Skip to content
2000
image of Investigation of Apoptotic and Anticancer Effects of 2-substituted Benzothiazoles in Breast Cancer Cell Lines: EGFR Modulation and Mechanistic Insights

Abstract

Background and Objective

Benzothiazole derivatives, a class of heterocyclic compounds, exhibited diverse biological activities influenced by substituents in the thiazole ring. This study aimed to synthesize these compounds with two functional groups to investigate their potential as anticancer agents, particularly against breast cancer. While previous research demonstrated the efficacy of 2-substituted benzothiazoles against glioma and cervical and pancreatic cancer cells, there is a gap in studies targeting breast cancer.

Methods

The synthesized compounds were tested using MCF-7, MDA-MB-231, and MCF-10A cell lines, with Doxorubicin as the positive control. Various assays were conducted, including Annexin V/PI, cell cycle analysis, wound healing, and measurement of mitochondrial membrane potential. Protein expression of EGFR and transcription levels of apoptosis-related genes (Bax and Bcl-xL) and cancer progression-related genes (JAK, STAT3, ERK, AKT, mTOR) were analyzed. Additionally, the balance between antioxidants and oxidants was evaluated by measuring TAS and TOS levels.

Results

Our findings revealed that benzothiazole compounds significantly inhibited breast cancer cell growth by reducing cell motility, disrupting mitochondrial membrane potential, and inducing cell cycle arrest in the sub-G1 phase. These compounds increased reactive oxygen species accumulation, leading to cell death. Furthermore, they decreased EGFR protein levels, increased Bax gene transcription, and downregulated the expression of genes such as JAK, STAT3, ERK, AKT, and mTOR.

Conclusion

In conclusion, benzothiazole derivatives exhibited potent inhibitory effects on breast cancer by promoting apoptosis, downregulating EGFR activity, and modulating key signaling pathways, including JAK/STAT, ERK/MAPK, and PI3K/Akt/mTOR. These results highlighted the potential of benzothiazole derivatives as novel therapeutic agents for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206335840241018053929
2024-10-29
2025-01-18
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Michaels E. Worthington R.O. Rusiecki J. Breast cancer. Med. Clin. North Am. 2023 107 2 271 284 10.1016/j.mcna.2022.10.007 36759097
    [Google Scholar]
  3. Malayil R. Chhichholiya Y. Vasudeva K. Singh H.V. Singh T. Singh S. Munshi A. Oncogenic metabolic reprogramming in breast cancer: Focus on signaling pathways and mitochondrial genes. Med. Oncol. 2023 40 6 174 10.1007/s12032‑023‑02037‑2 37170010
    [Google Scholar]
  4. Vazquez A. Kamphorst J.J. Markert E.K. Schug Z.T. Tardito S. Gottlieb E. Cancer metabolism at a glance. J. Cell Sci. 2016 129 18 3367 3373 10.1242/jcs.181016 27635066
    [Google Scholar]
  5. Üremiş N. Üremiş M.M. Çiğremiş Y. Tosun E. Baysar A. Türköz Y. Cucurbitacin I exhibits anticancer efficacy through induction of apoptosis and modulation of JAK/STAT3, MAPK/ERK, and AKT/MTOR signaling pathways in HEPG2 cell line. J. Food Biochem. 2022 46 10 e14333 10.1111/jfbc.14333 35866877
    [Google Scholar]
  6. Türköz Y. Mehdi Üremiş M. Üremiş N. Tosun E. Durhan M. Çiğremiş Y. Baysar A. Cucurbitacin D inhibits the proliferation of HepG2 cells and induces apoptosis by modulating JAK/STAT3, PI3K/Akt/mTOR and MAPK signaling pathways. Curr. Cancer Drug Targets 2022 22 11 931 944 10.2174/1568009622666220623141158 35786188
    [Google Scholar]
  7. Fu Y. Liu S. Yin S. Niu W. Xiong W. Tan M. Li G. Zhou M. The reverse Warburg effect is likely to be an achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 2017 8 34 57813 57825 10.18632/oncotarget.18175 28915713
    [Google Scholar]
  8. Schlotter C.M. Vogt U. Allgayer H. Brandt B. Molecular targeted therapies for breast cancer treatment. Breast Cancer Res. 2008 10 4 211 10.1186/bcr2112 18671839
    [Google Scholar]
  9. Hsu J.L. Hung M.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 2016 35 4 575 588 10.1007/s10555‑016‑9649‑6 27913999
    [Google Scholar]
  10. Lau K.H. Tan A.M. Shi Y. New and emerging targeted therapies for advanced breast cancer. Int. J. Mol. Sci. 2022 23 4 2288 10.3390/ijms23042288 35216405
    [Google Scholar]
  11. Maennling A.E. Tur M.K. Niebert M. Klockenbring T. Zeppernick F. Gattenlöhner S. Meinhold-Heerlein I. Hussain A.F. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials. Cancers (Basel) 2019 11 12 1826 10.3390/cancers11121826 31756933
    [Google Scholar]
  12. Azzam R.A. Osman R.R. Elgemeie G.H. Efficient synthesis and docking studies of novel benzothiazole-Based pyrimidinesulfonamide scaffolds as new antiviral agents and Hsp90α inhibitors. ACS Omega 2020 5 3 1640 1655 10.1021/acsomega.9b03706 32010839
    [Google Scholar]
  13. Siddiqui N. Pandeya S.N. Khan S.A. Stables J. Rana A. Alam M. Arshad M.F. Bhat M.A. Synthesis and anticonvulsant activity of sulfonamide derivatives-hydrophobic domain. Bioorg. Med. Chem. Lett. 2007 17 1 255 259 10.1016/j.bmcl.2006.09.053 17046248
    [Google Scholar]
  14. Luo B. Li D. Zhang A.L. Gao J.M. Synthesis, antifungal activities and molecular docking studies of benzoxazole and benzothiazole derivatives. Molecules 2018 23 10 2457 10.3390/molecules23102457 30257495
    [Google Scholar]
  15. Naaz F. Srivastava R. Singh A. Singh N. Verma R. Singh V.K. Singh R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem. 2018 26 12 3414 3428 10.1016/j.bmc.2018.05.015 29778528
    [Google Scholar]
  16. Mishra V.R. Ghanavatkar C.W. Mali S.N. Qureshi S.I. Chaudhari H.K. Sekar N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem. 2019 78 330 337 10.1016/j.compbiolchem.2019.01.003 30639681
    [Google Scholar]
  17. Shafi S. Mahboob Alam M. Mulakayala N. Mulakayala C. Vanaja G. Kalle A.M. Pallu R. Alam M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem. 2012 49 324 333 10.1016/j.ejmech.2012.01.032 22305614
    [Google Scholar]
  18. Uremis N. Uremis M.M. Tolun F.I. Ceylan M. Doganer A. Kurt A.H. Synthesis of 2-substituted benzothiazole derivatives and their in vitro anticancer effects and antioxidant activities against pancreatic cancer cells. Anticancer Res. 2017 37 11 6381 6389 29061823
    [Google Scholar]
  19. Ceylan M. Erkan S. Yaglioglu A.S. Akdogan Uremis N. Koç E. Antiproliferative evaluation of some 2‐[2‐(2‐Phenylethenyl)‐cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles: DFT and molecular docking study. Chem. Biodivers. 2020 17 4 e1900675 10.1002/cbdv.201900675 32141675
    [Google Scholar]
  20. Üremiş M.M. Yağlıoğlu A.Ş. Budak Y. Ceylan M. Synthesis, characterization, in vitro antiproliferative and cytotoxicity effects of a new class of 2-((1R,2S)-2-((E)-4-substitutedstyryl) cyclooctyl)benzo[d]thiazole derivatives. Organic Communications 2017 10 3 190 200 10.25135/acg.oc.18.17.02.009
    [Google Scholar]
  21. Seth S. A comprehensive review on recent advances in synthesis & pharmacotherapeutic potential of benzothiazoles. Antiinflamm. Antiallergy Agents Med. Chem. 2015 14 2 98 112 10.2174/1871523014666150528110703 26017385
    [Google Scholar]
  22. Gao D. Jin N. Fu Y. Zhu Y. Wang Y. Wang T. Chen Y. Zhang M. Xiao Q. Huang M. Li Y. Rational drug design of benzothiazole-based derivatives as potent signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors. Eur. J. Med. Chem. 2021 216 113333 10.1016/j.ejmech.2021.113333 33689932
    [Google Scholar]
  23. Kim J. Hong S.H. Jeon S.H. Park M.H. Shin C.G. The novel benzothiazole derivative pb11 induces apoptosis via the PI3K/AKT signaling pathway in human cancer cell lines. Int. J. Mol. Sci. 2021 22 5 2718 10.3390/ijms22052718 33800261
    [Google Scholar]
  24. Kamal A. Faazil S. Ramaiah M.J. Ashraf M. Balakrishna M. Pushpavalli S.N.C.V.L. Patel N. Pal-Bhadra M. Synthesis and study of benzothiazole conjugates in the control of cell proliferation by modulating Ras/MEK/ERK-dependent pathway in MCF-7 cells. Bioorg. Med. Chem. Lett. 2013 23 20 5733 5739 10.1016/j.bmcl.2013.07.068 23999041
    [Google Scholar]
  25. Mokhtar A.M. El-Messery S.M. Ghaly M.A. Hassan G.S. Targeting EGFR tyrosine kinase: Synthesis, in vitro antitumor evaluation, and molecular modeling studies of benzothiazole-based derivatives. Bioorg. Chem. 2020 104 104259 10.1016/j.bioorg.2020.104259 32919134
    [Google Scholar]
  26. K, V.; S, S.; e, S. Synthesis, characterization, and evaluation of cancer prevention activity of novel modified heterocyclic compounds. Asian Pac. J. Cancer Prev. 2018 19 1 247 252 29374409
    [Google Scholar]
  27. Mates M. Fletcher G.G. Freedman O.C. Eisen A. Gandhi S. Trudeau M.E. Dent S.F. Systemic targeted therapy for her2-positive early female breast cancer: A systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline. Curr. Oncol. 2015 22 11 Suppl. 1 114 122 10.3747/co.22.2322 25848335
    [Google Scholar]
  28. Şahin B. Yağlıoğlu A.S. Ceylan M. Synthesis and cytotoxic activities of novel 2-(1,5-bis(aryl) penta-1,4-dien-2-yl) benzo[d]thiazol derivatives. Organic Communications 2016 9 3 65 72
    [Google Scholar]
  29. Findik E. Synthesis of the novel benzothiazole compounds from 7-benzylidenebicyclo [3.2.0] hept-2-en-6-ones and 2-aminobenzenethiol. Turk. J. Chem. 2012 36 1 93 100 10.3906/kim‑1105‑67
    [Google Scholar]
  30. Üremiş M.M. Üremiş N. Türköz Y. Cucurbitacin E shows synergistic effect with sorafenib by inducing apoptosis in hepatocellular carcinoma cells and regulates Jak/Stat3, ERK/MAPK, PI3K/Akt/mTOR signaling pathways. Steroids 2023 198 109261 10.1016/j.steroids.2023.109261 37355001
    [Google Scholar]
  31. Uremis M.M. Protective role of vitamin E against acrylamide-induced testicular toxicity from pregnancy to adulthood: insights into oxidative stress and aromatase regulation. Naunyn Schmiedebergs Arch. Pharmacol. 2023 37515736
    [Google Scholar]
  32. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005 38 12 1103 1111 10.1016/j.clinbiochem.2005.08.008 16214125
    [Google Scholar]
  33. Martin G.S. Cell signaling and cancer. Cancer Cell 2003 4 3 167 174 10.1016/S1535‑6108(03)00216‑2 14522250
    [Google Scholar]
  34. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021 71 1 7 33 10.3322/caac.21654 33433946
    [Google Scholar]
  35. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  36. Li C. Fan Z. Lin X. Cao M. Song F. Song F. Parity and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis. Cancer Epidemiol. 2021 75 102050 10.1016/j.canep.2021.102050 34706325
    [Google Scholar]
  37. O’Brien K.M. Cole S.R. Tse C.K. Perou C.M. Carey L.A. Foulkes W.D. Dressler L.G. Geradts J. Millikan R.C. Intrinsic breast tumor subtypes, race, and long-term survival in the carolina breast cancer study. Clin. Cancer Res. 2010 16 24 6100 6110 10.1158/1078‑0432.CCR‑10‑1533 21169259
    [Google Scholar]
  38. Haque R. Ahmed S.A. Inzhakova G. Shi J. Avila C. Polikoff J. Bernstein L. Enger S.M. Press M.F. Impact of breast cancer subtypes and treatment on survival: An analysis spanning two decades. Cancer Epidemiol. Biomarkers Prev. 2012 21 10 1848 1855 10.1158/1055‑9965.EPI‑12‑0474 22989461
    [Google Scholar]
  39. Harbeck N. Gnant M. Breast cancer. Lancet 2017 389 10074 1134 1150 10.1016/S0140‑6736(16)31891‑8 27865536
    [Google Scholar]
  40. Yadav R.K. Kumar R. Singh H. Mazumdar A. Salahuddin; Chauhan, B.; Abdullah, M.M. Recent insights on synthetic methods and pharmacological potential in relation with structure of benzothiazoles. Med. Chem. 2023 19 4 325 360 10.2174/1573406418666220820110551 35993459
    [Google Scholar]
  41. Mortimer C.G. Wells G. Crochard J.P. Stone E.L. Bradshaw T.D. Stevens M.F. Westwell A.D. Antitumor benzothiazoles. 26.(1) 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem. 2006 49 1 179 185 10.1021/jm050942k 16392802
    [Google Scholar]
  42. Abdel-Mohsen H.T. Abd El-Meguid E.A. El Kerdawy A.M. Mahmoud A.E.E. Ali M.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch. Pharm. (Weinheim) 2020 353 4 1900340 10.1002/ardp.201900340 32045054
    [Google Scholar]
  43. Barbarossa A. Ceramella J. Carocci A. Iacopetta D. Rosato A. Limongelli F. Carrieri A. Bonofiglio D. Sinicropi M.S. Benzothiazole-phthalimide hybrids as anti-breast cancer and antimicrobial agents. Antibiotics (Basel) 2023 12 12 1651 10.3390/antibiotics12121651 38136685
    [Google Scholar]
  44. Mohamed L.W. Taher A.T. Rady G.S. Ali M.M. Mahmoud A.E. Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF ‐7 cancer cell line. Chem. Biol. Drug Des. 2017 89 4 566 576 10.1111/cbdd.12879 27700014
    [Google Scholar]
  45. Irfan A. Batool F. Zahra Naqvi S.A. Islam A. Osman S.M. Nocentini A. Alissa S.A. Supuran C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem. 2020 35 1 265 279 10.1080/14756366.2019.1698036 31790602
    [Google Scholar]
  46. Altinoz E. Oner Z. Elbe H. Uremis N. Uremis M. Linalool exhibits therapeutic and protective effects in a rat model of doxorubicin-induced kidney injury by modulating oxidative stress. Drug Chem. Toxicol. 2022 45 5 2024 2030 10.1080/01480545.2021.1894751 33682561
    [Google Scholar]
  47. Tsuruo T. Naito M. Tomida A. Fujita N. Mashima T. Sakamoto H. Haga N. Molecular targeting therapy of cancer: Drug resistance, apoptosis and survival signal. Cancer Sci. 2003 94 1 15 21 10.1111/j.1349‑7006.2003.tb01345.x 12708468
    [Google Scholar]
  48. Pfeffer C. Singh A. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 2018 19 2 448 10.3390/ijms19020448 29393886
    [Google Scholar]
  49. Rodrigues J.R. Charris J. Camacho J. Barazarte A. Gamboa N. Antunes F. Cytotoxic effects of N′-formyl-2-(5-nitrothiophen-2-yl) benzothiazole-6-carbohydrazide in human breast tumor cells by induction of oxidative stress. Anticancer Res. 2012 32 7 2721 2726 22753731
    [Google Scholar]
  50. Xuejiao S. Yong X. Ningyu W. Lidan Z. Xuanhong S. Youzhi X. Tinghong Y. Yaojie S. Yongxia Z. Luoting Y. A novel benzothiazole derivative YLT322 induces apoptosis via the mitochondrial apoptosis pathway in vitro with anti-tumor activity in solid malignancies. PLoS One 2013 8 5 e63900 10.1371/journal.pone.0063900 23737957
    [Google Scholar]
  51. Singh M. Modi A. Narayan G. Singh S.K. Benzothiazole derivatives bearing amide moiety. Anticancer Drugs 2016 27 6 519 532 10.1097/CAD.0000000000000357 26945135
    [Google Scholar]
  52. Oprita A. Baloi S.C. Staicu G.A. Alexandru O. Tache D.E. Danoiu S. Micu E.S. Sevastre A.S. Updated insights on EGFR signaling pathways in glioma. Int. J. Mol. Sci. 2021 22 2 587 10.3390/ijms22020587 33435537
    [Google Scholar]
  53. Gabr M.T. El-Gohary N.S. El-Bendary E.R. El-Kerdawy M.M. Synthesis and in vitro antitumor activity of new series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives. Eur. J. Med. Chem. 2014 85 576 592 10.1016/j.ejmech.2014.07.097 25127150
    [Google Scholar]
  54. Arena F. Clinical implications of recent studies using mTOR inhibitors to treat advanced hormone receptor-positive breast cancer. Cancer Manag. Res. 2014 6 389 395 10.2147/CMAR.S56802 25336989
    [Google Scholar]
  55. Rugo H.S. Lerebours F. Ciruelos E. Drullinsky P. Ruiz-Borrego M. Neven P. Park Y.H. Prat A. Bachelot T. Juric D. Turner N. Sophos N. Zarate J.P. Arce C. Shen Y.M. Turner S. Kanakamedala H. Hsu W.C. Chia S. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol. 2021 22 4 489 498 10.1016/S1470‑2045(21)00034‑6 33794206
    [Google Scholar]
  56. Turner S. Chia S. Kanakamedala H. Hsu W.C. Park J. Chandiwana D. Ridolfi A. Yu C.L. Zarate J.P. Rugo H.S. Effectiveness of alpelisib + fulvestrant compared with real-world standard treatment among patients with HR+, HER2–, PIK3CA -Mutated Breast Cancer. Oncologist 2021 26 7 e1133 e1142 10.1002/onco.13804 33909934
    [Google Scholar]
  57. Liu Y. Yang T. Li H. Li M-H. Liu J. Wang Y-T. Yang S-X. Zheng J. Luo X-Y. Lai Y. Yang P. Li L-M. Zou Q. BD 750, a benzothiazole derivative, inhibits T cell proliferation by affecting the JAK 3/STAT 5 signalling pathway. Br. J. Pharmacol. 2013 168 3 632 643 10.1111/j.1476‑5381.2012.02172.x 22906008
    [Google Scholar]
  58. Xie L. Huang J. Chen X. Yu H. Li K. Yang D. Chen X. Ying J. Pan F. Lv Y. Cheng Y. Design, synthesis and biological evaluation of novel rapamycin benzothiazole hybrids as mTOR targeted anti-cancer agents. Chem. Pharm. Bull. (Tokyo) 2016 64 4 346 355 10.1248/cpb.c15‑01016 26842804
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206335840241018053929
Loading
/content/journals/acamc/10.2174/0118715206335840241018053929
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: MDA-MB-231 ; EGFR ; MAPK/ERK ; PI3K/AKT/mTOR ; Benzothiazole ; JAK/STAT ; MCF-7
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test