Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objective

Crocin (CRO), the primary antioxidant in saffron, is known for its anticancer properties. However, its effectiveness in topical therapy is limited due to low bioavailability, poor absorption, and low physicochemical stability. This study aimed to prepare crocin nanoparticles (CRO-NPs) to enhance their pharmaceutical efficacy and evaluate the synergistic effects of Cro-NPs with doxorubicin (DOX) chemotherapy on two cell lines: human hepatocellular carcinoma cells (HepG2) and non-cancerous cells (WI38).

Methods

CRO-NPs were prepared using the emulsion diffusion technique and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta potential, and Fourier transform infrared spectroscopy (FT-IR). Cell proliferation inhibition was assessed using the MTT assay for DOX, CRO, CRO-NPs, and DOX+CRO-NPs. Apoptosis and cell cycle were evaluated by flow cytometry, and changes in the expression of apoptotic gene (P53) and autophagic genes (ATG5 & LC3) were analyzed using real-time polymerase chain reaction.

Results

TEM and SEM revealed that CRO-NPs exhibited a relatively spherical shape with an average size of 9.3 nm, and zeta potential analysis indicated better stability of CRO-NPs compared to native CRO. Significantly higher antitumor effects of CRO-NPs were observed against HepG2 cells (IC = 1.1 mg/ml and 0.57 mg/ml) compared to native CRO (IC = 6.1 mg/ml and 3.2 mg/ml) after 24 and 48 hours, respectively. Annexin-V assay on HepG2 cells indicated increased apoptotic rates across all treatments, with the highest percentage observed in CRO-NPs, accompanied by cell cycle arrest at the G2/M phase. Furthermore, gene expression analysis showed upregulation of P53, ATG5, and LC3 genes in DOX/CRO-NPs co-treatment compared to individual treatments. In contrast, WI38 cells exhibited greater sensitivity to DOX toxicity but showed no adverse response to CRO-NPs.

Conclusion

Although more studies in animal models are required to corroborate these results, our findings suggest that CRO-NPs can be a potential new anticancer agent for hepatocellular carcinoma. Moreover, they have a synergistic effect with DOX against HepG2 cells and mitigate the toxicity of DOX on normal WI38 cells.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206327654240823074318
2024-10-09
2025-01-18
Loading full text...

Full text loading...

References

  1. SerraM. Di MatteoM. SerneelsJ. PalR. CafarelloS.T. LanzaM. Sanchez-MartinC. EvertM. CastegnaA. CalvisiD.F. MazzoneM. ColumbanoA. Deletion of lactate dehydrogenase-a impairs oncogene-induced mouse hepatocellular carcinoma development.Cell. Mol. Gastroenterol. Hepatol.202214360962410.1016/j.jcmgh.2022.06.003 35714859
    [Google Scholar]
  2. AbduS. JuaidN. AminA. MoulayM. MiledN. Therapeutic effects of crocin alone or in combination with sorafenib against hepatocellular carcinoma: In vivo & in vitro insights.Antioxidants2022119164510.3390/antiox11091645 36139719
    [Google Scholar]
  3. SingalA.G. KanwalF. LlovetJ.M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy.Nat. Rev. Clin. Oncol.2023201286488410.1038/s41571‑023‑00825‑3 37884736
    [Google Scholar]
  4. SerrainoD. FratinoL. PiselliP. Epidemiological Aspects of Hepatocellular Carcinoma. Hepatocellular Carcinoma. EttorreG.M. ChamSpringer International Publishing202339[Internet]10.1007/978‑3‑031‑09371‑5_1
    [Google Scholar]
  5. TohM.R. WongE.Y.T. WongS.H. NgA.W.T. LooL.H. ChowP.K.H. NgeowJ. Global epidemiology and genetics of hepatocellular carcinoma.Gastroenterology2023164576678210.1053/j.gastro.2023.01.033 36738977
    [Google Scholar]
  6. KimD.Y. Changing etiology and epidemiology of hepatocellular carcinoma: Asia and worldwide.J. Liver Cancer202424162267010.17998/jlc.2024.03.13 38523466
    [Google Scholar]
  7. Epidemiology and risk factors for hepatocellular carcinoma.2024Available from: https://www.uptodate.com/contents/epidemiology-and-risk-factors-for-hepatocellular-carcinoma/print (accessed on 7-8-2024)
  8. ReddyK.R. McLerranD. MarshT. ParikhN. RobertsL.R. SchwartzM. NguyenM.H. BefelerA. Page-LesterS. TangR. SrivastavaS. RinaudoJ.A. FengZ. MarreroJ.A. Incidence and risk factors for hepatocellular carcinoma in cirrhosis: The multicenter hepatocellular carcinoma early detection strategy (HEDS) study.Gastroenterology2023165410531063.e610.1053/j.gastro.2023.06.027 37429366
    [Google Scholar]
  9. ShannonA.H. RuffS.M. PawlikT.M. Expert insights on current treatments for hepatocellular carcinoma: Clinical and molecular approaches and bottlenecks to progress.J. Hepatocell. Carcinoma202291247126110.2147/JHC.S383922 36514693
    [Google Scholar]
  10. Villarruel-MelquiadesF. Mendoza-GarridoM.E. García-CuellarC.M. Sánchez-PérezY. Pérez-CarreónJ.I. CamachoJ. Current and novel approaches in the pharmacological treatment of hepatocellular carcinoma.World J. Gastroenterol.202329172571259910.3748/wjg.v29.i17.2571 37213397
    [Google Scholar]
  11. Al-HroutA. ChaiboonchoeA. KhraiweshB. MuraliC. BaigB. El-AwadyR. TaraziH. AlzahmiA. NelsonD.R. GreishY.E. RamadanW. Salehi-AshtianiK. AminA. Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells.Sci. Rep.2018811695110.1038/s41598‑018‑34855‑0 30446676
    [Google Scholar]
  12. NtellasP. ChauI. Updates on Systemic Therapy for Hepatocellular Carcinoma.Am. Soc. Clin. Oncol. Educ. Book2024441e43002810.1200/EDBK_430028 38175973
    [Google Scholar]
  13. ZhuC. ZhaoM. FanL. CaoX. XiaQ. ZhouJ. YinH. ZhaoL. Chitopentaose inhibits hepatocellular carcinoma by inducing mitochondrial mediated apoptosis and suppressing protective autophagy.Bioresour. Bioprocess.202181410.1186/s40643‑020‑00358‑y 38650195
    [Google Scholar]
  14. CaoC. LiY. ShiF. JiangS. LiY. YangL. ZhouX. GaoY. TangF. LiH. HanS. YuZ. ZouY. GuoJ. Nano co-delivery of doxorubicin and plumbagin achieves synergistic chemotherapy of hepatocellular carcinoma.Int. J. Pharm.202466112442410.1016/j.ijpharm.2024.124424 38971510
    [Google Scholar]
  15. QinY. WangC.J. YeH.L. YeG.X. WangS. PanD.B. WangJ. ShenH.J. XuS.Q. WWP2 overexpression inhibits the antitumor effects of doxorubicin in hepatocellular carcinoma.Cell Biol. Int.202246101682169210.1002/cbin.11856 35880837
    [Google Scholar]
  16. LiC.J. TsaiH.W. ChenY.L. WangC.I. LinY.H. ChuP.M. Cisplatin or doxorubicin reduces cell viability via the PTPIVA3-JAK2-STAT3 cascade in hepatocellular carcinoma.J. Hepatocell. Carcinoma202310123138
    [Google Scholar]
  17. KullenbergF. DegerstedtO. CalitzC. PavlovićN. BalgomaD. GråsjöJ. SjögrenE. HedelandM. HeindryckxF. LennernäsH. In vitro cell toxicity and intracellular uptake of doxorubicin exposed as a solution or liposomes: implications for treatment of hepatocellular carcinoma.Cells2021107171710.3390/cells10071717 34359887
    [Google Scholar]
  18. SunJ.B. DuanJ.H. DaiS.L. RenJ. ZhangY.D. TianJ.S. LiY. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers.Cancer Lett.2007258110911710.1016/j.canlet.2007.08.018 17920762
    [Google Scholar]
  19. KhafagaA.F. El-SayedY.S. All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression.Naunyn Schmiedebergs Arch. Pharmacol.20183911597010.1007/s00210‑017‑1437‑5 29085977
    [Google Scholar]
  20. AfsarT. RazakS. AlmajwalA. Effect of Acacia hydaspica R. Parker extract on lipid peroxidation, antioxidant status, liver function test and histopathology in doxorubicin treated rats.Lipids Health Dis.201918112610.1186/s12944‑019‑1051‑2 31142345
    [Google Scholar]
  21. BlockK.I. GyllenhaalC. LoweL. AmedeiA. AminA.R.M.R. AminA. Designing a broad-spectrum integrative approach for cancer prevention and treatment.Semin. Cancer Biol.201535S276S30410.1016/j.semcancer.2015.09.007
    [Google Scholar]
  22. WangY. LiJ. XiaL. Plant-derived natural products and combination therapy in liver cancer.Front. Oncol.202313111653210.3389/fonc.2023.1116532 36865794
    [Google Scholar]
  23. Abu-IzneidT. RaufA. KhalilA.A. OlatundeA. KhalidA. AlhumaydhiF.A. AljohaniA.S.M. Sahab UddinM. HeydariM. KhayrullinM. ShariatiM.A. AremuA.O. AlafnanA. RengasamyK.R.R. Nutritional and health beneficial properties of saffron (Crocus sativus L): a comprehensive review.Crit. Rev. Food Sci. Nutr.202262102683270610.1080/10408398.2020.1857682 33327732
    [Google Scholar]
  24. HuangL. HanY. WangZ. QiuQ. YueS. ZhouQ. SuW. YanJ. Saffron reduces the liver fibrosis in mice by inhibiting the JAK/STAT3 pathway.Acta Cir. Bras.202338e38582310.1590/acb385823 38055395
    [Google Scholar]
  25. ElfardiY.R. El BoukhariR. FatimiA. BouissaneL. The multifaceted therapeutic potential of saffron: an overview based on research and patents.Drugs and Drug Candidates20243343745410.3390/ddc3030026
    [Google Scholar]
  26. BoozariM. HosseinzadehH. Crocin molecular signaling pathways at a glance: A comprehensive review.Phytother. Res.202236103859388410.1002/ptr.7583 35989419
    [Google Scholar]
  27. RashidiK. KoraniM. NematiH. ShahrakiR. KoraniS. AbbasifardM. MajeedM. JamialahmadiT. SahebkarA. The combined effect of curcumin and crocin on the reduction of inflammatory responses in arthritic rats.Curr. Med. Chem.202431284562457710.2174/0929867330666230409003744 37031388
    [Google Scholar]
  28. VeisiA. AkbariG. Role of crocin in several cancer cell lines: An updated review.Iran. J. Basic Med. Sci.2020231312
    [Google Scholar]
  29. MishraY. MishraV. Multifaceted roles of crocin, phytoconstituent of Crocus sativus L. in cancer treatment: An expanding horizon.S. Afr. J. Bot.202316045646810.1016/j.sajb.2023.07.038
    [Google Scholar]
  30. MollaeiH. SafaralizadehR. BabaeiE. AbediniM.R. HoshyarR. The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells.Biomed. Pharmacother.20179430731610.1016/j.biopha.2017.07.052 28763753
    [Google Scholar]
  31. JiaY. YangH. YuJ. LiZ. JiaG. DingB. LvC. Crocin suppresses breast cancer cell proliferation by down-regulating tumor promoter MIR -122-5p and up-regulating tumor suppressors FOXP2 and SPRY2.Environ. Toxicol.20233871597160810.1002/tox.23789 36988377
    [Google Scholar]
  32. PourmousaviL. AsadiR.H. ZehsazF. JadidiR.P. Effect of crocin and treadmill exercise on oxidative stress and heart damage in diabetic rats.bioRxiv 2023.02.01.526596202310.1101/2023.02.01.526596
    [Google Scholar]
  33. MohamadpourA.H. AyatiZ. ParizadehM.R. RajbaiO. HosseinzadehH. Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers.Iran. J. Basic Med. Sci.20131613946 23638291
    [Google Scholar]
  34. ThuyN.M. NhuP.H. TaiN.V. MinhV.Q. Extraction optimization of crocin from gardenia (Gardenia jasminoides ellis) fruits using response surface methodology and quality evaluation of foam-mat dried powder.Horticulturae2022812119910.3390/horticulturae8121199
    [Google Scholar]
  35. RahaieeS. ShojaosadatiS.A. HashemiM. MoiniS. RazaviS.H. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate.Int. J. Biol. Macromol.20157942343210.1016/j.ijbiomac.2015.04.041 25934104
    [Google Scholar]
  36. SongY. WangY. ZhengY. LiuT. ZhangC. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects.Fitoterapia202115310496910.1016/j.fitote.2021.104969 34147548
    [Google Scholar]
  37. EspositoE. DrechslerM. MarianiP. PanicoA.M. CardileV. CrascìL. CarducciF. GrazianoA.C.E. CortesiR. PugliaC. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.).Mater. Sci. Eng. C20177166967710.1016/j.msec.2016.10.045 27987758
    [Google Scholar]
  38. WangL. CaoY. ZhangX. LiuC. YinJ. KuangL. HeW. HuaD. Reactive oxygen species-responsive nanodrug of natural crocin-i with prolonged circulation for effective radioprotection.Colloids Surf. B Biointerfaces202221311244110.1016/j.colsurfb.2022.112441 35272253
    [Google Scholar]
  39. DeheleanC.A. MarcoviciI. SoicaC. MiocM. CoricovacD. IurciucS. CretuO.M. PinzaruI. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy.Molecules2021264110910.3390/molecules26041109 33669817
    [Google Scholar]
  40. NajmiA. JavedS.A. Al BrattyM. AlhazmiH.A. modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents.Molecules202227234910.3390/molecules27020349 35056662
    [Google Scholar]
  41. SaravaniR. SargaziS. SaravaniR. RabbaniM. RahdarA. TaboadaP. Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells.J. Drug Deliv. Sci. Technol.20206010198710.1016/j.jddst.2020.101987
    [Google Scholar]
  42. TietzeR. ZalogaJ. UnterwegerH. LyerS. FriedrichR.P. JankoC. PöttlerM. DürrS. AlexiouC. Magnetic nanoparticle-based drug delivery for cancer therapy.Biochem. Biophys. Res. Commun.2015468346347010.1016/j.bbrc.2015.08.022 26271592
    [Google Scholar]
  43. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  44. KimD.G. JungK.H. LeeD.G. YoonJ.H. ChoiK.S. KwonS.W. ShenH.M. MorganM.J. HongS.S. KimY.S. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin.Oncotarget20145124438445110.18632/oncotarget.2034 24970805
    [Google Scholar]
  45. IzzularabB.M. MegeedM. YehiaM. Propolis nanoparticles modulate the inflammatory and apoptotic pathways in carbon tetrachloride-induced liver fibrosis and nephropathy in rats.Environ. Toxicol.2021361556610.1002/tox.23010 32840962
    [Google Scholar]
  46. LiD. WuG. ZhangH. QiX. Preparation of crocin nanocomplex in order to increase its physical stability.Food Hydrocoll.202112010641510.1016/j.foodhyd.2020.106415
    [Google Scholar]
  47. ZhangA. ShenY. CenM. HongX. ShaoQ. ChenY. ZhengB. Polysaccharide and crocin contents, and antioxidant activity of saffron from different origins.Ind. Crops Prod.201913311111710.1016/j.indcrop.2019.03.009
    [Google Scholar]
  48. ChungD.M. KimJ.H. KimJ.K. Evaluation of MTT and Trypan Blue assays for radiation-induced cell viability test in HepG2 cells.Int. J. Radiat. Res.2015134331335
    [Google Scholar]
  49. PietkiewiczS. SchmidtJ.H. LavrikI.N. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining.J. Immunol. Methods20154239910310.1016/j.jim.2015.04.025 25975759
    [Google Scholar]
  50. NunezR. DNA measurement and cell cycle analysis by flow cytometry.Curr. Issues Mol. Biol.2001336770 11488413
    [Google Scholar]
  51. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  52. HakkimL. Molecular mechanism of crocin induced caspase mediated MCF-7 cell death: in vivo toxicity profiling and ex vivo macrophage activation.Asian Pac J Cancer Prev APJCP.20161714991506
    [Google Scholar]
  53. El-KharragR. AminA. HisaindeeS. GreishY. KaramS.M. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles.Int. J. Oncol.201750121222210.3892/ijo.2016.3769 27878253
    [Google Scholar]
  54. El-SewedyT. SalamaA.F. MohamedA.E. ElbaioumyN.M. El-FarA.H. AlbalawiA.N. ElmetwalliA. Hepatocellular Carcinoma cells: activity of Amygdalin and Sorafenib in Targeting AMPK/mTOR and BCL-2 for anti-angiogenesis and apoptosis cell death.BMC Complement. Med. Therap202323132910.1186/s12906‑023‑04142‑1 37726740
    [Google Scholar]
  55. CuttsS.M. RephaeliA. NudelmanA. HmelnitskyI. PhillipsD.R. Molecular basis for the synergistic interaction of adriamycin with the formaldehyde-releasing prodrug pivaloyloxymethyl butyrate (AN-9).Cancer Res.2001612281948202 11719450
    [Google Scholar]
  56. YokochiT. RobertsonK.D. Doxorubicin inhibits DNMT1, resulting in conditional apoptosis.Mol. Pharmacol.20046661415142010.1124/mol.104.002634 15340041
    [Google Scholar]
  57. SaitoG. SwansonJ.A. LeeK.D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities.Adv. Drug Deliv. Rev.200355219921510.1016/S0169‑409X(02)00179‑5 12564977
    [Google Scholar]
  58. MilajerdiA. DjafarianK. HosseiniB. The toxicity of saffron (Crocus sativus L.) and its constituents against normal and cancer cells.J. Nutr. Intermed. Metab.20163233210.1016/j.jnim.2015.12.332
    [Google Scholar]
  59. FabianoA. De LeoM. CerriL. PirasA.M. BracaA. ZambitoY. Saffron extract self-assembled nanoparticles to prolong the precorneal residence of crocin.J. Drug Deliv. Sci. Technol.20227410358010.1016/j.jddst.2022.103580
    [Google Scholar]
  60. BohreyS. ChourasiyaV. PandeyA. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in vitro drug release and release kinetic study.Nano Converg.201631310.1186/s40580‑016‑0061‑2 28191413
    [Google Scholar]
  61. GandhiA. JanaS. SenK.K. In vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery.Int. J. Biol. Macromol.20146747848210.1016/j.ijbiomac.2014.04.019 24755259
    [Google Scholar]
  62. van MeerlooJ. KaspersG.J.L. CloosJ. Cell sensitivity assays: the MTT assay.Methods Mol. Biol.201173123724510.1007/978‑1‑61779‑080‑5_20 21516412
    [Google Scholar]
  63. RahaieeS. HashemiM. ShojaosadatiS.A. MoiniS. RazaviS.H. Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties.Int. J. Biol. Macromol.20179940140810.1016/j.ijbiomac.2017.02.095 28254570
    [Google Scholar]
  64. PugliaC. SantonocitoD. MusumeciT. CardileV. GrazianoA. SalernoL. RacitiG. CrascìL. PanicoA. PuglisiG. Nanotechnological Approach to Increase the Antioxidant and Cytotoxic Efficacy of Crocin and Crocetin.Planta Med.201985325826510.1055/a‑0732‑5757 30206907
    [Google Scholar]
  65. AungH.H. WangC.Z. NiM. FishbeinA. MehendaleS.R. XieJ.T. ShoyamaC.Y. YuanC.S. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells.Exp. Oncol.2007293175180 18004240
    [Google Scholar]
  66. GuzmánM. Cannabinoids: potential anticancer agents.Nat. Rev. Cancer200331074575510.1038/nrc1188 14570037
    [Google Scholar]
  67. ZwaalR.F.A. ComfuriusP. BeversE.M. Surface exposure of phosphatidylserine in pathological cells.Cell. Mol. Life Sci.200562997198810.1007/s00018‑005‑4527‑3 15761668
    [Google Scholar]
  68. KimJ.A. ÅbergC. SalvatiA. DawsonK.A. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population.Nat. Nanotechnol.201271626810.1038/nnano.2011.191 22056728
    [Google Scholar]
  69. AminA. HamzaA.A. DaoudS. KhazanehdariK. HroutA.A. BaigB. ChaiboonchoeA. AdrianT.E. ZakiN. Salehi-AshtianiK. Saffron-based crocin prevents early lesions of liver cancer: In vivo, in vitro and network analyses.Recent Patents Anticancer Drug Discov.201611112113310.2174/1574892810666151102110248 26522014
    [Google Scholar]
  70. ChenF. ChangD. GohM. KlibanovS.A. LjungmanM. Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors.Cell Growth Differ.2000115239246 10845424
    [Google Scholar]
  71. TsaprasP. NezisI.P. Caspase involvement in autophagy.Cell Death Differ.20172481369137910.1038/cdd.2017.43 28574508
    [Google Scholar]
  72. LockshinR.A. ZakeriZ. Apoptosis, autophagy, and more.Int. J. Biochem. Cell Biol.200436122405241910.1016/j.biocel.2004.04.011 15325581
    [Google Scholar]
  73. AminA. BajboujK. KochA. GandesiriM. Schneider-StockR. Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis.Int. J. Mol. Sci.20151611544156110.3390/ijms16011544 25584615
    [Google Scholar]
  74. BakshiH. ZoubiM. FaruckH. AljabaliA. RabiF. HafizA. Al-BatanyehK. Al-TradB. AnsariP. NasefM. CharbeN. SatijaS. MehtaM. MishraV. GuptaG. AbobakerS. NegiP. AzzouzI. DardouriA. DurejaH. PrasherP. ChellappanD. DuaK. Webba da SilvaM. TananiM. McCarronP. TambuwalaM. Dietary crocin is protective in pancreatic cancer while reducing radiation-induced hepatic oxidative damage.Nutrients2020126190110.3390/nu12061901 32604971
    [Google Scholar]
  75. YeX. ZhouX.J. ZhangH. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases.Front. Immunol.20189233410.3389/fimmu.2018.02334 30386331
    [Google Scholar]
  76. LeeY.K. LeeJ.A. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy.BMB Rep.201649842443010.5483/BMBRep.2016.49.8.081 27418283
    [Google Scholar]
  77. YaoC. LiuB.B. QianX.D. LiL.Q. CaoH.B. GuoQ.S. ZhouG.F. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity.OncoTargets Ther.2018112017202810.2147/OTT.S154586 29670377
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206327654240823074318
Loading
/content/journals/acamc/10.2174/0118715206327654240823074318
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; autophagy; crocin; crocin nanoparticles; doxorubicin; Hepatocellular carcinoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test