Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

One of the growing diseases in today's human societies is cancer, which has become a major challenge, especially in industrialized and developing countries. Cancer treatments are diverse, but they usually use surgery, chemotherapy, and radiotherapy to improve patients. Existing drugs are usually expensive and, in some cases, are not effective due to drug resistance and side effects. Finding compounds of natural origin can be somewhat effective and useful in helping doctors to treat this disease. plants, which are traditionally used as spices or for medicinal purposes, can be a good source for finding anti-cancer compounds due to their various compounds, such as monoterpenes, sulfide compounds, and polyphenols. Several studies have shown that compounds found in plants have significant anticancer effects on various types of cancer cells.

Objective

This article was compiled with the aim of collecting evidence and articles related to the anti-cancer effects of three compounds obtained from these plants, namely Conferone, Diversin, and Ferutinin.

Methods

This review article was prepared by searching the terms Conferone, Diversin, Ferutinin and cancer and related information was collected through searching electronic databases such as ISI Web of Knowledge, PubMed and Google Scholar until the March of 2024.

Conclusion

The results of this review showed that relatively comprehensive studies have been conducted in this field and these studies have shown that these compounds can be used in the design of future anticancer drugs. Among the examined compounds, conferone showed that it has the best effect on cancer cells.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206328175241022081832
2024-10-30
2025-03-29
Loading full text...

Full text loading...

References

  1. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  2. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: profiles, trends, and determinants.Chin. Med. J.2022135558459010.1097/CM9.0000000000002108 35143424
    [Google Scholar]
  3. WHODiagnosis and treatment.Available from: https://www.who.int/publications/who-guidelines (accessed on 8-10-2024)
    [Google Scholar]
  4. AbbasZ. RehmanS. An overview of cancer treatment modalities.Neoplasm20181139157
    [Google Scholar]
  5. NorouziM. AmerianM. AmerianM. AtyabiF. Clinical applications of nanomedicine in cancer therapy.Drug Discov. Today202025110712510.1016/j.drudis.2019.09.017 31586642
    [Google Scholar]
  6. MaggioreU. PalmisanoA. ButiS. Claire GiudiceG. CattaneoD. GiulianiN. FiaccadoriE. GandolfiniI. CravediP. Chemotherapy, targeted therapy and immunotherapy: Which drugs can be safely used in the solid organ transplant recipients?Transpl. Int.202134122442245810.1111/tri.14115 34555228
    [Google Scholar]
  7. ThirumalaivasanN. NanganS. KanagarajK. RajendranS. Assessment of sustainability and environmental impacts of renewable energies: Focusing on biogas and biohydrogen (Biofuels) production.Process Saf. Environ. Prot.202418946748510.1016/j.psep.2024.06.063
    [Google Scholar]
  8. ShokerR.M.H. A review article: The importance of the major groups of plants secondary metabolism phenols, alkaloids, and terpenes.Int. J. Res. Appl. Sci. Biotechnol.20207535435810.31033/ijrasb.7.5.47
    [Google Scholar]
  9. DobleM. Potential synergism of natural products in the treatment of cancer. Phyther. Res. An Int.J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv.200620239249
    [Google Scholar]
  10. WangJ. DingR. OuyangT. GaoH. KanH. LiY. HuQ. YangY. Systematic investigation of the mechanism of herbal medicines for the treatment of prostate cancer.Aging (Albany NY)20231541004102410.18632/aging.204516 36795572
    [Google Scholar]
  11. BahararaH. RahseparS. EmamiS.A. ElyasiS. MohammadpourA.H. GhavamiV. RajendramR. SahebkarA. ArastehO. The efficacy of medicinal plant preparations in the alleviation of radiodermatitis in patients with breast cancer: A systematic review of clinical trials.Phytother. Res.20233783275329510.1002/ptr.7894 37211432
    [Google Scholar]
  12. KalachaveeduM. SenthilR. AzhagiyamanavalanS. RaviR. MeenakshisundaramH. DharmarajanA. Traditional medicine herbs as natural product matrices in cancer chemoprevention: A trans pharmacological perspective (scoping review).Phytother. Res.20233741539157310.1002/ptr.7747 36788644
    [Google Scholar]
  13. AmiriM.S. JoharchiM.R. Ethnobotanical knowledge of Apiaceae family in Iran: A review.Avicenna J. Phytomed.201666621635 28078243
    [Google Scholar]
  14. ChristensenL.P. BrandtK. Bioactive polyacetylenes in food plants of the apiaceae family: Occurrence, bioactivity and analysis.J. Pharm. Biomed. Anal.200641368369310.1016/j.jpba.2006.01.057 16520011
    [Google Scholar]
  15. MoranJ. van RijswijkB. TraicevskiV. KitajimaE.W. MackenzieA.M. GibbsA.J. Potyviruses, novel and known, in cultivated and wild species of the family Apiaceae in Australia.Arch. Virol.2002147101855186710.1007/s00705‑002‑0865‑8 12376749
    [Google Scholar]
  16. SiriziM.A.G. Alizadeh GhalenoeiJ. AllahtavakoliM. ForouzanfarH. BagheriS.M. Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy.World J. Biol. Chem.2023142283910.4331/wjbc.v14.i2.28 37034135
    [Google Scholar]
  17. IranshahiM. KalategiF. RezaeeR. ShahverdiA. ItoC. FurukawaH. TokudaH. ItoigawaM. Cancer chemopreventive activity of terpenoid coumarins from Ferula species.Planta Med.200874214715010.1055/s‑2008‑1034293 18240102
    [Google Scholar]
  18. AnsariI.A. AkhtarM.S. Current insights on the role of terpenoids as anticancer agents: A perspective on cancer prevention and treatment.Natural Bio-active Compound.Springer2019Vol. 25380
    [Google Scholar]
  19. NeshatiV. MatinM.M. BahramiA.R. IranshahiM. RassouliF.B. SaeinasabM. Increasing the cisplatin cytotoxicity and cisplatin-induced DNA damage by conferone in 5637 cells.Nat. Prod. Res.201226181724172710.1080/14786419.2011.606546 21988674
    [Google Scholar]
  20. KasaianJ. MosaffaF. BehravanJ. MasulloM. PiacenteS. IranshahiM. Modulation of multidrug resistance protein 2 efflux in the cisplatin resistance human ovarian carcinoma cells A2780/RCIS by sesquiterpene coumarins.Phytother. Res.2016301848910.1002/ptr.5504 26503061
    [Google Scholar]
  21. KhanS.S. KhanA. MarasiniB.P. SabaN. AhmadV.U. IranshaniM. HosseiniS.T. ChoudharyM.I. (Alpha)-chymotrypsin and urease inhibitory activity of diversolides C, D and E from the roots of Ferula diversivittata.J. Chem. Soc. Pak.2012201234
    [Google Scholar]
  22. LuanL. LiN. ZhangK. WangX. PanH. Diversin upregulates the proliferative ability of colorectal cancer by inducing cell cycle proteins.Exp. Mol. Pathol.202312910485010.1016/j.yexmp.2023.104850 36623636
    [Google Scholar]
  23. NajiR.G.S. KarimiE. OskoueianE. Homayouni-TabriziM. IranshahiM. Ferutinin: A phytoestrogen from ferula and its anticancer, antioxidant, and toxicity properties.J. Biochem. Mol. Toxicol.2021354e2271310.1002/jbt.22713 33501774
    [Google Scholar]
  24. JunqueiraM.Z. ChammasR. Cancer chemotherapy failure: A synthetic view.Rev. Med.201897214115310.11606/issn.1679‑9836.v97i2p141‑153
    [Google Scholar]
  25. Bach-GrieraM. Campo-PérezV. BarbosaS. TraserraS. Guallar-GarridoS. Moya-AndéricoL. Herrero-AbadíaP. LuquinM. RabanalR.M. TorrentsE. JuliánE. Mycolicibacterium brumae is a safe and non-toxic immunomodulatory agent for cancer treatment.Vaccines20208219810.3390/vaccines8020198 32344808
    [Google Scholar]
  26. SauterE.R. MohammedA. Natural products for cancer prevention and interception: Preclinical and clinical studies and funding opportunities.Pharmaceuticals202417113610.3390/ph17010136 38276009
    [Google Scholar]
  27. TewariD. RawatP. SinghP.K. Adverse drug reactions of anticancer drugs derived from natural sources.Food Chem. Toxicol.201912352253510.1016/j.fct.2018.11.041 30471312
    [Google Scholar]
  28. PoustforooshA. FaramarzS. NegahdaripourM. TüzünB. HashemipourH. Investigation on the mechanisms by which the herbal remedies induce anti-prostate cancer activity: uncovering the most practical natural compound.J. Biomol. Struct. Dyn.20244273349336210.1080/07391102.2023.2213344 37194430
    [Google Scholar]
  29. ImtiazI. SchlossJ. BugarcicA. Traditional and contemporary herbal medicines in management of cancer: A scoping review.J. Ayurveda Integr. Med.202415110090410.1016/j.jaim.2024.100904 38395014
    [Google Scholar]
  30. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.14816 31368509
    [Google Scholar]
  31. LaceyJ. HustonA. LopezG. VozmedianoJ.R. LamC.S. NarayananS. LuW. WolfU. SubbiahI.M. RichardP. LopezA.M. RaoS. FrenkelM. Establishing an Integrative Oncology Service: Essential Aspects of Program Development.Curr. Oncol. Rep.202426320021110.1007/s11912‑024‑01504‑x 38358637
    [Google Scholar]
  32. MuscoloA. MariateresaO. GiulioT. MariateresaR. Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases.Int. J. Mol. Sci.2024256326410.3390/ijms25063264 38542238
    [Google Scholar]
  33. KhanF. PandeyP. VermaM. RamniwasS. LeeD. MoonS. ParkM.N. UpadhyayT.K. KimB. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy.Biomed. Pharmacother.202417311636310.1016/j.biopha.2024.116363 38479184
    [Google Scholar]
  34. RafatpanahH. GolizadehM. MahdifarM. MahdaviS. IranshahiM. RassouliF.B. Conferone, a coumarin from Ferula flabelliloba, induced toxic effects on adult T-cell leukemia/lymphoma cells.Int. J. Immunopathol. Pharmacol.2023370394632023119759210.1177/03946320231197592 37688389
    [Google Scholar]
  35. EruçarF.M. KuranF.K. Altıparmak ÜlbegiG. ÖzbeyS. KaravuşŞ.N. ArcanG.G. Yazıcı TütünişS. TanN. Aksoy SağırlıP. MiskiM. Sesquiterpene coumarin ethers with selective cytotoxic activities from the roots of Ferula huber-morathii peşmen (apiaceae) and unequivocal determination of the absolute stereochemistry of samarcandin.Pharmaceuticals (Basel)202316679210.3390/ph16060792 37375740
    [Google Scholar]
  36. BarthomeufC. DemeuleM. GrassiJ. SaidkhodjaevA. BeliveauR. Conferone from Ferula schtschurowskiana enhances vinblastine cytotoxicity in MDCK-MDR1 cells by competitively inhibiting P-glycoprotein transport.Planta Med.200672763463910.1055/s‑2006‑931574 16739070
    [Google Scholar]
  37. LiS. JiangM. WangL. YuS. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement.Biomed. Pharmacother.202012911038910.1016/j.biopha.2020.110389 32540642
    [Google Scholar]
  38. RahmaniA. RahimiF. IranshahiM. KahrobaH. ZarebkohanA. TalebiM. SalehiR. MousaviH.Z. Co-delivery of doxorubicin and conferone by novel pH-responsive β-cyclodextrin grafted micelles triggers apoptosis of metastatic human breast cancer cells.Sci. Rep.20211112142510.1038/s41598‑021‑00954‑8 34728703
    [Google Scholar]
  39. RomaniA.M.P. Cisplatin in cancer treatment.Biochem. Pharmacol.202220611532310.1016/j.bcp.2022.115323 36368406
    [Google Scholar]
  40. TchounwouP.B. DasariS. NoubissiF.K. RayP. KumarS. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy.J. Exp. Pharmacol.20211330332810.2147/JEP.S267383 33776489
    [Google Scholar]
  41. SongM. CuiM. LiuK. Therapeutic strategies to overcome cisplatin resistance in ovarian cancer.Eur. J. Med. Chem.202223211420510.1016/j.ejmech.2022.114205 35217497
    [Google Scholar]
  42. RahmaniA. ZavvarM.H. SalehiR. BagheriA. Novel pH-sensitive and biodegradable micelles for the combined delivery of doxorubicin and conferone to induce apoptosis in MDA-MB-231 breast cancer cell line.RSC Advances20201049292282924610.1039/D0RA03467C 35521092
    [Google Scholar]
  43. KhaliliL. DehghanG. Hosseinpour FeiziM.A. SheibaniN. HamishekarH. Development of an albumin decorated lipid-polymer hybrid nanoparticle for simultaneous delivery of methotrexate and conferone to cancer cells.Int. J. Pharm.202159912042110.1016/j.ijpharm.2021.120421 33676992
    [Google Scholar]
  44. Chitsazian-YazdiM. AgnoletS. LorenzS. SchneiderB. Es’haghiZ. KasaianJ. KhamenehB. IranshahiM. Foetithiophenes C-F, thiophene derivatives from the roots of Ferula foetida.Pharm. Biol.201553571071410.3109/13880209.2014.939765 25430396
    [Google Scholar]
  45. ValiahdiS.M. IranshahiM. SahebkarA. Cytotoxic activities of phytochemicals from Ferula species.Daru20132113910.1186/2008‑2231‑21‑39 23701832
    [Google Scholar]
  46. SoltaniS. AminG. Salehi-SourmaghiM.H. IranshahiM. Histone deacetylase inhibitory and cytotoxic activities of the constituents from the roots of three species of Ferula.Iran. J. Basic Med. Sci.20192219398 30944714
    [Google Scholar]
  47. ZhangH. XuH. AshbyC.R.Jr AssarafY.G. ChenZ.S. LiuH.M. Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp).Med. Res. Rev.202141152555510.1002/med.21739 33047304
    [Google Scholar]
  48. Al KhouryC. ThoumiS. TokajianS. SinnoA. NemerG. El BeyrouthyM. RahyK. ABC transporter inhibition by beauvericin partially overcomes drug resistance in Leishmania tropica.Antimicrob. Agents Chemother.2024685e01368e2310.1128/aac.01368‑23 38572959
    [Google Scholar]
  49. IranshahiM. BarthomeufC. Bayet-RobertM. CholletP. DavoodiD. PiacenteS. RezaeeR. SahebkarA. Drimane-type sesquiterpene coumarins from Ferula gummosa fruits enhance doxorubicin uptake in doxorubicin-resistant human breast cancer cell line.J. Tradit. Complement. Med.20144211812510.4103/2225‑4110.126181 24860735
    [Google Scholar]
  50. KhaliqR. IqbalP. WaniA.Y. Colorectal Cancer: Natural Products as a Treatment.Handbook of Research on Natural Products and Their Bioactive Compounds as Cancer Therapeutics.IGI Global202211915210.4018/978‑1‑7998‑9258‑8.ch006
    [Google Scholar]
  51. CheraghiO. DehghanG. MahdaviM. RahbarghaziR. RezabakhshA. CharoudehH.N. IranshahiM. MontazersahebS. Potent anti-angiogenic and cytotoxic effect of conferone on human colorectal adenocarcinoma HT-29 cells.Phytomedicine201623439840510.1016/j.phymed.2016.01.015 27002410
    [Google Scholar]
  52. NeshatiaV. MatinM.M. IranshahiM. BahramiA.R. BehravanJ. MollazadehS. RassouliF.B. Cytotoxicity of vincristine on the 5637 cell line is enhanced by combination with conferone.Z. Naturforsch. C J. Biosci.2009645-631732210.1515/znc‑2009‑5‑602 19678531
    [Google Scholar]
  53. MalekiE.H. BahramiA.R. SadeghianH. MatinM.M. Discovering the structure–activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells.Toxicol. In Vitro20206310474510.1016/j.tiv.2019.104745 31830504
    [Google Scholar]
  54. KiselevaV.V. NikonovG.K. KarryevM.O. The structure of diversin and diversinin - Coumarins of Ferula diversivittata.Chem. Nat. Compd.197511335836110.1007/BF00571206
    [Google Scholar]
  55. HaghighitalabA. MoghaddamM.M. BahramiA.R. IranshahiM. In vitro investigation of diversin cytotoxicity on 5637 cells.2010Available from: https://profdoc.um.ac.ir/articles/a/1019488.pdf (accessed on 8-10-2024)
    [Google Scholar]
  56. HaghighitalabA. MatinM.M. BahramiA.R. IranshahiM. SaeinasabM. HaghighiF. In vitro investigation of anticancer, cell-cycle-inhibitory, and apoptosis-inducing effects of diversin, a natural prenylated coumarin, on bladder carcinoma cells.Z. Naturforsch. C J. Biosci.2014693-49910910.5560/znc.2013‑0006 24873030
    [Google Scholar]
  57. IranshahiM. SahebkarA. HosseiniS.T. TakasakiM. KonoshimaT. TokudaH. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo.Phytomedicine2010173-426927310.1016/j.phymed.2009.05.020 19577457
    [Google Scholar]
  58. MiskiM. MabryT.J. Daucane esters from Ferula communis subsp. communis.Phytochemistry19852481735174110.1016/S0031‑9422(00)82543‑1
    [Google Scholar]
  59. IranshahiM. RezaeeR. NajafN.M. HaghbinA. KasaianJ. Cytotoxic activity of the genus Ferula (Apiaceae) and its bioactive constituents.Avicenna J. Phytomed.201884296312 30377589
    [Google Scholar]
  60. ZanoliP. ZavattiM. GeminianiE. CorsiL. BaraldiM. The phytoestrogen ferutinin affects female sexual behavior modulating ERα expression in the hypothalamus.Behav. Brain Res.2009199228328710.1016/j.bbr.2008.12.009 19124045
    [Google Scholar]
  61. AbourashedE.A. GalalA.M. ShiblA.M. Antimycobacterial activity of ferutinin alone and in combination with antitubercular drugs against a rapidly growing surrogate of Mycobacterium tuberculosis.Nat. Prod. Res.201125121142114910.1080/14786419.2010.481623 21442547
    [Google Scholar]
  62. ZavattiM. GuidaM. MaraldiT. BerettiF. BertoniL. La SalaG.B. De PolA. Estrogen receptor signaling in the ferutinin-induced osteoblastic differentiation of human amniotic fluid stem cells.Life Sci.2016164152210.1016/j.lfs.2016.09.005 27629493
    [Google Scholar]
  63. SafiR. RodriguezF. HilalG. Diab-AssafM. DiabY. El-SabbanM. NajjarF. DelfourneE. Hemisynthesis, antitumoral effect, and molecular docking studies of ferutinin and its analogues.Chem. Biol. Drug Des.201687338239710.1111/cbdd.12670 26432755
    [Google Scholar]
  64. PoliF. AppendinoG. SacchettiG. BalleroM. MaggianoN. RanellettiF.O. Antiproliferative effects of daucane esters from Ferula communis and F. arrigonii on human colon cancer cell lines.Phytother. Res.200519215215710.1002/ptr.1443 15852493
    [Google Scholar]
  65. ArghianiN. MatinM.M. BahramiA.R. IranshahiM. SazgarniaA. RassouliF.B. Investigating anticancer properties of the sesquiterpene ferutinin on colon carcinoma cells, in vitro and in vivo.Life Sci.20141092879410.1016/j.lfs.2014.06.006 24953605
    [Google Scholar]
  66. MatinM.M. NakhaeizadehH. BahramiA.R. IranshahiM. ArghianiN. RassouliF.B. Ferutinin, an apoptosis inducing terpenoid from Ferula ovina.Asian Pac. J. Cancer Prev.20141552123212810.7314/APJCP.2014.15.5.2123 24716944
    [Google Scholar]
  67. TangJ. LuoY. TianZ. LiaoX. CuiQ. YangQ. WuG. TRIM11 promotes breast cancer cell proliferation by stabilizing estrogen receptor α.Neoplasia202022934335110.1016/j.neo.2020.06.003 32599554
    [Google Scholar]
  68. SafiR. HamadeA. BteichN. El SaghirJ. AssafM.D. El-SabbanM. NajjarF. A ferutinin analogue with enhanced potency and selectivity against ER-positive breast cancer cells in vitro.Biomed. Pharmacother.201810526727310.1016/j.biopha.2018.05.058 29860218
    [Google Scholar]
  69. SeveriniC. MascoloM.G. MorandiE. SilingardiP. HornW. PerdichizziS. VaccariM. ColacciA. 509 POSTER Evaluation of in vitro toxicity and efficacy of ferutinin, a natural promising chemoprevantive compound.Eur. J. Cancer, Suppl.200641215510.1016/S1359‑6349(06)70514‑6
    [Google Scholar]
  70. MacrìR. BavaI. ScaranoF. MollaceR. MusolinoV. GliozziM. GrecoM. FotiD. TucciL. MaiuoloJ. CarresiC. TaverneseA. PalmaE. MuscoliC. MollaceV. In vitro evaluation of ferutinin rich-Ferula communis L., ssp. glauca, root extract on doxorubicin-induced cardiotoxicity: Antioxidant properties and cell cycle modulation.Int. J. Mol. Sci.202324161273510.3390/ijms241612735 37628916
    [Google Scholar]
  71. AlkhatibR. HennebelleT. JohaS. IdziorekT. PreudhommeC. QuesnelB. SahpazS. BailleulF. Activity of elaeochytrin A from Ferula elaeochytris on leukemia cell lines.Phytochemistry200869172979298310.1016/j.phytochem.2008.09.019 18992904
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206328175241022081832
Loading
/content/journals/acamc/10.2174/0118715206328175241022081832
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer mechanisms; cancer; conferone; diversin; Ferula; ferutinin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test