangD. ChenX. YingJ. PanF. LvY. ChengY. Design, synthesis and biological evaluation of novel rapamycin benzothiazole hybrids as mTOR targeted anti-cancer agents.Chem. Pharm. Bull. (Tokyo)201664434635510.1248/cpb.c15‑01016 26842804
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206335840241018053929
Loading
/content/journals/acamc/10.2174/0118715206335840241018053929
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Benzothiazole; EGFR; JAK/STAT; MAPK/ERK; MCF-7; MDA-MB-231; PI3K/AKT/mTOR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test