Skip to content
2000
image of In silico Prediction of Pranlukast as a Stabilizer of PD-L1 Homodimers

Abstract

Introduction

Tumors can be targeted by modulating the immune response of the patient. Programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are critical immune checkpoints in cancer biology. The efficacy of certain cancer immunotherapies has been achieved by targeting these molecules using monoclonal antibodies.

Method

Small-molecule drugs have also been developed as inhibitors of the PD-1/PD-L1 axis, with a mechanism of action that is distinct from that of antibodies: they induce the formation of PD-L1 homodimers, causing their stabilization, internalization, and subsequent degradation. Drug repurposing is a strategy in which new uses are sought after for approved drugs, expediting their clinical translation based on updated findings. In this study, we generated a pharmacophore model that was based on reported small molecules that targeted PD-L1 and used it to identify potential PD-L1 inhibitors among FDA-approved drugs.

Results

We identified 12 pharmacophore-matching compounds, but only 4 reproduced the binding mode of the reference inhibitors in docking experiments. Further characterization by molecular dynamics showed that pranlukast, an antagonist of leukotriene receptors that is used to treat asthma, generated stable and energy-favorable interactions with PD-L1 homodimers and induced homodimerization of recombinant PD-L1.

Conclusion

Our results suggest that pranlukast inhibits the PD-1/PD-L1 axis, meriting its repurposing as an antitumor drug.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206303675241009104647
2024-10-17
2024-12-04
Loading full text...

Full text loading...

References

  1. Labani-Motlagh A. Ashja-Mahdavi M. Loskog A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020 11 940 10.3389/fimmu.2020.00940 32499786
    [Google Scholar]
  2. Sun X. Wu B. Chiang H.C. Deng H. Zhang X. Xiong W. Liu J. Rozeboom A.M. Harris B.T. Blommaert E. Gomez A. Garcia R.E. Zhou Y. Mitra P. Prevost M. Zhang D. Banik D. Isaacs C. Berry D. Lai C. Chaldekas K. Latham P.S. Brantner C.A. Popratiloff A. Jin V.X. Zhang N. Hu Y. Pujana M.A. Curiel T.J. An Z. Li R. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 2021 599 7886 673 678 10.1038/s41586‑021‑04057‑2 34732895
    [Google Scholar]
  3. Cha J.H. Chan L.C. Li C.W. Hsu J.L. Hung M.C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019 76 3 359 370 10.1016/j.molcel.2019.09.030 31668929
    [Google Scholar]
  4. Córdova-Bahena L. Velasco-Velázquez M.A. Anti-PD-1 And Anti-PD-L1 Antibodies as Immunotherapy Against Cancer: A Structural Perspective. Rev. Invest. Clin. 2021 73 1 008 016 10.24875/RIC.20000341 33079077
    [Google Scholar]
  5. Twomey J.D. Zhang B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021 23 2 39 10.1208/s12248‑021‑00574‑0 33677681
    [Google Scholar]
  6. Badiee P. Maritz M.F. Dmochowska N. Cheah E. Thierry B. Intratumoral Anti-PD-1 Nanoformulation Improves Its Biodistribution. ACS Appl. Mater. Interfaces 2022 14 14 15881 15893 10.1021/acsami.1c22479 35357803
    [Google Scholar]
  7. Baxi S. Yang A. Gennarelli R.L. Khan N. Wang Z. Boyce L. Korenstein D. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ 2018 360 k793 10.1136/bmj.k793 29540345
    [Google Scholar]
  8. Datta-Mannan A. Estwick S. Zhou C. Choi H. Douglass N.E. Witcher D.R. Lu J. Beidler C. Millican R. Influence of physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. MAbs 2020 12 1 1770028 10.1080/19420862.2020.1770028 32486889
    [Google Scholar]
  9. Naidoo J. Page D.B. Li B.T. Connell L.C. Schindler K. Lacouture M.E. Postow M.A. Wolchok J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 2015 26 12 2375 2391 10.1093/annonc/mdv383 26371282
    [Google Scholar]
  10. Ribas A. Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science 2018 359 6382 1350 1355 10.1126/science.aar4060 29567705
    [Google Scholar]
  11. Ai L. Chen J. Yan H. He Q. Luo P. Xu Z. Yang X. Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. Drug Des. Devel. Ther. 2020 14 3625 3649 10.2147/DDDT.S267433 32982171
    [Google Scholar]
  12. Guzik K. Tomala M. Muszak D. Konieczny M. Hec A. Błaszkiewicz U. Pustuła M. Butera R. Dömling A. Holak T.A. Development of the Inhibitors That Target the PD-1/PD-L1 Interaction—A Brief Look at Progress on Small Molecules, Peptides and Macrocycles. Molecules 2019 24 11 2071 10.3390/molecules24112071 31151293
    [Google Scholar]
  13. Liu C. Zhou F. Yan Z. Shen L. Zhang X. He F. Wang H. Lu X. Yu K. Zhao Y. Zhu D. Discovery of a novel, potent and selective small‐molecule inhibitor of PD‐1/PD‐L1 interaction with robust in vivo anti‐tumour efficacy. Br. J. Pharmacol. 2021 178 13 2651 2670 10.1111/bph.15457 33768523
    [Google Scholar]
  14. Koblish H.K. Wu L. Wang L.C.S. Liu P.C.C. Wynn R. Rios-Doria J. Spitz S. Liu H. Volgina A. Zolotarjova N. Kapilashrami K. Behshad E. Covington M. Yang Y. Li J. Diamond S. Soloviev M. O’Hayer K. Rubin S. Kanellopoulou C. Yang G. Rupar M. DiMatteo D. Lin L. Stevens C. Zhang Y. Thekkat P. Geschwindt R. Marando C. Yeleswaram S. Jackson J. Scherle P. Huber R. Yao W. Hollis G. Characterization of INCB086550: A Potent and Novel Small-Molecule PD-L1 Inhibitor. Cancer Discov. 2022 12 6 1482 1499 10.1158/2159‑8290.CD‑21‑1156 35254416
    [Google Scholar]
  15. Wang T. Cai S. Cheng Y. Zhang W. Wang M. Sun H. Guo B. Li Z. Xiao Y. Jiang S. Discovery of Small-Molecule Inhibitors of the PD-1/PD-L1 Axis That Promote PD-L1 Internalization and Degradation. J. Med. Chem. 2022 65 5 3879 3893 10.1021/acs.jmedchem.1c01682 35188766
    [Google Scholar]
  16. Liu L. Zhang H. Hou J. Zhang Y. Wang L. Wang S. Yao Z. Xie T. Wen X. Xu Q. Dai L. Feng Z. Zhang P. Wu Y. Sun H. Liu J. Yuan H. Discovery of Novel PD-L1 Small-Molecular Inhibitors with Potent In Vivo Anti-tumor Immune Activity. J. Med. Chem. 2024 67 6 4977 4997 10.1021/acs.jmedchem.4c00102 38465588
    [Google Scholar]
  17. Park J.J. Thi E.P. Carpio V.H. Bi Y. Cole A.G. Dorsey B.D. Fan K. Harasym T. Iott C.L. Kadhim S. Kim J.H. Lee A.C.H. Nguyen D. Paratala B.S. Qiu R. White A. Lakshminarasimhan D. Leo C. Suto R.K. Rijnbrand R. Tang S. Sofia M.J. Moore C.B. Checkpoint inhibition through small molecule-induced internalization of programmed death-ligand 1. Nat. Commun. 2021 12 1 1222 10.1038/s41467‑021‑21410‑1 33619272
    [Google Scholar]
  18. Lai F. Ji M. Huang L. Wang Y. Xue N. Du T. Dong K. Yao X. Jin J. Feng Z. Chen X. YPD-30, a prodrug of YPD-29B, is an oral small-molecule inhibitor targeting PD-L1 for the treatment of human cancer. Acta Pharm. Sin. B 2022 12 6 2845 2858 10.1016/j.apsb.2022.02.031 35755282
    [Google Scholar]
  19. Wang K. Zhang X. Cheng Y. Qi Z. Ye K. Zhang K. Jiang S. Liu Y. Xiao Y. Wang T. Discovery of Novel PD-L1 Inhibitors That Induce the Dimerization, Internalization, and Degradation of PD-L1 Based on the Fragment Coupling Strategy. J. Med. Chem. 2023 66 24 16807 16827 10.1021/acs.jmedchem.3c01534 38109261
    [Google Scholar]
  20. Bailly C. Vergoten G. Protein homodimer sequestration with small molecules: Focus on PD-L1. Biochem. Pharmacol. 2020 174 113821 10.1016/j.bcp.2020.113821 31972166
    [Google Scholar]
  21. Verdura S. Cuyàs E. Cortada E. Brunet J. Lopez-Bonet E. Martin-Castillo B. Bosch-Barrera J. Encinar J.A. Menendez J.A. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY) 2020 12 1 8 34 10.18632/aging.102646 31901900
    [Google Scholar]
  22. Chen T. Li Q. Liu Z. Chen Y. Feng F. Sun H. Peptide-based and small synthetic molecule inhibitors on PD-1/PD-L1 pathway: A new choice for immunotherapy? Eur. J. Med. Chem. 2019 161 378 398 10.1016/j.ejmech.2018.10.044 30384043
    [Google Scholar]
  23. Zak K.M. Grudnik P. Guzik K. Zieba B.J. Musielak B. Dömling A. Dubin G. Holak T.A. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016 7 21 30323 30335 10.18632/oncotarget.8730 27083005
    [Google Scholar]
  24. Yamaguchi H. Hsu J.M. Yang W.H. Hung M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 2022 19 5 287 305 10.1038/s41571‑022‑00601‑9 35132224
    [Google Scholar]
  25. Yang J. Hu L. Immunomodulators targeting the PD‐1/PD‐L1 protein‐protein interaction: From antibodies to small molecules. Med. Res. Rev. 2019 39 1 265 301 10.1002/med.21530 30215856
    [Google Scholar]
  26. Pushpakom S. Iorio F. Eyers P.A. Escott K.J. Hopper S. Wells A. Doig A. Guilliams T. Latimer J. McNamee C. Norris A. Sanseau P. Cavalla D. Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019 18 1 41 58 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  27. Jarada T.N. Rokne J.G. Alhajj R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J. Cheminform. 2020 12 1 46 10.1186/s13321‑020‑00450‑7 33431024
    [Google Scholar]
  28. Guzik K. Zak K.M. Grudnik P. Magiera K. Musielak B. Törner R. Skalniak L. Dömling A. Dubin G. Holak T.A. Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently Induced Protein States and Dimerization of PD-L1. J. Med. Chem. 2017 60 13 5857 5867 10.1021/acs.jmedchem.7b00293 28613862
    [Google Scholar]
  29. Perry E. Mills J.J. Zhao B. Wang F. Sun Q. Christov P.P. Tarr J.C. Rietz T.A. Olejniczak E.T. Lee T. Fesik S. Fragment-based screening of programmed death ligand 1 (PD-L1). Bioorg. Med. Chem. Lett. 2019 29 6 786 790 10.1016/j.bmcl.2019.01.028 30728114
    [Google Scholar]
  30. Chupak L.S. Zheng X. Compounds Useful as Immunomodulators PubChem WO2015034820A1 2015
    [Google Scholar]
  31. Feng Z. Chen X. Zhang L. Yang Y. Lai F. Ji M. Zhou C. Zhang L. Wang K. Preparation Method Therefor, and Pharmaceutical Composition and Uses Thereof U.S. Patent No. 10,941,129 2021 9
    [Google Scholar]
  32. White K.A. Grillo-Hill B.K. Barber D.L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci. 2017 130 4 663 669 10.1242/jcs.195297 28202602
    [Google Scholar]
  33. Thomsen R. Christensen M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 2006 49 11 3315 3321 10.1021/jm051197e 16722650
    [Google Scholar]
  34. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  35. Huang J. Rauscher S. Nawrocki G. Ran T. Feig M. de Groot B.L. Grubmüller H. MacKerell A.D. Jr CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017 14 1 71 73 10.1038/nmeth.4067 27819658
    [Google Scholar]
  36. Salentin S. Schreiber S. Haupt V.J. Adasme M.F. Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015 43 W1 W443 W447 10.1093/nar/gkv315 25873628
    [Google Scholar]
  37. Humphrey W. Dalke A. Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996 14 1 33 38, 27-28 10.1016/0263‑7855(96)00018‑5 8744570
    [Google Scholar]
  38. Sunseri J. Koes D.R. Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 2016 44 W1 W442 W448 10.1093/nar/gkw287 27095195
    [Google Scholar]
  39. Kumari R. Kumar R. Lynn A. Open Source Drug Discovery Consortium g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  40. Lung J. Hung M.S. Lin Y.C. Hung C.H. Chen C.C. Lee K.D. Tsai Y. Virtual Screening and In Vitro Evaluation of PD-L1 Dimer Stabilizers for Uncoupling PD-1/PD-L1 Interaction from Natural Products. Molecules 2020 25 22 5293 10.3390/molecules25225293 33202823
    [Google Scholar]
  41. Stael S. Miller L.P. Fernández-Fernández Á.D. Van Breusegem F. Detection of Damage-Activated Metacaspase ActivityActivitiesby Western Blot in Plants. Plant Proteases and Plant Cell Death: Methods and Protocols. Klemenčič M. Stael S. Huesgen P.F. New York, NY Springer US 2022 127 137 10.1007/978‑1‑0716‑2079‑3_11
    [Google Scholar]
  42. Feng Z. Chen X. Yang Y. Zheng Y. Lai F. Ji M. Zhou C. Zhang L. Wang K. Nicotinyl Alcohol Ether Derivative, Preparation Method Therefor, and Pharmaceutical Composition and Uses Thereof U.S. Patent No. 10,975,049 2021
    [Google Scholar]
  43. Basu S. Yang J. Xu B. Magiera-Mularz K. Skalniak L. Musielak B. Kholodovych V. Holak T.A. Hu L. Design, Synthesis, Evaluation, and Structural Studies of C 2 -Symmetric Small Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. J. Med. Chem. 2019 62 15 7250 7263 10.1021/acs.jmedchem.9b00795 31298541
    [Google Scholar]
  44. Butera R. Ważyńska M. Magiera-Mularz K. Plewka J. Musielak B. Surmiak E. Sala D. Kitel R. de Bruyn M. Nijman H.W. Elsinga P.H. Holak T.A. Dömling A. Design, Synthesis, and Biological Evaluation of Imidazopyridines as PD-1/PD-L1 Antagonists. ACS Med. Chem. Lett. 2021 12 5 768 773 10.1021/acsmedchemlett.1c00033 34055224
    [Google Scholar]
  45. Muszak D. Surmiak E. Plewka J. Magiera-Mularz K. Kocik-Krol J. Musielak B. Sala D. Kitel R. Stec M. Weglarczyk K. Siedlar M. Dömling A. Skalniak L. Holak T.A. Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. J. Med. Chem. 2021 64 15 11614 11636 10.1021/acs.jmedchem.1c00957 34313116
    [Google Scholar]
  46. Skalniak L. Zak K.M. Guzik K. Magiera K. Musielak B. Pachota M. Szelazek B. Kocik J. Grudnik P. Tomala M. Krzanik S. Pyrc K. Dömling A. Dubin G. Holak T.A. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 2017 8 42 72167 72181 10.18632/oncotarget.20050 29069777
    [Google Scholar]
  47. Shaabani S. Huizinga H.P.S. Butera R. Kouchi A. Guzik K. Magiera-Mularz K. Holak T.A. Dömling A. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018). Expert Opin. Ther. Pat. 2018 28 9 665 678 10.1080/13543776.2018.1512706 30107136
    [Google Scholar]
  48. Fan J. Fu A. Zhang L. Progress in molecular docking. Quant. Biol. 2019 7 2 83 89 10.1007/s40484‑019‑0172‑y
    [Google Scholar]
  49. van der Spoel D. Zhang J. Zhang H. Quantitative predictions from molecular simulations using explicit or implicit interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 1 e1560 10.1002/wcms.1560
    [Google Scholar]
  50. Stanzione F. Giangreco I. Cole J.C. Chapter Four - Use of Molecular Docking Computational Tools in Drug Discovery. Progress in Medicinal Chemistry. Witty D.R. Cox B. Elsevier 2021 Vol. 60 273 343
    [Google Scholar]
  51. Bender B.J. Gahbauer S. Luttens A. Lyu J. Webb C.M. Stein R.M. Fink E.A. Balius T.E. Carlsson J. Irwin J.J. Shoichet B.K. A practical guide to large-scale docking. Nat. Protoc. 2021 16 10 4799 4832 10.1038/s41596‑021‑00597‑z 34561691
    [Google Scholar]
  52. Mittal L. Tonk R.K. Awasthi A. Asthana S. Targeting cryptic-orthosteric site of PD-L1 for inhibitor identification using structure-guided approach. Arch. Biochem. Biophys. 2021 713 109059 10.1016/j.abb.2021.109059 34673001
    [Google Scholar]
  53. Hollingsworth S.A. Dror R.O. Molecular Dynamics Simulation for All. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  54. Singh S. Bani Baker Q. Singh D.B. Molecular Docking and Molecular Dynamics Simulation. Bioinformatics. Singh D.B. Pathak R.K. Academic Press 2022 291 304 10.1016/B978‑0‑323‑89775‑4.00014‑6
    [Google Scholar]
  55. Lazim R. Suh D. Choi S. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. Int. J. Mol. Sci. 2020 21 17 6339 10.3390/ijms21176339 32882859
    [Google Scholar]
  56. Bailly C. Vergoten G. N-glycosylation and ubiquitinylation of PD-L1 do not restrict interaction with BMS-202: A molecular modeling study. Comput. Biol. Chem. 2020 88 107362 10.1016/j.compbiolchem.2020.107362 32871472
    [Google Scholar]
  57. Sasmal P. Kumar Babasahib S. Prashantha Kumar B.R. Manjunathaiah Raghavendra N. Biphenyl-based small molecule inhibitors: Novel cancer immunotherapeutic agents targeting PD-1/PD-L1 interaction. Bioorg. Med. Chem. 2022 73 117001 10.1016/j.bmc.2022.117001 36126447
    [Google Scholar]
  58. Xia W. He L. Bao J. Qi Y. Zhang J.Z.H. Insights into small molecule inhibitor bindings to PD-L1 with residue-specific binding free energy calculation. J. Biomol. Struct. Dyn. 2022 40 22 12277 12285 10.1080/07391102.2021.1971558 34486939
    [Google Scholar]
  59. Zak K.M. Kitel R. Przetocka S. Golik P. Guzik K. Musielak B. Dömling A. Dubin G. Holak T.A. Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure 2015 23 12 2341 2348 10.1016/j.str.2015.09.010 26602187
    [Google Scholar]
  60. Tyagi R. Singh A. Chaudhary K.K. Yadav M.K. Pharmacophore Modeling and Its Applications. Bioinformatics. Chapter 17 Singh D.B. Pathak R.K. Academic Press 2022 269 289 10.1016/B978‑0‑323‑89775‑4.00009‑2
    [Google Scholar]
  61. Giordano D. Biancaniello C. Argenio M.A. Facchiano A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals (Basel) 2022 15 5 646 10.3390/ph15050646 35631472
    [Google Scholar]
  62. Luo L. Zhong A. Wang Q. Zheng T. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar. Drugs 2021 20 1 29 10.3390/md20010029 35049884
    [Google Scholar]
  63. Mejías C. Guirola O. Pharmacophore model of immunocheckpoint protein PD-L1 by cosolvent molecular dynamics simulations. J. Mol. Graph. Model. 2019 91 105 111 10.1016/j.jmgm.2019.06.001 31202914
    [Google Scholar]
  64. Zhong Y. Li X. Yao H. Lin K. The Characteristics of PD-L1 Inhibitors, from Peptides to Small Molecules. Molecules 2019 24 10 1940 10.3390/molecules24101940 31137573
    [Google Scholar]
  65. Antoszczak M. Markowska A. Markowska J. Huczyński A. Old wine in new bottles: Drug repurposing in oncology. Eur. J. Pharmacol. 2020 866 172784 10.1016/j.ejphar.2019.172784 31730760
    [Google Scholar]
  66. Parvathaneni V. Kulkarni N.S. Muth A. Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today 2019 24 10 2076 2085 10.1016/j.drudis.2019.06.014 31238113
    [Google Scholar]
  67. Alhusban A. Al-Azayzih A. Goc A. Gao F. Fagan S.C. Somanath P.R. Clinically relevant doses of candesartan inhibit growth of prostate tumor xenografts in vivo through modulation of tumor angiogenesis. J. Pharmacol. Exp. Ther. 2014 350 3 635 645 10.1124/jpet.114.216382 24990940
    [Google Scholar]
  68. Bellamkonda K. Satapathy S.R. Douglas D. Chandrashekar N. Selvanesan B.C. Liu M. Savari S. Jonsson G. Sjölander A. Montelukast, a CysLT1 receptor antagonist, reduces colon cancer stemness and tumor burden in a mouse xenograft model of human colon cancer. Cancer Lett. 2018 437 13 24 10.1016/j.canlet.2018.08.019 30144515
    [Google Scholar]
  69. Fan F. Tian C. Tao L. Wu H. Liu Z. Shen C. Jiang G. Lu Y. Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. Biomed. Pharmacother. 2016 83 704 711 10.1016/j.biopha.2016.07.039 27470571
    [Google Scholar]
  70. Gonçalves J.M. Silva C.A.B. Rivero E.R.C. Cordeiro M.M.R. Inhibition of cancer stem cells promoted by Pimozide. Clin. Exp. Pharmacol. Physiol. 2019 46 2 116 125 10.1111/1440‑1681.13049 30383889
    [Google Scholar]
  71. Kachi K. Kato H. Naiki-Ito A. Komura M. Nagano-Matsuo A. Naitoh I. Hayashi K. Kataoka H. Inaguma S. Takahashi S. Anti-Allergic Drug Suppressed Pancreatic Carcinogenesis via Down-Regulation of Cellular Proliferation. Int. J. Mol. Sci. 2021 22 14 7444 10.3390/ijms22147444 34299067
    [Google Scholar]
  72. Kobara H. Fujihara S. Iwama H. Matsui T. Fujimori A. Chiyo T. Tingting S. Kobayashi N. Nishiyama N. Yachida T. Tadokoro T. Oura K. Tani J. Fujita K. Nomura T. Yoneyama H. Morishita A. Okano K. Suzuki Y. Mori H. Masaki T. Antihypertensive drug telmisartan inhibits cell proliferation of gastrointestinal stromal tumor cells in vitro. Mol. Med. Rep. 2020 22 2 1063 1071 10.3892/mmr.2020.11144 32626983
    [Google Scholar]
  73. Nozaki M. Yoshikawa M. Ishitani K. Kobayashi H. Houkin K. Imai K. Ito Y. Muraki T. Cysteinyl leukotriene receptor antagonists inhibit tumor metastasis by inhibiting capillary permeability. Keio J. Med. 2010 59 1 10 18 10.2302/kjm.59.10 20375653
    [Google Scholar]
  74. Suknuntha K. Yubolphan R. Krueaprasertkul K. Srihirun S. Sibmooh N. Vivithanaporn P. Leukotriene Receptor Antagonists Inhibit Mitogenic Activity in Triple Negative Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2018 19 3 833 837 10.22034/APJCP.2018.19.3.833 29582642
    [Google Scholar]
  75. Tabatabai E. Khazaei M. Asgharzadeh F. Nazari S.E. Shakour N. Fiuji H. Ziaeemehr A. Mostafapour A. Parizadeh M.R. Nouri M. Hassanian S.M. Hadizadeh F. Ferns G.A. Rahmati M. Rahmani F. Avan A. Inhibition of angiotensin II type 1 receptor by candesartan reduces tumor growth and ameliorates fibrosis in colorectal cancer. EXCLI J. 2021 20 863 878 10.17179/excli2021‑3421 34121975
    [Google Scholar]
  76. Tang C. Lei H. Zhang J. Liu M. Jin J. Luo H. Xu H. Wu Y. Montelukast inhibits hypoxia inducible factor-1α translation in prostate cancer cells. Cancer Biol. Ther. 2018 19 8 715 721 10.1080/15384047.2018.1451279 29708817
    [Google Scholar]
  77. Tsai M.J. Chang W.A. Tsai P.H. Wu C.Y. Ho Y.W. Yen M.C. Lin Y.S. Kuo P.L. Hsu Y.L. Montelukast Induces Apoptosis-Inducing Factor-Mediated Cell Death of Lung Cancer Cells. Int. J. Mol. Sci. 2017 18 7 1353 10.3390/ijms18071353 28672809
    [Google Scholar]
  78. Velázquez-Quesada I. Ruiz-Moreno A.J. Casique-Aguirre D. Aguirre-Alvarado C. Cortés-Mendoza F. de la Fuente-Granada M. García-Pérez C. Pérez-Tapia S.M. González-Arenas A. Segura-Cabrera A. Velasco-Velázquez M.A. Pranlukast Antagonizes CD49f and Reduces Stemness in Triple-Negative Breast Cancer Cells. Drug Des. Devel. Ther. 2020 14 1799 1811 10.2147/DDDT.S247730 32494122
    [Google Scholar]
  79. Zovko A. Yektaei-Karin E. Salamon D. Nilsson A. Wallvik J. Stenke L. Montelukast, a cysteinyl leukotriene receptor antagonist, inhibits the growth of chronic myeloid leukemia cells through apoptosis. Oncol. Rep. 2018 40 2 902 908 10.3892/or.2018.6465 29845257
    [Google Scholar]
  80. Keam S.J. Lyseng-Williamson K.A. Goa K.L. Pranlukast. Drugs 2003 63 10 991 1019 10.2165/00003495‑200363100‑00005 12699401
    [Google Scholar]
  81. Figueroa E.E. Kramer M. Strange K. Denton J.S. CysLT1 receptor antagonists pranlukast and zafirlukast inhibit LRRC8-mediated volume regulated anion channels independently of the receptor. Am. J. Physiol. Cell Physiol. 2019 317 4 C857 C866 10.1152/ajpcell.00281.2019 31390227
    [Google Scholar]
  82. Montes-Grajales D. Puerta-Guardo H. Espinosa D.A. Harris E. Caicedo-Torres W. Olivero-Verbel J. Martínez-Romero E. In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res. 2020 173 104668 10.1016/j.antiviral.2019.104668 31786251
    [Google Scholar]
  83. Mittendorf E.A. Philips A.V. Meric-Bernstam F. Qiao N. Wu Y. Harrington S. Su X. Wang Y. Gonzalez-Angulo A.M. Akcakanat A. Chawla A. Curran M. Hwu P. Sharma P. Litton J.K. Molldrem J.J. Alatrash G. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2014 2 4 361 370 10.1158/2326‑6066.CIR‑13‑0127 24764583
    [Google Scholar]
  84. Ehrt C. Brinkjost T. Koch O. Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design. J. Med. Chem. 2016 59 9 4121 4151 10.1021/acs.jmedchem.6b00078 27046190
    [Google Scholar]
  85. Ehrt C. Brinkjost T. Koch O. Binding site characterization – similarity, promiscuity, and druggability. MedChemComm 2019 10 7 1145 1159 10.1039/C9MD00102F 31391887
    [Google Scholar]
  86. Haupt V.J. Daminelli S. Schroeder M. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key. PLoS One 2013 8 6 e65894 10.1371/journal.pone.0065894 23805191
    [Google Scholar]
  87. Luginina A. Gusach A. Marin E. Mishin A. Brouillette R. Popov P. Shiriaeva A. Besserer-Offroy É. Longpré J.M. Lyapina E. Ishchenko A. Patel N. Polovinkin V. Safronova N. Bogorodskiy A. Edelweiss E. Hu H. Weierstall U. Liu W. Batyuk A. Gordeliy V. Han G.W. Sarret P. Katritch V. Borshchevskiy V. Cherezov V. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv. 2019 5 10 eaax2518 10.1126/sciadv.aax2518 31633023
    [Google Scholar]
  88. Hoffer L. Muller C. Roche P. Morelli X. Chemistry‐driven Hit‐to‐lead Optimization Guided by Structure‐based Approaches. Mol. Inform. 2018 37 9-10 1800059 10.1002/minf.201800059 30051601
    [Google Scholar]
  89. Mignani S. Rodrigues J. Tomas H. Jalal R. Singh P.P. Majoral J.P. Vishwakarma R.A. Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov. Today 2018 23 3 605 615 10.1016/j.drudis.2018.01.010 29330127
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206303675241009104647
Loading
/content/journals/acamc/10.2174/0118715206303675241009104647
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test