Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Ultra-short peptides are essential therapeutic agents due to their heightened selectivity and reduced toxicity. Scientific literature documents the utilization of dipeptides, tripeptides, and tetrapeptides as promising agents for combating cancer. We have created a range of tryptophan-based peptides derived from literature sources in order to assess their potential as anticancer drugs.

Methods

We present the results of our study on the antibacterial and anticancer effectiveness of 10 ultra-short peptides that were produced utilizing microwave-assisted solid phase peptide synthesis. The synthesized peptides underwent screening for antibacterial activity using the agar dilution method.

Results

HPLC, LC-MS, 1H NMR, and 13C NMR spectroscopy were used to analyze the synthesized peptides. In tests using the HeLa and MCF-7 cell lines, the synthesized peptides' anticancer efficacy was assessed. The study found that two peptides showed potential median inhibitory concentration (IC) values of 3.9±0.13 µM and 1.8±0.09 µM, respectively, and showed more activity than the reference medication doxorubicin.

Conclusion

The antibacterial activity of synthesized peptides and was found to be better than the other synthetic peptides. MIC value of roughly µg/mL for peptides , , and showed strong antifungal activity against . The synthesized peptides were also evaluated for their anticancer activity against HeLa and MCF-7 cell lines, and found that peptides and were more potent than other peptides against doxorubicin.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206260662240613054521
2024-09-18
2024-12-26
Loading full text...

Full text loading...

References

  1. Abdel MonaimS.A.H. JadY.E. El-FahamA. de la TorreB.G. AlbericioF. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study.Bioorg. Med. Chem.201826102788279610.1016/j.bmc.2017.09.04029029900
    [Google Scholar]
  2. MittalS. KaurS. SwamiA. MauryaI.K. JainR. WangooN. SharmaR.K. Alkylated histidine based short cationic antifungal peptides: Synthesis, biological evaluation and mechanistic investigations.RSC Advances20166484195141961
    [Google Scholar]
  3. MontyO.B.C. SimmonsN. ChamakuriS. MatzukM.M. YoungD.W. Solution-phase Fmoc-based peptide synthesis for DNA-encoded chemical libraries: Reaction conditions, protecting group strategies, and pitfalls.ACS Comb. Sci.2020221283384310.1021/acscombsci.0c0014433074645
    [Google Scholar]
  4. NanY.H. BangJ.K. JacobB. ParkI.S. ShinS.Y. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37.Peptides201235223924710.1016/j.peptides.2012.04.00422521196
    [Google Scholar]
  5. NawazM.I. RezzolaS. TobiaC. ColtriniD. BelleriM. MitolaS. CorsiniM. SandomenicoA. CaporaleA. RuvoM. PrestaM. D-Peptide analogues of Boc-Phe-Leu-Phe-Leu-Phe-COOH induce neovascularization via endothelial N-formyl peptide receptor 3.Angiogenesis202023335736910.1007/s10456‑020‑09714‑0
    [Google Scholar]
  6. BrogdenK.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?Nat. Rev. Microbiol.20053323825010.1038/nrmicro109815703760
    [Google Scholar]
  7. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  8. KamalA. DastagiriD. Janaki RamaiahM. Surendranadha ReddyJ. Vijaya BharathiE. Kashi ReddyM. Victor Prem SagarM. Lakshminarayan ReddyT. PushpavalliS.N.C.V.L. Pal-BhadraM. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents.Eur. J. Med. Chem.201146125817582410.1016/j.ejmech.2011.09.03922000207
    [Google Scholar]
  9. KapoorP. SinghH. GautamA. ChaudharyK. KumarR. RaghavaG.P.S. TumorHoPe: A database of tumor homing peptides.PLoS One201274e3518710.1371/journal.pone.003518722523575
    [Google Scholar]
  10. KarstadR. IsaksenG. BrandsdalB.O. SvendsenJ.S. SvensonJ. Unnatural amino acid side chains as S1, S1′, and S2′ probes yield cationic antimicrobial peptides with stability toward chymotryptic degradation.J. Med. Chem.201053155558556610.1021/jm100633720608742
    [Google Scholar]
  11. SeyfiR. KahakiF.A. EbrahimiT. MontazersahebS. EyvaziS. BabaeipourV. TarhrizV. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action.Int. J. Pept. Res. Ther.20202631451146310.1007/s10989‑019‑09946‑9
    [Google Scholar]
  12. ChinchillaR. DodsworthD.J. NájeraC. SorianoJ.M. Polymer-bound TBTU as a new solid-supported reagent for peptide synthesis.Tetrahedron Lett.200041142463246610.1016/S0040‑4039(00)00180‑5
    [Google Scholar]
  13. ChandruduS. SimerskaP. TothI. Chemical methods for peptide and protein production.Molecules20131844373438810.3390/molecules1804437323584057
    [Google Scholar]
  14. ChristopherD.F. JanA.H. RobertE.W. Designing antimicrobial peptides: Form follows function.Natl. Rev.2012114143
    [Google Scholar]
  15. CohenS.J. AlpaughR.K. GrossS. O’HaraS.M. SmirnovD.A. TerstappenL.W.M.M. AllardW.J. BilbeeM. ChengJ.D. HoffmanJ.P. LewisN.L. PellegrinoA. RogatkoA. SigurdsonE. WangH. WatsonJ.C. WeinerL.M. MeropolN.J. Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer.Clin. Colorectal Cancer20066212513210.3816/CCC.2006.n.02916945168
    [Google Scholar]
  16. RaucherD. RyuJ.S. Cell-penetrating peptides: Strategies for anticancer treatment.Trends Mol. Med.201521956057010.1016/j.molmed.2015.06.00526186888
    [Google Scholar]
  17. ShafieeF. PourhadiM. JamalzadeF. Jahanian-NajafabadiA. Expression, purification, and cytotoxic evaluation of IL24-BR2 fusion protein.Res. Pharm. Sci.201914432032810.4103/1735‑5362.26355631516508
    [Google Scholar]
  18. RaiN. RathoreS. TiwariR.T. PatilS. GajbhiyeA. Synthesis, characterization and pharmacological evaluation of ultra short dipeptides as antimicrobial and anticancer agents.Int. J. Pharm. Investig.202313356657310.5530/ijpi.13.3.070
    [Google Scholar]
  19. BeheraB. MathurP. DasA. KapilA. GuptaB. BhoiS. FarooqueK. SharmaV. MisraM.C. Evaluation of susceptibility testing methods for polymyxin.Int. J. Infect. Dis.2010147e596e60110.1016/j.ijid.2009.09.00120045367
    [Google Scholar]
  20. DroinN. HendraJ.B. DucoroyP. SolaryE. Human defensins as cancer biomarkers and antitumour molecules.J. Proteomics200972691892710.1016/j.jprot.2009.01.00219186224
    [Google Scholar]
  21. KimM. KangN. KoS. ParkJ. ParkE. ShinD. KimS. LeeS. LeeJ. LeeS. HaE. JeonS. ParkY. Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant Acinetobacter baumannii.Int. J. Mol. Sci.20181910304110.3390/ijms1910304130301180
    [Google Scholar]
  22. AbdelmotyI. AlbericioF. CarpinoL.A. FoxmanB.M. KatesS.A. Structural studies of reagents for peptide bond formation: Crystal and molecular structures of HBTU and HATU.Lett. Pept. Sci.199412576710.1007/BF00126274
    [Google Scholar]
  23. AhmedS. MirzaeiH. AschnerM. KhanA. Al-HarrasiA. KhanH. Marine peptides in breast cancer: Therapeutic and mechanistic understanding.Biomed. Pharmacother.202114211203810.1016/j.biopha.2021.11203834411915
    [Google Scholar]
  24. AkramM. AsifH.M. UzairM. AkhtarN. MadniA. ShahS.A. HasanZ. Amino acids: A review article.J. Med. Plants Res.2011517
    [Google Scholar]
  25. AlbericioF. BaranyG. An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions.Int. J. Pept. Protein Res.198730220621610.1111/j.1399‑3011.1987.tb03328.x3679670
    [Google Scholar]
  26. HansenT. AlstT. HavelkovaM. StromM.B. Antimicrobial activity of small B -peptidomimetics based on the pharmacophore model of short cationic antimicrobial peptides.Peptides201039595606
    [Google Scholar]
  27. ApostolopoulosV. BojarskaJ. ChaiT.T. ElnagdyS. KaczmarekK. MatsoukasJ. NewR. ParangK. LopezO.P. ParhizH. PereraC.O. PickholzM. RemkoM. SavianoM. SkwarczynskiM. TangY. WolfW.M. YoshiyaT. ZabrockiJ. ZielenkiewiczP. AlKhazindarM. BarrigaV. KelaidonisK. SarasiaE.M. TothI. A global review on short peptides: Frontiers and perspectives.Molecules202126243010.3390/molecules2602043033467522
    [Google Scholar]
  28. AriasM. HaneyE.F. HilchieA.L. CorcoranJ.A. HyndmanM.E. HancockR.E.W. VogelH.J. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin.Biochim. Biophys. Acta Biomembr.20201862818322810.1016/j.bbamem.2020.18322832126228
    [Google Scholar]
  29. BodeS.A. LöwikD.W.P.M. Constrained cell penetrating peptides.Drug Discov. Today. Technol.2017263342
    [Google Scholar]
  30. BojsenR. TorbensenR. LarsenC.E. FolkessonA. RegenbergB. The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner.PLoS One201387e6948310.1371/journal.pone.006948323874964
    [Google Scholar]
  31. LaxminarayanR. DuseA. WattalC. ZaidiA.K.M. WertheimH.F.L. SumpraditN. VliegheE. HaraG.L. GouldI.M. GoossensH. GrekoC. SoA.D. BigdeliM. TomsonG. WoodhouseW. OmbakaE. PeraltaA.Q. QamarF.N. MirF. KariukiS. BhuttaZ.A. CoatesA. BergstromR. WrightG.D. BrownE.D. CarsO. Antibiotic resistance the need for global solutions.Lancet Infect. Dis.201313121057109810.1016/S1473‑3099(13)70318‑924252483
    [Google Scholar]
  32. CarpinoL.A. GhassemiS. IonescuD. IsmailM. Sadat-AalaeeD. TruranG.A. MansourE.M.E. SiwrukG.A. EynonJ.S. MorganB. Rapid, continuous solution phase peptide synthesis: Application to peptides of pharmaceutical interest.Org. Process Res. Dev.200371283710.1021/op0202179
    [Google Scholar]
  33. ColiganJ. DunnE. BenM. DavidW. Guide for resin and linker selection in solid phase peptide synthesis.Curr. Prot. Prot. Sci.2001737-19
    [Google Scholar]
  34. DawsonR.M. LiuC.Q. Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics.Drug Dev. Res.200970748149810.1002/ddr.20329
    [Google Scholar]
  35. DoanN.D. HopewellR. LubellW.D. N-aminoimidazolidin-2-one peptidomimetics.Org. Lett.20141682232223510.1021/ol500739k24697286
    [Google Scholar]
  36. StrømM.B. HaugB.E. SkarM.L. StensenW. StibergT. SvendsenJ.S. StibergT. SvendsenJ.S. The pharmacophore of short cationic antibacterial peptides.J. Med. Chem.20034691567157010.1021/jm034003912699374
    [Google Scholar]
  37. BangaA. ChienY. Systemic delivery of therapeutic peptides and proteins.Int. J. Pharm.1988481-3155010.1016/0378‑5173(88)90246‑3
    [Google Scholar]
  38. FacconeD. VelizO. CorsoA. NogueraM. MartínezM. PayesC. SemorileL. MaffíaP.C. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates.Eur. J. Med. Chem.201471313510.1016/j.ejmech.2013.10.06524269514
    [Google Scholar]
  39. EderM. PavanS. Bauder-WüstU. van RietschotenK. BaranskiA.C. HarrisonH. CampbellS. StaceC.L. WalkerE.H. ChenL. BennettG. MuddG. SchierbaumU. LeottaK. HaberkornU. KopkaK. TeufelD.P. Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors.Cancer Res.201979484185210.1158/0008‑5472.CAN‑18‑023830606721
    [Google Scholar]
  40. EdisonN. ReingewertzT.H. GottfriedY. LevT. ZuriD. ManivI. CarpM.J. ShalevG. FriedlerA. LarischS. Peptides mimicking the unique ARTS-XIAP binding site promote apoptotic cell death in cultured cancer cells.Clin. Cancer Res.20121892569257810.1158/1078‑0432.CCR‑11‑143022392914
    [Google Scholar]
  41. FanR. YuanY. ZhangQ. ZhouX.R. JiaL. LiuZ. YuC. LuoS.Z. ChenL. Isoleucine/leucine residues at “a” and “d” positions of a heptad repeat sequence are crucial for the cytolytic activity of a short anticancer lytic peptide.Amino Acids201749119320210.1007/s00726‑016‑2350‑927778166
    [Google Scholar]
  42. GreggB. Introduction to peptide synthesis.Curr. Protoc. Protein Sci.200126.11819
    [Google Scholar]
  43. FjellC.D. HissJ.A. HancockR.E.W. SchneiderG. Designing antimicrobial peptides: Form follows function.Nat. Rev. Drug Discov.2012111375110.1038/nrd359122173434
    [Google Scholar]
  44. FuertesM. CastillaJ. AlonsoC. PérezJ. Cisplatin biochemical mechanism of action: From cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways.Curr. Med. Chem.200310325726610.2174/092986703336848412570712
    [Google Scholar]
  45. GabernetG. MüllerA.T. HissJ.A. SchneiderG. Membranolytic anticancer peptides.MedChemComm20167122232224510.1039/C6MD00376A
    [Google Scholar]
  46. MeienhoferJ. WakiM. HeimreE.P. LambrosT.J. MakofskeR.C. ChangC.D. Solid phase synthesis without repetitive acidolysis. Preparation of leucyl-alanyl-glycyl-valine using 9-fluorenylmethyloxycarbonylamino acids.Int. J. Pept. Protein Res.1979131354210.1111/j.1399‑3011.1979.tb01847.x422322
    [Google Scholar]
  47. MaderJ.S. HoskinD.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment.Expert Opin. Investig. Drugs200615893394610.1517/13543784.15.8.93316859395
    [Google Scholar]
  48. PawlasJ. RasmussenJ.H. Circular aqueous fmoc/t-bu solid-phase peptide synthesis.ChemSusChem2021141632313236
    [Google Scholar]
  49. GhoshC. ManjunathG.B. AkkapeddiP. YarlagaddaV. HoqueJ. UppuD.S.S.M. KonaiM.M. HaldarJ. Small molecular antibacterial peptoid mimics: The simpler the better!J. Med. Chem.20145741428143610.1021/jm401680a24479371
    [Google Scholar]
  50. GiulianiA. RinaldiA.C. Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches.Cell. Mol. Life Sci.201168132255226610.1007/s00018‑011‑0717‑321598022
    [Google Scholar]
  51. GordonY.J. RomanowskiE.G. McDermottA.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs.Curr. Eye Res.200530750551510.1080/0271368059096863716020284
    [Google Scholar]
  52. GuoZ. WangY. TanT. JiY. HuJ. ZhangY. Antimicrobial d-peptide hydrogels.ACS Biomater. Sci. Eng.2021741703171210.1021/acsbiomaterials.1c0018733667076
    [Google Scholar]
  53. HancockR.E.W. SahlH.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.Nat. Biotechnol.200624121551155710.1038/nbt126717160061
    [Google Scholar]
  54. HancockR.E.W. ChappleD.S. Peptide antibiotics.Antimicrob. Agents Chemother.19994361317132310.1128/AAC.43.6.131710348745
    [Google Scholar]
  55. ShenmarK. SharmaK.K. WangooN. MauryaI.K. KumarV. KhanS.I. JacobM.R. TikooK. JainR. Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides.Eur. J. Med. Chem.201713219220310.1016/j.ejmech.2017.03.04628363154
    [Google Scholar]
  56. HancockR.E.W. DiamondG. The role of cationic antimicrobial peptides in innate host defences.Trends Microbiol.20008940241010.1016/S0966‑842X(00)01823‑010989307
    [Google Scholar]
  57. HarrisF. DennisonS.R. SinghJ. PhoenixD.A. On the selectivity and efficacy of defense peptides with respect to cancer cells.Med. Res. Rev.201333119023410.1002/med.2025221922503
    [Google Scholar]
  58. HaugB.E. StensenW. StibergT. SvendsenJ.S. Bulky nonproteinogenic amino acids permit the design of very small and effective cationic antibacterial peptides.J. Med. Chem.200447174159416210.1021/jm049582b15293987
    [Google Scholar]
  59. HebdaJ.A. SaraogiI. MagzoubM. HamiltonA.D. MirankerA.D. A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes.Chem. Biol.200916994395010.1016/j.chembiol.2009.08.01319778722
    [Google Scholar]
  60. HuangY. LiX. ShaH. ZhangL. BianX. HanX. LiuB. Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy.Oncol. Rep.20173742063207010.3892/or.2017.544028260064
    [Google Scholar]
  61. HuangY. HuangJ. ChenY. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function.Protein Cell20101214315210.1007/s13238‑010‑0004‑321203984
    [Google Scholar]
  62. ImuraY. ChodaN. MatsuzakiK. Magainin 2 in action: Distinct modes of membrane permeabilization in living bacterial and mammalian cells.Biophys. J.200895125757576510.1529/biophysj.108.13348818835901
    [Google Scholar]
  63. PrabhaN. SannasimuthuA. KumaresanV. ElumalaiP. ArockiarajJ. Intensifying the anticancer potential of cationic peptide derived from serine threonine protein kinase of Teleost by tagging with Oligo Tryptophan.Int. J. Pept. Res. Ther.2020261758310.1007/s10989‑019‑09817‑3
    [Google Scholar]
  64. KasparA.A. ReichertJ.M. Future directions for peptide therapeutics development.Drug Discov. Today20131817-1880781710.1016/j.drudis.2013.05.01123726889
    [Google Scholar]
  65. KecheA.P. HatnapureG.D. TaleR.H. RodgeA.H. BirajdarS.S. KambleV.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation.Bioorg. Med. Chem. Lett.201222103445344810.1016/j.bmcl.2012.03.09222520258
    [Google Scholar]
  66. KharbR. RanaM. SharmaP.C. YarM.S. Therapeutic importance of peptidomimetics in medicinal chemistry.J. Chem. Pharm. Res.20113173186
    [Google Scholar]
  67. MaaniZ. FarajniaS. RahbarniaL. HosseingholiE.Z. KhajehnasiriN. MansouriP. Rational design of an anti-cancer peptide inhibiting CD147/Cyp A interaction.J. Mol. Struct.2023127213416010.1016/j.molstruc.2022.13416036128074
    [Google Scholar]
  68. Da’san MMJ Thirteen decades of peptide synthesis: Key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation.Amino Acids20185013968
    [Google Scholar]
  69. MahindraA. BagraN. WangooN. JainR. KhanS.I. JacobM.R. JainR. Synthetically modified l-histidine-rich peptidomimetics exhibit potent activity against Cryptococcus neoformans.Bioorg. Med. Chem. Lett.201424143150315410.1016/j.bmcl.2014.04.12024878194
    [Google Scholar]
  70. MahindraA. SharmaK.K. JainR. Rapid microwave-assisted solution-phase peptide synthesis.Tetrahedron Lett.201253516931693510.1016/j.tetlet.2012.10.028
    [Google Scholar]
  71. MahindraA. SharmaK.K. RathoreD. KhanS.I. JacobM.R. JainR. Synthesis and antimicrobial activities of His(2-aryl)-Arg and Trp-His(2-aryl) classes of dipeptidomimetics.MedChemComm20145567167610.1039/C4MD00041B24976942
    [Google Scholar]
  72. MitchellS.A. PrattM.R. HrubyV.J. PoltR. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin.J. Org. Chem.20016672327234210.1021/jo005712m11281773
    [Google Scholar]
  73. HanY. BaranyG. NovelS. Xanthenyl protecting groups for cysteine and their applications for the Nα-9-Fluorenylmethyloxycarbonyl (Fmoc) strategy of peptide synthesis 1-3.J. Org. Chem.199762123841384810.1021/jo961882g
    [Google Scholar]
  74. AletrasA. BarlosK. GatosD. KoutsogianniS. MamosP. Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs.Int. J. Pept. Protein Res.199545548849610.1111/j.1399‑3011.1995.tb01065.x7591489
    [Google Scholar]
  75. MantC.T. KondejewskiL.H. CachiaP.J. MoneraO.D. HodgesR.S. Analysis of synthetic peptides by high-performance liquid chromatography.Methods Enzymol.199728942646910.1016/S0076‑6879(97)89058‑19353732
    [Google Scholar]
  76. SahuA. SahuP. AgrawalR. Synthesis, pharmacological and toxicological screening of penicillin–triazole conjugates (PNTCs).ACS Omega2019417172301723510.1021/acsomega.9b0172431656896
    [Google Scholar]
  77. da SilvaB.R. de FreitasV.A.A. CarneiroV.A. ArrudaF.V.S. LorenzónE.N. de AguiarA.S.W. CilliE.M. CavadaB.S. TeixeiraE.H. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci.Peptides201342788310.1016/j.peptides.2012.12.00123340019
    [Google Scholar]
  78. SahuA. AgrawalR.K. PandeyR. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency.Bioorg. Chem.20198810293910.1016/j.bioorg.2019.10293931028993
    [Google Scholar]
  79. DwivediD.K. SahuA. DighadeS.J. AgrawalR.K. Design, synthesis, and antimicrobial evaluation of some nifuroxazide analogs against nosocomial infection.J. Heterocycl. Chem.20205741666167110.1002/jhet.3891
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206260662240613054521
Loading
/content/journals/acamc/10.2174/0118715206260662240613054521
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test