Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW’s anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined.

Objective

In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity.

Methodology

Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW’s anticancer properties and to identify mechanism of action. Liquid chromatography-Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components.

Results

TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the ‘epithelial-to-mesenchymal’ (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triple-negative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells.

Conclusion

TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206327789241008162423
2024-10-15
2025-01-15
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PinerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.33588 33818764
    [Google Scholar]
  3. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  4. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.01614 32116665
    [Google Scholar]
  5. SecaA. PintoD. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application.Int. J. Mol. Sci.201819126310.3390/ijms19010263 29337925
    [Google Scholar]
  6. DemainA.L. VaishnavP. Natural products for cancer chemotherapy.Microb. Biotechnol.20114668769910.1111/j.1751‑7915.2010.00221.x 21375717
    [Google Scholar]
  7. AsmaS.T. AcarozU. ImreK. MorarA. ShahS.R.A. HussainS.Z. Arslan-AcarozD. DemirbasH. Hajrulai-MusliuZ. IstanbullugilF.R. SoleimanzadehA. MorozovD. ZhuK. HermanV. AyadA. AthanassiouC. InceS. Natural products/bioactive compounds as a source of anticancer drugs.Cancers (Basel)20221424620310.3390/cancers14246203 36551687
    [Google Scholar]
  8. NaeemA. HuP. YangM. ZhangJ. LiuY. ZhuW. ZhengQ. Natural products as anticancer agents: Current status and future perspectives.Molecules20222723836710.3390/molecules27238367 36500466
    [Google Scholar]
  9. TalibW.H. DaoudS. MahmodA.I. HamedR.A. AwajanD. AbuarabS.F. OdehL.H. KhaterS. Al KuryL.T. Plants as a source of anticancer agents: From bench to bedside.Molecules20222715481810.3390/molecules27154818 35956766
    [Google Scholar]
  10. HashemS. AliT.A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM.M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  11. Chunarkar-PatilP. KaleemM. MishraR. RayS. AhmadA. VermaD. BhayyeS. DubeyR. SinghH. KumarS. Anticancer drug discovery based on natural products: From computational approaches to clinical studies.Biomed.202412120110.3390/biomedicines12010201 38255306
    [Google Scholar]
  12. GroverP. ThakurK. BhardwajM. MehtaL. RainaS.N. RajpalV.R. Phytotherapeutics in cancer: From potential drug candidates to clinical translation.Curr. Top. Med. Chem.202424121050107410.2174/0115680266282518231231075311 38279745
    [Google Scholar]
  13. KumarM. GuptaS. KaliaK. KumarD. Role of phytoconstituents in cancer treatment: A review. Rec. Adv.Food Nutr. Agric.202415211513710.2174/012772574X274566231220051254 38369892
    [Google Scholar]
  14. YuanC. ZhangW. WangJ. HuangC. ShuB. LiangQ. HuangT. WangJ. ShiQ. TangD. WangY. Chinese Medicine Phenomics (Chinmedphenomics): Personalized, Precise and Promising.Phenomics20222638338810.1007/s43657‑022‑00074‑x 36939806
    [Google Scholar]
  15. ZhangN. XiaoX. Integrative medicine in the era of cancer immunotherapy: Challenges and opportunities.J. Integr. Med.202119429129410.1016/j.joim.2021.03.005 33814325
    [Google Scholar]
  16. YongJ.W.H. GeL. NgY.F. TanS.N. The chemical composition and biological properties of coconut (Cocos nucifera L.) water.Molecules200914125144516410.3390/molecules14125144 20032881
    [Google Scholar]
  17. GeL. YongJ. TanS. YangX. OngE. Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction.J. Chromatogr. A20041048111912610.1016/S0021‑9673(04)01186‑0 15453426
    [Google Scholar]
  18. TanS. YongJ. GeL. Analyses of phytohormones in coconut (Cocos nucifera L.) water using capillary electrophoresis-tandem mass spectrometry.Chromatography (Basel)20141421122610.3390/chromatography1040211
    [Google Scholar]
  19. PrabhuS. DennisonS.R. MuraM. LeaR.W. SnapeT.J. HarrisF. Cn‐AMP2 from green coconut water is an anionic anticancer peptide.J. Pept. Sci.2014201290991510.1002/psc.2684 5234689
    [Google Scholar]
  20. MahayotheeB. KoomyartI. KhuwijitjaruP. SiriwongwilaichatP. NagleM. MüllerJ. Phenolic compounds, antioxidant activity, and medium chain fatty acids profiles of coconut water and meat at different maturity stages.Int. J. Food Prop.20161992041205110.1080/10942912.2015.1099042
    [Google Scholar]
  21. DebMandalM. MandalS. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention.Asian Pac. J. Trop. Med.20114324124710.1016/S1995‑7645(11)60078‑3 21771462
    [Google Scholar]
  22. SaatM. SinghR. SirisingheR.G. NawawiM. Rehydration after exercise with fresh young coconut water, carbohydrate-electrolyte beverage and plain water.J. Physiol. Anthropol. Appl. Human Sci.20022129310410.2114/jpa.21.93 12056182
    [Google Scholar]
  23. KalmanD.S. FeldmanS. KriegerD.R. BloomerR.J. Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men.J. Int. Soc. Sports Nutr.201291110.1186/1550‑2783‑9‑1 22257640
    [Google Scholar]
  24. Campbell-FalckD. ThomasT. FalckT.M. TutuoN. ClemK. The intravenous use of coconut water.Am. J. Emerg. Med.200018110811110.1016/S0735‑6757(00)90062‑7 10674546
    [Google Scholar]
  25. SouzaB.D.M. LückemeyerD.D. Reyes-CarmonaJ.F. FelippeW.T. SimõesC.M.O. FelippeM.C.S. Viability of human periodontal ligament fibroblasts in milk, Hank’s balanced salt solution and coconut water as storage media.Int. Endod. J.201144211111510.1111/j.1365‑2591.2010.01809.x 21083571
    [Google Scholar]
  26. LakshmananJ. ZhangB. WrightK. MotameniA.T. HerbstJ.L. HarbrechtB.G. Tender coconut water protects mice from ischemia-reperfusion-mediated liver injury and secondary lung injury.Shock202156576277210.1097/SHK.0000000000001770 34652342
    [Google Scholar]
  27. LakshmananJ. ZhangB. WrightK. MotameniA.T. JaganathanV.L. SchultzD.J. KlingeC.M. HarbrechtB.G. Tender coconut water suppresses hepatic inflammation by activating AKT and JNK signaling pathways in an in vitro model of sepsis.J. Funct. Foods20206410363710.1016/j.jff.2019.103637 32863888
    [Google Scholar]
  28. GeL. YongJ.W.H. GohN.K. ChiaL.S. TanS.N. OngE.S. Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography–tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20058291-2263410.1016/j.jchromb.2005.09.026 16216563
    [Google Scholar]
  29. ChangC.L. WuR.T. Quantification of (+)-catechin and (−)-epicatechin in coconut water by LC–MS.Food Chem.2011126271071710.1016/j.foodchem.2010.11.034
    [Google Scholar]
  30. CabelloC.M. BairW.B.III LeyS. LamoreS.D. AzimianS. WondrakG.T. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A (p21) upregulation in human cancer cell lines.Biochem. Pharmacol.20097771125113810.1016/j.bcp.2008.12.002 19186174
    [Google Scholar]
  31. CasatiS. OttriaR. BaldoliE. LopezE. MaierJ.A.M. CiuffredaP. Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells.Anticancer Res.2011311034013406 21965753
    [Google Scholar]
  32. SharmaE. AttriD.C. SatiP. DhyaniP. SzopaA. Sharifi-RadJ. HanoC. CalinaD. ChoW.C. Recent updates on anticancer mechanisms of polyphenols.Front. Cell Dev. Biol.202210100591010.3389/fcell.2022.1005910 36247004
    [Google Scholar]
  33. KirszbergC. EsquenaziD. AlvianoC.S. RumjanekV.M. The effect of a catechin‐rich extract of Cocos nucifera on lymphocytes proliferation.Phytother. Res.20031791054105810.1002/ptr.1297 14595586
    [Google Scholar]
  34. PradesA. DornierM. DiopN. PainJ-P. Coconut water uses, composition and properties: A review.Fruits20126728710710.1051/fruits/2012002
    [Google Scholar]
  35. ChenW. ZhangG. ChenW. ZhongQ. ChenH. Metabolomic profiling of matured coconut water during post-harvest storage revealed discrimination and distinct changes in metabolites.RSC Advances2018855313963140510.1039/C8RA04213F 35548195
    [Google Scholar]
  36. ZhangY. ChenW. ChenH. ZhongQ. YunY. ChenW. Metabolomics analysis of the deterioration mechanism and storage time limit of tender coconut water during storage.Foods202091464610.3390/foods9010046 31947875
    [Google Scholar]
  37. AlseekhS. FernieA.R. Metabolomics 20 years on: what have we learned and what hurdles remain?Plant J.201894693394210.1111/tpj.13950 29734513
    [Google Scholar]
  38. GhalehnoA. BoustanA. AbdiH. AganjZ. MosaffaF. JamialahmadiK. The potential for natural products to overcome cancer drug resistance by modulation of epithelial-mesenchymal transition.Nutr. Cancer20227482686271210.1080/01635581.2021.2022169 34994266
    [Google Scholar]
  39. BahramiA. MajeedM. SahebkarA. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition.Cell Oncol. (Dordr.)20194240542110.1007/s13402‑019‑00442‑2 30980365
    [Google Scholar]
  40. LeeS. ChoiE.J. ChoE.J. LeeY.B. LeeJ.H. YuS.J. YoonJ.H. KimY.J. Inhibition of PI3K/Akt signaling suppresses epithelial-to-mesenchymal transition in hepatocellular carcinoma through the Snail/GSK-3/beta-catenin pathway.Clin. Mol. Hepatol.202026452953910.3350/cmh.2019.0056n 32829570
    [Google Scholar]
  41. YangY. LiY. WangK. WangY. YinW. LiL. P38/NF-κB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte.PLoS One201383e5891510.1371/journal.pone.0058915 23516577
    [Google Scholar]
  42. YilmazM. ChristoforiG. EMT, the cytoskeleton, and cancer cell invasion.Cancer Metastasis Rev.281-2153310.1007/s10555‑008‑9169‑0 19169796
    [Google Scholar]
  43. Perez-OquendoM. GibbonsD.L. Regulation of ZEB1 function and molecular associations in tumor Progression and metastasis.Cancers (Basel)2022148186410.3390/cancers14081864 35454770
    [Google Scholar]
  44. XuW. YangZ. LuN. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition.Cell Adhes. Migr.20159431732410.1080/19336918.2015.1016686 26241004
    [Google Scholar]
  45. ToriiS. YamamotoT. TsuchiyaY. NishidaE. ERK MAP kinase in G cell cycle progression and cancer.Cancer Sci.200697869770110.1111/j.1349‑7006.2006.00244.x 16800820
    [Google Scholar]
  46. CalvisiD.F. LaduS. GordenA. FarinaM. ConnerE.A. LeeJ.S. FactorV.M. ThorgeirssonS.S. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC.Gastroenterology200613041117112810.1053/j.gastro.2006.01.006 16618406
    [Google Scholar]
  47. ChiuL-Y. HsinI-L. YangT-Y. SungW-W. ChiJ-Y. ChangJ.T. KoJ-L. SheuG-T. The ERK–ZEB1 pathway mediates epithelial–mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids.Oncogene201736224225310.1038/onc.2016.195 27270426
    [Google Scholar]
  48. ZhangA. LakshmananJ. MotameniA. HarbrechtB.G. MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling.Mol. Cell. Biochem.20184411-2899810.1007/s11010‑017‑3176‑9 28887744
    [Google Scholar]
  49. SchultzD.J. MuluhngwiP. Alizadeh-RadN. GreenM.A. RouchkaE.C. WaigelS.J. KlingeC.M. Genome-wide miRNA response to anacardic acid in breast cancer cells.PLoS One2017129e0184471e018447110.1371/journal.pone.0184471 28886127
    [Google Scholar]
  50. CraneA.M. BhattacharyaS.K. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation.Methods Mol. Biol.20131014657010.1007/978‑1‑62703‑432‑6_4 23690005
    [Google Scholar]
  51. BorowiczS. Van ScoykM. AvasaralaS. KaruppusamyR.M.K. TaulerJ. BikkavilliR.K. WinnR.A. The soft agar colony formation assay.J. Vis. Exp.201492e5199810.3791/51998 25408172
    [Google Scholar]
  52. LakshmananJ. ZhangB. NwezeI.C. DuY. HarbrechtB.G. Glycogen synthase kinase 3 regulates IL-1β mediated iNOS expression in hepatocytes by down-regulating c-Jun.J. Cell. Biochem.2015116113314110.1002/jcb.24951 25160751
    [Google Scholar]
  53. ArdalaniH. VidkjærN.H. KrygerP. FiehnO. FomsgaardI.S. Metabolomics unveils the influence of dietary phytochemicals on residual pesticide concentrations in honey bees.Environ. Int.202115210650310.1016/j.envint.2021.106503 33756430
    [Google Scholar]
  54. BoniniP. KindT. TsugawaH. BarupalD.K. FiehnO. Retip: Retention time prediction for compound annotation in untargeted metabolomics.Anal. Chem.202092117515752210.1021/acs.analchem.9b05765 32390414
    [Google Scholar]
  55. WangL-H. Molecular signaling regulating anchorage-independent growth of cancer cells.Mt. Sinai J. Med.2004716361367 15592654
    [Google Scholar]
  56. David-PfeutyT. The flexible evolutionary anchorage-dependent Pardee’s restriction point of mammalian cells: how its deregulation may lead to cancer.Biochim. Biophys. Acta2006176513866 16219425
    [Google Scholar]
  57. SchmalhoferO. BrabletzS. BrabletzT. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer.Cancer Metastasis Rev.2009281-215116610.1007/s10555‑008‑9179‑y 19153669
    [Google Scholar]
  58. SouleH.D. MaloneyT.M. WolmanS.R. PetersonW.D.Jr BrenzR. McGrathC.M. RussoJ. PauleyR.J. JonesR.F. BrooksS.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10.Cancer Res.1990501860756086 1975513
    [Google Scholar]
  59. FeunangY. EisnerR. KnoxC. ChepelevL. HastingsJ. OwenG. FahyE. SteinbeckC. SubramanianS. BoltonE. GreinerR. WishartD.S. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy.J. Cheminform.2016816110.1186/s13321‑016‑0174‑y 27867422
    [Google Scholar]
  60. AppaiahP. SunilL. KumarP.K.P. KrishnaA.G.G. Physico-chemical characteristics and stability aspects of coconut water and kernel at different stages of maturity.J. Food Sci. Technol.20155285196520310.1007/s13197‑014‑1559‑4 26243942
    [Google Scholar]
  61. AmawiH. AshbyC.R.Jr TiwariA.K. Cancer chemoprevention through dietary flavonoids: what’s limiting?Chin. J. Cancer20173615010.1186/s40880‑017‑0217‑4 28629389
    [Google Scholar]
  62. VollerJ. BéresT. ZatloukalM. DžubákP. HajdúchM. DoležalK. SchmüllingT. MiroslavS. Anti-cancer activities of cytokinin ribosides.Phytochem. Rev.20191841101111310.1007/s11101‑019‑09620‑4
    [Google Scholar]
  63. Garcia-LezanaT. Lopez-CanovasJ.L. VillanuevaA. Signaling pathways in hepatocellular carcinoma.Adv. Cancer Res.20211496310110.1016/bs.acr.2020.10.002 33579428
    [Google Scholar]
  64. FatimaI. El-AyachiI. TaotaoL. LilloM.A. KrutilinaR. SeagrovesT.N. RadaszkiewiczT.W. HutnanM. BryjaV. KrumS.A. RivasF. Miranda-CarboniG.A. The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer.PLoS One20171212e018986410.1371/journal.pone.0189864 29281678
    [Google Scholar]
  65. LouW. ChenY. ZhuK. DengH. WuT. WangJ. PolyphyllinI. Polyphyllin I overcomes EMT-associated resistance to erlotinib in lung cancer cells via IL-6/STAT3 pathway inhibition.Biol. Pharm. Bull.20174081306131310.1248/bpb.b17‑00271 28515374
    [Google Scholar]
  66. LeeG.A. HwangK.A. ChoiK.C. Roles of dietary phytoestrogens on the regulation of epithelial-mesenchymal transition in diverse cancer metastasis.Toxins (Basel)20168616210.3390/toxins8060162 27231938
    [Google Scholar]
  67. QiuG.H. XieX. XuF. ShiX. WangY. DengL. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B.Cytotechnology201567111210.1007/s10616‑014‑9761‑9 25002206
    [Google Scholar]
  68. BressacB. GalvinK.M. LiangT.J. IsselbacherK.J. WandsJ.R. OzturkM. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma.Proc. Natl. Acad. Sci. USA19908751973197710.1073/pnas.87.5.1973 2155427
    [Google Scholar]
  69. SlanyA. HaudekV.J. ZwicklH. GundackerN.C. GruschM. WeissT.S. SeirK. Rodgarkia-DaraC. HellerbrandC. GernerC. Cell characterization by proteome profiling applied to primary hepatocytes and hepatocyte cell lines Hep-G2 and Hep-3B.J. Proteome Res.20109162110.1021/pr900057t 19678649
    [Google Scholar]
  70. ClementE. InuzukaH. NihiraN.T. WeiW. TokerA. Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors.Sci. Signal.201811521eaao381010.1126/scisignal.aao3810 29535262
    [Google Scholar]
  71. CunhaA.G. FilhoE.G. SilvaL.M.A. RibeiroP.R.V. RodriguesT.H.S. BritoE.S. MirandaM.R.A. Chemical composition of thermally processed coconut water evaluated by GC–MS, UPLC-HRMS, and NMR.Food Chem.202032412687412687410.1016/j.foodchem.2020.126874 32353658
    [Google Scholar]
  72. KimK.H. MoonE. KimH.K. OhJ.Y. KimS.Y. ChoiS.U. LeeK.R. Phenolic constituents from the rhizomes of Acorus gramineus and their biological evaluation on antitumor and anti-inflammatory activities.Bioorg. Med. Chem. Lett.201222196155615910.1016/j.bmcl.2012.08.016 22951040
    [Google Scholar]
  73. MohamedA. AshourE.S.E. RainerE. RuAngelie, E.; Peter, P. Indole alkaloid from the red sea sponge Hytitos erectus.ARKIVOC2007XV225231
    [Google Scholar]
  74. MirzaeiS. GholamiM.H. ZabolianA. SalekiH. FarahaniM.V. HamzehlouS. FarF.B. SharifzadehS.O. SamarghandianS. KhanH. ArefA.R. AshrafizadehM. ZarrabiA. SethiG. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer.Pharmacol. Res.202117110575910.1016/j.phrs.2021.105759 34245864
    [Google Scholar]
  75. MorréD.J. MorréD.M. SunH. CooperR. ChangJ. JanleE.M. Tea catechin synergies in inhibition of cancer cell proliferation and of a cancer specific cell surface oxidase (ECTO-NOX).Pharmacol. Toxicol.200392523424110.1034/j.1600‑0773.2003.920506.x 12753411
    [Google Scholar]
  76. KuzuharaT. SuganumaM. FujikiH. Green tea catechin as a chemical chaperone in cancer prevention.Cancer Lett.20082611122010.1016/j.canlet.2007.10.037 18068893
    [Google Scholar]
  77. VollerJ. ZatloukalM. LenobelR. DoležalK. BérešT. KryštofV. SpíchalL. NiemannP. DžubákP. HajdúchM. StrnadM. Anticancer activity of natural cytokinins: A structure–activity relationship study.Phytochemistry20107111-121350135910.1016/j.phytochem.2010.04.018 20553699
    [Google Scholar]
  78. HabtemariamS. LentiniG. Plant-derived anticancer agents: Lessons from the pharmacology of geniposide and its aglycone, genipin.Biomed.2018623910.3390/biomedicines6020039 29587429
    [Google Scholar]
  79. KimN.Y. HaI.J. UmJ.Y. KumarA.P. SethiG. AhnK.S. Loganic acid regulates the transition between epithelial and mesenchymal-like phenotypes by alleviating MnSOD expression in hepatocellular carcinoma cells.Life Sci.202331712145810.1016/j.lfs.2023.121458 36731649
    [Google Scholar]
  80. TintelnotJ. XuY. LeskerT.R. SchönleinM. KonczallaL. GiannouA.D. PelczarP. KyliesD. PuellesV.G. BieleckaA.A. PeschkaM. CortesiF. RieckenK. JungM. AmendL. BröringT.S. Trajkovic-ArsicM. SivekeJ.T. RennéT. ZhangD. BoeckS. StrowigT. UzunogluF.G. GüngörC. SteinA. IzbickiJ.R. BokemeyerC. SinnM. KimmelmanA.C. HuberS. GaglianiN. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer.Nature2023615795016817410.1038/s41586‑023‑05728‑y 36813961
    [Google Scholar]
  81. SantosR.A. PessoaH.R. DalepraneJ.B. De Faria LopesG.P. da CostaD.C.F. Comparative anticancer potential of green tea extract and epigallocatechin-3-gallate on breast cancer spheroids.Foods20231316410.3390/foods13010064 38201092
    [Google Scholar]
  82. TapadarP. PalA. GhosalN. DuttaS. PalR. Reactive oxygen species–dependent upregulation of death receptor, tumor necrosis factor receptor 1, is responsible for theophylline-mediated cytotoxicity in MDA-MB-231 breast cancer cells.Anticancer Drugs202233873174010.1097/CAD.0000000000001322 35946512
    [Google Scholar]
  83. EfferthT. KochE. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy.Curr. Drug Targets201112112213210.2174/138945011793591626 20735354
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206327789241008162423
Loading
/content/journals/acamc/10.2174/0118715206327789241008162423
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anti-cancer effects; cancer; EMT; HepG2; metabolomics; Tender coconut water
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test