Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Krüppel-like factors (KLFs, total 18 members) from the zinc finger protein (ZFP) super-family have a wide range of biological functions in hepatocellular carcinoma (HCC). This paper reviews the recent some progresses of aberrant KLFs with their potential values for diagnosis, prognosis, and targeted therapy in HCC. The recent advances of oncogenic KLFs in the diagnosis, prognosis, and targeted therapy of HCC were reviewed based on the related literature on PUBMED and clinical investigation. Based on the recent literature, KLFs, according to biological functions in HCC, are divided into 4 subgroups: promoting (KLF5, 7, 8, 13), inhibiting (KLF3, 4, 9~12, 14, 17), dual (KLF2, 6), and unknown functions (KLF1, 15, 16, or 18 ?). HCC-related KLFs regulate downstream gene transcription during hepatocyte malignant transformation, participating in cell proliferation, apoptosis, invasion, and metastasis. Some KLFs have diagnostic or prognostic value, and other KLFs with inhibiting promoting function or over-expressing inhibiting roles might be molecular targets for HCC therapy. These data have suggested that Abnormal expressions of KLFs were associated with HCC progression. Among them, some KLFs have revealed the clinical values of diagnosis or prognosis, and other KLFs with the biological functions of promotion or inhibition might be as effectively molecular targets for HCC therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206301453240910044913
2024-09-20
2024-12-26
Loading full text...

Full text loading...

References

  1. HuangD.Q. MathurinP. Cortez-PintoH. LoombaR. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors.Nat. Rev. Gastroenterol. Hepatol.2023201374910.1038/s41575‑022‑00688‑636258033
    [Google Scholar]
  2. DuQ. YuanJ. RenZ. Hepatocellular carcinoma patients with hepatitis B virus infection exhibited favorable survival from immune checkpoint inhibitors: A systematic review and meta-analysis.Liver Cancer202413434435410.1159/00053444639021889
    [Google Scholar]
  3. ShahP.A. PatilR. HarrisonS.A. NAFLD‐related hepatocellular carcinoma: The growing challenge.Hepatology202277132333810.1002/hep.3254235478412
    [Google Scholar]
  4. GhazanfarH. JavedN. QasimA. ZachariaG.S. GhazanfarA. JyalaA. ShehiE. PatelH. Metabolic dysfunction-associated steatohepatitis and progression to hepatocellular carcinoma: A literature review.Cancers (Basel)2024166121410.3390/cancers1606121438539547
    [Google Scholar]
  5. CraneH. EslickG.D. GoftonC. ShaikhA. CholankerilG. CheahM. ZhongJ.H. Svegliati-BaroniG. VitaleA. KimB.K. AhnS.H. KimM.N. StrasserS.I. GeorgeJ. Global prevalence of metabolic dysfunction-associated fatty liver disease-related hepatocellular carcinoma: A systematic review and meta-analysis.Clin. Mol. Hepatol.202430343644810.3350/cmh.2024.010938623613
    [Google Scholar]
  6. SartorisR. GregoryJ. DioguardiB.M. RonotM. VilgrainV. HCC advances in diagnosis and prognosis: Digital and Imaging.Liver Int.202141S1Suppl. 1737710.1111/liv.1486534155790
    [Google Scholar]
  7. GanesanP. KulikL.M. Hepatocellular carcinoma.Clin. Liver Dis.20232718510210.1016/j.cld.2022.08.00436400469
    [Google Scholar]
  8. GhavimiS. ApfelT. AzimiH. PersaudA. PyrsopoulosN.T. Management and treatment of hepatocellular carcinoma with immunotherapy: A review of current and future options.J. Clin. Transl. Hepatol.20208216817610.14218/JCTH.2020.0000132832397
    [Google Scholar]
  9. YuceK. OzkanA.I. The kruppel-like factor (KLF) family, diseases, and physiological events.Gene202489514802710.1016/j.gene.2023.14802738000704
    [Google Scholar]
  10. LiuY. MaD. JiC. Zinc fingers and homeoboxes family in human diseases.Cancer Gene Ther.201522522322610.1038/cgt.2015.1625857360
    [Google Scholar]
  11. KimC.K. Bialkowska, A.B.; Yang, V.W. SP and KLF transcription factors in digestive physiology and diseases.Gastroenterol.201715281845187510.1053/j.gastro.2017.03.03528366734
    [Google Scholar]
  12. JenJ. WangY.C. Zinc finger proteins in cancer progression.J. Biomed. Sci.20162315310.1186/s12929‑016‑0269‑927411336
    [Google Scholar]
  13. ShiY. YaoM. ShenS. WangL. YaoD. Abnormal expression of Krüppel-like transcription factors and their potential values in lung cancer.Heliyon2024107e2829210.1016/j.heliyon.2024.e2829238560274
    [Google Scholar]
  14. LiY. ZhaoX. XuM. ChenM. Krüppel-like factors in glycolipid metabolic diseases.Mol. Biol. Rep.20224988145815210.1007/s11033‑022‑07565‑035585376
    [Google Scholar]
  15. EomK.S. CheongJ.S. LeeS.J. Structural analyses of zinc finger domains for specific interactions with DNA.J. Microbiol. Biotechnol.201626122019202910.4014/jmb.1609.0902127713215
    [Google Scholar]
  16. FuM. BlackshearP.J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins.Nat. Rev. Immunol.201717213014310.1038/nri.2016.12927990022
    [Google Scholar]
  17. IlsleyM.D. GillinderK.R. MagorG.W. HuangS. BaileyT.L. CrossleyM. PerkinsA.C. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription.Nucleic Acids Res.201745116572658810.1093/nar/gkx44128541545
    [Google Scholar]
  18. ShaoM. GeG.Z. LiuW.J. XiaoJ. XiaH.J. FanY. ZhaoF. HeB.L. ChenC. Characterization and phylogenetic analysis of Kruppel-like transcription factor (KLF) gene family in tree shrews (Tupaia belangeri chinensis).Oncotarget2017810163251633910.18632/oncotarget.13883.28032601
    [Google Scholar]
  19. YeQ. LiuJ. XieK. Zinc finger proteins and regulation of the hallmarks of cancer.Histol. Histopathol.201934101097110910.14670/HH‑18‑12131045237
    [Google Scholar]
  20. JhaK. KumarA. BhatnagarK. PatraA. BhaveshN.S. SinghB. ChaudharyS. Modulation of Krüppel-like factors (KLFs) interaction with their binding partners in cancers through acetylation and phosphorylation.Biochim. Biophys. Acta. Gene Regul. Mech.20241867119500310.1016/j.bbagrm.2023.19500337992989
    [Google Scholar]
  21. KimH.Y. JangH.J. MuthamilS. ShinU.C. LyuJ.H. KimS.W. GoY. ParkS.H. LeeH.G. ParkJ.H. Novel insights into regulators and functional modulators of adipogenesis.Biomed. Pharmacother.202417711707310.1016/j.biopha.2024.11707338981239
    [Google Scholar]
  22. YiP.S. ShuY. BiW.X. ZhengX.B. FengW.J. HeL.Y. LiJ.S. Emerging role of zinc finger protein A20 as a suppressor of hepatocellular carcinoma.J. Cell. Physiol.201923412214792148410.1002/jcp.2887731134613
    [Google Scholar]
  23. ZengL. ZhuY. MorenoC.S. WanY. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy.Semin. Cancer Biol.202390294410.1016/j.semcancer.2023.02.00336806560
    [Google Scholar]
  24. SiateckaM. SoniS. PlanutisA. BiekerJ.J. Transcriptional activity of erythroid Kruppel-like factor (EKLF/KLF1) modulated by PIAS3 (protein inhibitor of activated STAT3).J. Biol. Chem.2015290159929994010.1074/jbc.M114.610246.25713074
    [Google Scholar]
  25. LiZ.Y. ZhuY.X. ChenJ.R. ChangX. XieZ.Z. The role of KLF transcription factor in the regulation of cancer progression.Biomed. Pharmacother.202316211466110.1016/j.biopha.2023.11466137068333
    [Google Scholar]
  26. GiarrizzoM. LaCombJ.F. BialkowskaA.B. The role of Krüppel-like factors in pancreatic physiology and pathophysiology.Int. J. Mol. Sci.20232410858910.3390/ijms2410858937239940
    [Google Scholar]
  27. ZouK. LuX. YeK. WangC. YouT. ChenJ. Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc.Cancer Biol. Ther.2016171202610.1080/15384047.2015.1108484
    [Google Scholar]
  28. LinJ. TanH. NieY. WuD. ZhengW. LinW. ZhuZ. YangB. ChenX. ChenT. Krüppel‐like factor 2 inhibits hepatocarcinogenesis through negative regulation of the Hedgehog pathway.Cancer Sci.201911041220123110.1111/cas.1396130719823
    [Google Scholar]
  29. TianB. ZhouL. WangJ. YangP. miR-660-5p-loaded M2 macrophages-derived exosomes augment hepatocellular carcinoma development through regulating KLF3.Int. Immunopharmacol.2021101Pt B10815710.1016/j.intimp.2021.108157
    [Google Scholar]
  30. JiaX. LiL. WangF. XueY. WuT. JiaQ. LiY. WuC. ChenY. WuJ. SuY. WangX. ZhuangT. DongX. LingJ. YuanJ. LiQ. DUB3/KLF4 combats tumor growth and chemoresistance in hepatocellular carcinoma.Cell Death Discov.20228116610.1038/s41420‑022‑00988‑535383144
    [Google Scholar]
  31. AnT. DongT. ZhouH. ChenY. ZhangJ. ZhangY. LiZ. YangX. The transcription factor Krüppel-like factor 5 promotes cell growth and metastasis via activating PI3K/AKT/Snail signaling in hepatocellular carcinoma.Biochem. Biophys. Res. Commun.2019508115916810.1016/j.bbrc.2018.11.08430473218
    [Google Scholar]
  32. VetterD. Cohen-NaftalyM. VillanuevaA. LeeY.A. KocabayogluP. HannivoortR. NarlaG. M LlovetJ. ThungS.N. FriedmanS.L. Enhanced hepatocarcinogenesis in mouse models and human hepatocellular carcinoma by coordinate KLF6 depletion and increased messenger RNA splicing.Hepatology20125641361137010.1002/hep.2581022535637
    [Google Scholar]
  33. WenP.H. WangD.Y. ZhangJ.K. WangZ.H. PanJ. ShiX.Y. YangH. ZhangS.J. GuoW.Z. Kruppel-like factor 6 suppresses growth and invasion of hepatocellular carcinoma cells in vitro and in vivo.Int. J. Immunopathol. Pharmacol.201629466667510.1177/039463201665517127510817
    [Google Scholar]
  34. GuoY. ChaiB. JiaJ. YangM. LiY. ZhangR. WangS. XuJ. KLF7/VPS35 axis contributes to hepatocellular carcinoma progression through CCDC85C-activated β-catenin pathway.Cell Biosci.20211117310.1186/s13578‑021‑00585‑633858520
    [Google Scholar]
  35. WangM.D. XingH. LiC. LiangL. WuH. XuX.F. SunL.Y. WuM.C. ShenF. YangT. A novel role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma.Cancer Cell Int.202020142210.1186/s12935‑020‑01513‑332874135
    [Google Scholar]
  36. SunJ. WangB. LiuY. ZhangL. MaA. YangZ. JiY. LiuY. Transcription factor KLF9 suppresses the growth of hepatocellular carcinoma cells in vivo and positively regulates p53 expression.Cancer Lett.20143551253310.1016/j.canlet.2014.09.022
    [Google Scholar]
  37. LiD. LuL. LiuM. SunJ. Inhibition of long noncoding RNA cancer susceptibility candidate 7 attenuates hepatocellular carcinoma development by targeting micro RNA-30a-5p.Bioengineered.2022134112961130810.1080/21655979.2022.2068289.35484972
    [Google Scholar]
  38. HujieG. ZhouS. ZhangH. QuJ. XiongX. HujieO. LiaoC. YangS. MicroRNA-10b regulates epithelial–mesenchymal transition by modulating KLF4/KLF11/Smads in hepatocellular carcinoma.Cancer Cell Int.20181811010.1186/s12935‑018‑0508‑029375271
    [Google Scholar]
  39. WangJ. PuJ. ZhangY. YaoT. LuoZ. LiW. XuG. LiuJ. WeiW. DengY. DANCR contributed to hepatocellular carcinoma malignancy via sponging miR‐216a‐5p and modulating KLF12.J. Cell. Physiol.201923469408941610.1002/jcp.2762530430564
    [Google Scholar]
  40. ChenC.C. XieX.M. ZhaoX.K. ZuoS. LiH.Y. Krüppel-like factor 13 promotes HCC progression by transcriptional regulation of HMGCS1-mediated cholesterol synthesis.J. Clin. Transl. Hepatol.20221061125113710.14218/JCTH.2021.00370.36381108
    [Google Scholar]
  41. ZhouH. ChenJ. FanM. CaiH. DongY. QiuY. ZhuangQ. LeiZ. LiM. DingX. YanP. LinA. ZhengS. YanQ. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2.J. Exp. Clin. Cancer Res.2023421510.1186/s13046‑022‑02562‑436600258
    [Google Scholar]
  42. JiangZ. ElsarragS.Z. DuanQ. LaGoryE.L. WangZ. AlexanianM. McMahonS. RulifsonI.C. WinchesterS. WangY. VaisseC. BrownJ.D. QuattrocelliM. LinC.Y. HaldarS.M. KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation.Sci. Adv.2022810eabj291710.1126/sciadv.abj291735263131
    [Google Scholar]
  43. PommerenkeC. NagelS. HaakeJ. KoelzA.L. ChristgenM. SteenpassL. EberthS. Molecular characterization and subtyping of breast cancer cell lines provide novel Insights into cancer relevant genes.Cells202413430110.3390/cells1304030138391914
    [Google Scholar]
  44. NiD. QiZ. WangY. ManY. PangJ. TangW. ChenJ. LiJ. LiG. KLF15-activated MARCH2 boosts cell proliferation and epithelial-mesenchymal transition and presents diagnostic significance for hepatocellular carcinoma.Exp. Cell Res.2024440111411710.1016/j.yexcr.2024.11411738848952
    [Google Scholar]
  45. LiuF.Y. DengY.L. LiY. ZengD. ZhouZ.Z. TianD.A. LiuM. Down-regulated KLF17 expression is associated with tumor invasion and poor prognosis in hepatocellular carcinoma.Med. Oncol.201330142510.1007/s12032‑012‑0425‑323325444
    [Google Scholar]
  46. SunN. ShenC. ZhangL. WuX. YuY. YangX. YangC. ZhongC. GaoZ. MiaoW. YangZ. GaoW. HuL. WilliamsK. LiuC. ChangY. GaoY. Hepatic Krüppel-like factor 16 (KLF16) targets PPARα to improve steatohepatitis and insulin resistance.Gut202170112183219510.1136/gutjnl‑2020‑32177433257471
    [Google Scholar]
  47. TsengP.T. ZengB.Y. WangH.Y. ZengB.S. LiangC.S. ChenY.C.B. StubbsB. CarvalhoA.F. BrunoniA.R. SuK.P. TuY.K. WuY.C. ChenT.Y. LiD.J. LinP.Y. ChenY.W. HsuC.W. HungK.C. ShiueY.L. LiC.T. Efficacy and acceptability of noninvasive brain stimulation for treating posttraumatic stress disorder symptoms: A network meta‐analysis of randomized controlled trials.Acta Psychiatr. Scand.2024150152110.1111/acps.1368838616056
    [Google Scholar]
  48. CervelloM. AugelloG. CoccoL. RattiS. FolloM.Y. MartelliA.M. CusimanoA. MontaltoG. McCubreyJ.A. The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH.Adv. Biol. Regul.20249210103210.1016/j.jbior.2024.10103238693042
    [Google Scholar]
  49. PeiJ. GrishinN.V. C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond.Gene.20155731919910.1016/j.gene.2015.07.031.26187067
    [Google Scholar]
  50. YerraV.G. DrosatosK. Specificity proteins (SP) and Krüppel-like factors (KLF) in liver physiology and pathology.Int. J. Mol. Sci.2023245468210.3390/ijms2405468236902112
    [Google Scholar]
  51. ZhangY. YaoC. JuZ. JiaoD. HuD. QiL. LiuS. WuX. ZhaoC. Krüppel-like factors in tumors: Key regulators and therapeutic avenues.Front Oncol.202313108072010.3389/fonc.2023.1080720.36761967
    [Google Scholar]
  52. Mancera-RincónP. Luna-EspañaM.C. RinconO. GuzmánI. AlvarezM. Maturity-onset diabetes of the young type 7 (MODY7) and the krüppellike factor 11 mutation (KLF11). A review.Curr. Diabetes Rev.2024201e21032321481710.2174/157339981966623032111445636944622
    [Google Scholar]
  53. Orzechowska-LicariE.J. LaComb, J.F.; Mojumdar, A.; Bialkowska, A.B. SP and KLF transcription factors in cancer metabolism.Int. J. Mol. Sci.20222317995610.3390/ijms2317995636077352
    [Google Scholar]
  54. AbeM. SaekiN. IkedaY. OhbaS. Kruppel-like factors in skeletal physiology and pathologies.Int. J. Mol. Sci.202223231517410.3390/ijms23231517436499521
    [Google Scholar]
  55. JiangH. ShiX. YeG. XuY. XuJ. LuJ. LuW. Up-regulated long non-coding RNA DUXAP8 promotes cell growth through repressing Krüppel-like factor 2 expression in human hepatocellular carcinoma.OncoTargets Ther.2019127429743610.2147/OTT.S21433631571902
    [Google Scholar]
  56. MaeharaO. SatoF. NatsuizakaM. AsanoA. KubotaY. ItohJ. TsunematsuS. TerashitaK. TsukudaY. NakaiM. ShoT. SudaG. MorikawaK. OgawaK. ChumaM. NakagawaK. OhnishiS. KomatsuY. WhelanK.A. NakagawaH. TakedaH. SakamotoN. A pivotal role of Krüppel-like factor 5 in regulation of cancer stem-like cells in hepatocellular carcinoma.Cancer Biol. Ther.201516101453146110.1080/15384047.2015.107099226176896
    [Google Scholar]
  57. LiangH. SunH. YangJ. YiC. miR 145 5p reduces proliferation and migration of hepatocellular carcinoma by targeting KLF5.Mol. Med. Rep.20181768332833810.3892/mmr.2018.888029658584
    [Google Scholar]
  58. WeiW. ChenW. HeN. HDAC4 induces the development of asthma by increasing Slug-upregulated CXCL12 expression through KLF5 deacetylation.J. Transl. Med.202119125810.1186/s12967‑021‑02812‑734118928
    [Google Scholar]
  59. LinJ. LiuP. SunK. JiangL. LiuY. HuangY. LiuJ. ShiM. ZhangJ. WangT. ShenB. Comprehensive analysis of KLF family reveals KLF6 as a promising prognostic and immune biomarker in pancreatic ductal adenocarcinoma.Cancer Cell Int.202424117710.1186/s12935‑024‑03369‑338773440
    [Google Scholar]
  60. MaoY. ChenY. ZhangZ. Molecular function of Krüppel-like factor 7 in biology.Acta Biochim Biophys Sin202355571372510.3724/abbs.2023061.37227154
    [Google Scholar]
  61. LongJ. LiuL. YangX. ZhouX. LuX. QinL. LncRNA NUTM2A-AS1 aggravates the progression of hepatocellular carcinoma by activating the miR-186-5p/KLF7-mediated Wnt/beta-catenin pathway.Hum. Cell202236131232810.1007/s13577‑022‑00802‑536242728
    [Google Scholar]
  62. ChengS. ZhangX. XuY. DaiX. LiJ. ZhangT. ChenX. Krüppel-like factor 8 regulates VEGFA expression and angiogenesis in hepatocellular carcinoma.Sci. Rep.2018811741510.1038/s41598‑018‑35786‑630479372
    [Google Scholar]
  63. XieX. ChenC. FengS. ZuoS. ZhaoX. LiH. Acyl-CoA thioesterase 7 is transcriptionally activated by krüppel-like factor 13 and promotes the progression of hepatocellular carcinoma.J. Hepatocell. Carcinoma202181623164110.2147/JHC.S33835334993160
    [Google Scholar]
  64. WuW. LiuS. LiangY. ZhouZ. LiuX. MiR-7 inhibits progression of hepatocarcinoma by targeting KLF-4 and promises a novel diagnostic biomarker.Cancer Cell Int.20171713110.1186/s12935‑017‑0386‑x28239300
    [Google Scholar]
  65. TianX. DaiS. SunJ. JinG. JiangS. MengF. LiY. WuD. JiangY. F-box protein FBXO22 mediates polyubiquitination and degradation of KLF4 to promote hepatocellular carcinoma progression.Oncotarget2015626227672277510.18632/oncotarget.408226087183
    [Google Scholar]
  66. LiY. YuS. LiL. ChenJ. QuanM. LiQ. GaoY. KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling.Cell Death Dis.202011429910.1038/s41419‑020‑2479‑z32350244
    [Google Scholar]
  67. HeH. WuZ. LiS. ChenK. WangD. ZouH. ChenH. LiY. LiuZ. QuC. TRAF7 enhances ubiquitin-degradation of KLF4 to promote hepatocellular carcinoma progression.Cancer Lett.202046938038910.1016/j.canlet.2019.11.01231730901
    [Google Scholar]
  68. ZhaoQ. CaiW. ZhangX. TianS. ZhangJ. LiH. HouC. MaX. ChenH. HuangB. ChenD. RYBP expression is regulated by KLF4 and Sp1 and is related to hepatocellular carcinoma prognosis.J. Biol. Chem.201729262143215810.1074/jbc.M116.77072728028181
    [Google Scholar]
  69. YaoS. TianC. DingY. YeQ. GaoY. YangN. LiQ. Down-regulation of Krüppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1.Oncotarget2106727425664257810.18632/oncotarget.993427302923
    [Google Scholar]
  70. MuñozÚ. PucheJ.E. HannivoortR. LangU.E. Cohen-NaftalyM. FriedmanS.L. Hepatocyte growth factor enhances alternative splicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promote growth through SRSF1.Mol. Cancer Res.20121091216122710.1158/1541‑7786.MCR‑12‑021322859706
    [Google Scholar]
  71. ZhenzhenZ. De’anT. LiminX. WeiY. MinL. New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma.Hepatogastroenterology20125911447347610.5754/hge1128321940380
    [Google Scholar]
  72. KongL.M. YaoL. LuN. DongY.L. ZhangJ. WangY.Q. LiuL. ZhangH.L. HuangJ.G. LiaoC.G. Interaction of KLF6 and Sp1 regulates basigin-2 expression mediated proliferation, invasion and metastasis in hepatocellular carcinoma.Oncotarget2016719279752798710.18632/oncotarget.8564
    [Google Scholar]
  73. BrownA.R. AlhallakI. SimmenR.C.M. MelnykS.B. Heard-LipsmeyerM.E. MontalesM.T.E. HabenichtD. VanT.T. SimmenF.A. Krüppel-like Factor 9 (KLF9) suppresses hepatocellular carcinoma (HCC)-promoting oxidative stress and inflammation in mice fed high-fat diet.Cancers2022147173710.3390/cancers14071737.35406507
    [Google Scholar]
  74. ZhouS. TangX. TangF. Krüppel-like factor 17, a novel tumor suppressor: its low expression is involved in cancer metastasis.Tumour Biol.20163721505151310.1007/s13277‑015‑4588‑326662959
    [Google Scholar]
  75. AliA. ZhangP. LiangfangY. WensheS. WangH. LinX. DaiY. FengX. MosesR. WangD. LiX. XiaoJ. KLF17 empowers TGF-β/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression.Cell Death Dis.201563e168110.1038/cddis.2015.4825766320
    [Google Scholar]
  76. SunZ. HanQ. ZhouN. WangS. LuS. BaiC. ZhaoR.C. MicroRNA‐9 enhances migration and invasion through KLF17 in hepatocellular carcinoma.Mol. Oncol.20137588489410.1016/j.molonc.2013.04.00723684102
    [Google Scholar]
  77. PessinoG. ScottiC. MaggiM. Immuno-hub consortium. hepatocellular carcinoma: Old and emerging therapeutic targets.Cancers (Basel)202416590110.3390/cancers1605090138473265
    [Google Scholar]
  78. GarciaA. MathewS.O. Racial/ethnic disparities and immunotherapeutic advances in the treatment of hepatocellular carcinoma.Cancers (Basel)20241613244610.3390/cancers1613244639001508
    [Google Scholar]
  79. SaiW.L. WangL. SunJ.Y. YangJ.L. YaoM. YaoD.F. Value of abnormal expression of Krüppel-like zinc-finger protein transcription factor 5 in the diagnosis and prognosis of liver cancer.Zhonghua Gan Zang Bing Za Zhi.202129878178710.3760/cma.j.cn501113‑20200721‑00405.34517461
    [Google Scholar]
  80. XueM. ZhouC. ZhengY. ZhangZ. WangS. FuY. AtyahM. XueX. ZhuL. DongQ. JiaH. RenN. HuR. The association between KLF4 as a tumor suppressor and the prognosis of hepatocellular carcinoma after curative resection.Aging (Albany NY)20201215155661558010.18632/aging.10359232756012
    [Google Scholar]
  81. López-CánovasJ.L. del Rio-MorenoM. García-FernandezH. Jiménez-VacasJ.M. Moreno-MontillaM.T. Sánchez-FriasM.E. AmadoV. L-López, F.; Fondevila, M.F.; Ciria, R.; Gómez-Luque, I.; Briceño, J.; Nogueiras, R.; de la Mata, M.; Castaño, J.P.; Rodriguez-Perálvarez, M.; Luque, R.M.; Gahete, M.D. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma.Cancer Lett.2021496728310.1016/j.canlet.2020.10.01033038489
    [Google Scholar]
  82. ChaoJ. ZhaoS. SunH. Dedifferentiation of hepatocellular carcinoma: molecular mechanisms and therapeutic implications.Am. J. Transl. Res.20201252099210932509204
    [Google Scholar]
  83. SrinivasA.N. SureshD. ChidambaramS.B. SanthekadurP.K. KumarD.P. Apoptosis antagonizing transcription factor‐mediated liver damage and inflammation to cancer: Therapeutic intervention by curcumin in experimental metabolic dysfunction associated steatohepatitis‐hepatocellular carcinoma.J. Cell. Physiol.20242391e3115110.1002/jcp.3115137942831
    [Google Scholar]
  84. ZarlashatY. MushtaqH. PhamL. AbbasW. SatoK. Advancements in immunotherapeutic ireatments for hepatocellular carcinoma: Potential of combination therapies.Int. J. Mol. Sci.20242513683010.3390/ijms2513683038999940
    [Google Scholar]
  85. LiuM. ZhaoT. ZhangJ. BuB. ZhangR. XiaX. GengJ. Estimating the key outcomes and hepatocellular carcinoma risk in patients in immune‐tolerant phase of chronic hepatitis B virus infection: A systematic review and meta‐analysis.Rev. Med. Virol.2024344e257010.1002/rmv.257038964866
    [Google Scholar]
  86. XuG. YeJ. LiuX.J. ZhangN.P. ZhaoY.M. FanJ. LiuX.P. WuJ. Activation of pluripotent genes in hepatic progenitor cells in the transition of nonalcoholic steatohepatitis to pre-malignant lesions.Lab. Invest.201797101201121710.1038/labinvest.2017.8428869588
    [Google Scholar]
  87. LuX.J. ShiY. ChenJ.L. MaS. Krüppel-like factors in hepatocellular carcinoma.Tumour Biol.201536253354110.1007/s13277‑015‑3127‑625652467
    [Google Scholar]
  88. SunH. PengZ. TangH. XieD. JiaZ. ZhongL. ZhaoS. MaZ. GaoY. ZengL. LuoR. XieK. Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-β signaling in and promote progression of hepatocellular carcinoma.Oncogene201736212957296810.1038/onc.2016.44728192402
    [Google Scholar]
  89. ChenJ. ZhangL. MaS. LuG. WangD. The aberrant expressions of MACC1, ZEB1, and KLF4 in hepatocellular carcinoma and their clinical significance.Int. J. Clin. Exp. Pathol.20191293653366131934216
    [Google Scholar]
  90. CaiM. ShaoW. YuH. HongY. ShiL. Paeonol inhibits cell proliferation, migration and invasion and induces apoptosis in hepatocellular carcinoma by regulating miR-21-5p/KLF6 axis.Cancer Manag. Res.2020125931594310.2147/CMAR.S25448532765094
    [Google Scholar]
  91. WangY.G. LiuJ. ShiM. ChenF.X. LncRNA DGCR5 represses the development of hepatocellular carcinoma by targeting the miR‐346/KLF14 axis.J. Cell. Physiol.2019234157258010.1002/jcp.2677930216442
    [Google Scholar]
  92. DongX. WangF. XueY. LinZ. SongW. YangN. LiQ. MicroRNA 9 5p down- regulates Klf4 and influences the progression of hepatocellular carcinoma via the AKT signaling pathway.Int. J. Mol. Med.20194331417142910.3892/ijmm.2019.4062.30664155
    [Google Scholar]
  93. PangJ. LiZ. WangG. LiN. GaoY. WangS. miR‐214‐5p targets KLF5 and suppresses proliferation of human hepatocellular carcinoma cells.J. Cell. Biochem.201912021850185910.1002/jcb.2749830206974
    [Google Scholar]
  94. LiJ.C. YangX.R. SunH.X. XuY. ZhouJ. QiuS.J. KeA.W. CuiY.H. WangZ.J. WangW.M. LiuK.D. FanJ. Up-regulation of Krüppel-like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma.Gastroenterology2010139621462157.e1210.1053/j.gastro.2010.08.00420728449
    [Google Scholar]
  95. GaoW. LuY.X. WangF. SunJ. BianJ.X. WuH.Y. miRNA-217 inhibits proliferation of hepatocellular carcinoma cells by regulating KLF5.Eur. Rev. Med. Pharmacol. Sci.201923187874788310.26355/eurrev_201909_1899731599412
    [Google Scholar]
  96. LiY. TuS. ZengY. ZhangC. DengT. LuoW. LianL. ChenL. XiongX. YanX. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma.Acta Biochim. Biophys. Sin. (Shanghai)202052548549410.1093/abbs/gmaa02432318691
    [Google Scholar]
  97. YangJ.L. FangR.F. XieQ. TaiB.J. YaoD.F. YaoM. Overexpression of tuftelin and KLF-5 and its clinicopathological features in hepatitis B virus-related hepatocellular carcinoma.Zhonghua Gan Zang Bing Za Zhi202432214815410.3760/cma.j.cn501113‑20231107‑0017438514264
    [Google Scholar]
  98. ShenY.N. HeH.G. ShiY. CaoJ. YuanJ.Y. WangZ.C. ShiC.F. ZhuN. WeiY.P. LiuF. HuangJ.L. YangG.S. LuJ.H. Krüppel‐like factor 8 promotes cancer stem cell‐like traits in hepatocellular carcinoma through Wnt/β‐catenin signaling.Mol. Carcinog.201756275176010.1002/mc.2253227478926
    [Google Scholar]
  99. CercekA. WhelerJ. MurrayP.E. ZhouS. SaltzL. Phase 1 study of APTO-253 HCl, an inducer of KLF4, in patients with advanced or metastatic solid tumors.Invest. New Drugs20153351086109210.1007/s10637‑015‑0273‑z26268924
    [Google Scholar]
  100. HeA.D. XieW. SongW. MaY.Y. LiuG. LiangM.L. DaX.W. YaoG.Q. ZhangB. GaoC.J. XiangJ. MingZ.Y. Platelet releasates promote the proliferation of hepatocellular carcinoma cells by suppressing the expression of KLF6.Sci. Rep.201771398910.1038/s41598‑017‑02801‑128638139
    [Google Scholar]
  101. LiuL. YangX. LiN.F. LinL. LuoH. Circ_0015756 promotes proliferation, invasion and migration by microRNA-7- dependent inhibition of FAK in hepatocellular carcinoma.Cell Cycle.201918212939295310.1080/15384101.2019.1664223.31522588
    [Google Scholar]
  102. WangT. FengL. ShiZ. YangL. YuX. WuJ. SunJ. ZhangJ. FengY. WangW. A negative feedback loop between KLF9 and the EMT program dictates metastasis of hepatocellular carcinoma.J. Cell. Mol. Med.202327162372238410.1111/jcmm.1782337400979
    [Google Scholar]
  103. HossenM.A. RezaM.S. RanaM.M. HossenM.B. ShoaibM. MollahM.N.H. HanC. Identification of most representative hub-genes for diagnosis, prognosis, and therapies of hepatocellular carcinoma.Chin. Clin. Oncol.20241333210.21037/cco‑23‑15138984486
    [Google Scholar]
  104. SundiP.R.I.O. ThipeV.C. OmarM.A. AdelusiT.I. GedefaJ. OlaobaO.T. Preclinical human and murine models of hepatocellular carcinoma (HCC).Clin. Res. Hepatol. Gastroenterol.202448710241810.1016/j.clinre.2024.10241839004339
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206301453240910044913
Loading
/content/journals/acamc/10.2174/0118715206301453240910044913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test