Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Since it was discovered that a natural polyether ionophore called salinomycin () selectively inhibits human cancer cells, the scientific world has been paying special attention to this compound. It has been studied for nearly 15 years.

Objective

Thus, a very interesting research direction is the chemical modification of structure, which could give more biologically active agents.

Methods

We evaluated the anticancer activity of (thio)urea analogues class of C20--aminosalinomycin (compound ). The studies covered the generation of reactive oxygen species (ROS), proapoptotic activity, cytotoxic activity, and lipid peroxidation .

Results

Thioureas showed antiproliferative activity against selected human colon cancer cell lines greater than that of chemically unmodified , with a 2~10-fold higher potency towards a metastatic variant of colon cancer cells (SW620). Mechanistically, derivatives showed proapoptotic activity in primary colon cancer cells and induced the production of reactive oxygen species (ROS) in these cells. In SW620 cells, derivatives increased lipid peroxidation with a weak effect on apoptosis and low ROS formation with cytotoxic effects followed by cytostatic ones, suggesting different modes of action of the compounds against primary and metastatic colon cancer cells.

Conclusion

The results of this study suggested that urea and thiourea derivatives of provide promising leads for the rational development of new anticancer active agents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206322603241002064435
2024-10-10
2025-04-01
Loading full text...

Full text loading...

References

  1. Colorectal cancer.2023Available from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer(Accessed on: 2024-04-09)
  2. AntoszczakM. SteverdingD. HuczyńskiA. Anti-parasitic activity of polyether ionophores.Eur. J. Med. Chem.2019166324710.1016/j.ejmech.2019.01.03530684869
    [Google Scholar]
  3. ZhouS. WangF. WongE. FonkemE. HsiehT.C. WuJ. WuE. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities.Curr. Med. Chem.201320334095410110.2174/1567205011310999019923931281
    [Google Scholar]
  4. KevinD.A. MeujoD.A.F. HamannM.T. Polyether ionophores: Broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites.Expert Opin. Drug Discov.20094210914610.1517/1746044080266144323480512
    [Google Scholar]
  5. GuptaP.B. OnderT.T. JiangG. TaoK. KuperwasserC. WeinbergR.A. LanderE.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening.Cell2009138464565910.1016/j.cell.2009.06.03419682730
    [Google Scholar]
  6. AntoszczakM. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent.Eur. J. Med. Chem.201916436637710.1016/j.ejmech.2018.12.05730611056
    [Google Scholar]
  7. JiangJ. LiH. QaedE. ZhangJ. SongY. WuR. BuX. WangQ. TangZ. Salinomycin, as an autophagy modulator - A new avenue to anticancer: A review.J. Exp. Clin. Cancer Res.20183712610.1186/s13046‑018‑0680‑z29433536
    [Google Scholar]
  8. KloseJ. EisseleJ. VolzC. SchmittS. RitterA. YingS. SchmidtT. HegerU. SchneiderM. UlrichA. Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/β-catenin signaling in CD133+ human colorectal cancer cells.BMC Cancer201616189610.1186/s12885‑016‑2879‑827855654
    [Google Scholar]
  9. ZhouJ. LiP. XueX. HeS. KuangY. ZhaoH. ChenS. ZhiQ. GuoX. Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species.Toxicol. Lett.2013222213914510.1016/j.toxlet.2013.07.02223916687
    [Google Scholar]
  10. VerdoodtB. VogtM. SchmitzI. LiffersS.T. TannapfelA. MirmohammadsadeghA. Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species.PLoS One201279e4413210.1371/journal.pone.004413223028492
    [Google Scholar]
  11. DongT.T. ZhouH.M. WangL.L. FengB. LvB. ZhengM.H. Salinomycin selectively targets 'CD133+' cell subpopulations and decreases malignant traits in colorectal cancer lines.Ann. Surg. Oncol.20111861797180410.1245/s10434‑011‑1561‑221267784
    [Google Scholar]
  12. WangZ. ZhouL. XiongY. YuS. LiH. FanJ. LiF. SuZ. SongJ. SunQ. LiuS.S. XiaY. ZhaoL. LiS. GuoF. HuangP. CarsonD.A. LuD. Salinomycin exerts anti‐colorectal cancer activity by targeting the β‐catenin/T‐cell factor complex.Br. J. Pharmacol.2019176173390340610.1111/bph.1477031236922
    [Google Scholar]
  13. KloseJ. TrefzS. WagnerT. SteffenL. PreißendörferC.A. RadhakrishnanP. VolzC. SchmidtT. UlrichA. DieterS.M. BallC. GlimmH. SchneiderM. Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model.PLoS One2019142e021191610.1371/journal.pone.021191630763370
    [Google Scholar]
  14. AntoszczakM. A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents.Eur. J. Med. Chem.2019166486410.1016/j.ejmech.2019.01.03430684870
    [Google Scholar]
  15. VersiniA. SaierL. SindikubwaboF. MüllerS. CañequeT. RodriguezR. Chemical biology of salinomycin.Tetrahedron201874395585561410.1016/j.tet.2018.07.028
    [Google Scholar]
  16. LiB. WuJ. ZhangW. LiZ. ChenG. ZhouQ. WuS. Synthesis and biological activity of salinomycin-hydroxamic acid conjugates.Bioorg. Med. Chem. Lett.20172771624162610.1016/j.bmcl.2017.01.08028262526
    [Google Scholar]
  17. BorgströmB. HuangX. ChygorinE. OredssonS. StrandD. Salinomycin hydroxamic acids: Synthesis, structure, and biological activity of polyether ionophore hybrids.ACS Med. Chem. Lett.20167663564010.1021/acsmedchemlett.6b0007927326340
    [Google Scholar]
  18. AntoszczakM. MajE. StefańskaJ. WietrzykJ. JanczakJ. BrzezinskiB. HuczyńskiA. Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin.Bioorg. Med. Chem. Lett.20142471724172910.1016/j.bmcl.2014.02.04224631190
    [Google Scholar]
  19. AntoszczakM. PopielK. StefańskaJ. WietrzykJ. MajE. JanczakJ. MichalskaG. BrzezinskiB. HuczyńskiA. Synthesis, cytotoxicity and antibacterial activity of new esters of polyether antibiotic – Salinomycin.Eur. J. Med. Chem.20147643544410.1016/j.ejmech.2014.02.03124602789
    [Google Scholar]
  20. CzerwonkaD. MüllerS. CañequeT. ColombeauL. HuczyńskiA. AntoszczakM. RodriguezR. Expeditive synthesis of potent C20-epi-amino derivatives of salinomycin against cancer stem-like cells.ACS Org. Inorg. Au20222321422110.1021/acsorginorgau.1c0004635673680
    [Google Scholar]
  21. AntoszczakM. MüllerS. ColombeauL. CañequeT. RodriguezR. Rapid access to ironomycin derivatives by click chemistry.ACS Org. Inorg. Au20222322222810.1021/acsorginorgau.1c0004535673682
    [Google Scholar]
  22. VersiniA. ColombeauL. HienzschA. GailletC. RetailleauP. DebieuS. MüllerS. CañequeT. RodriguezR. Salinomycin derivatives kill breast cancer stem cells by lysosomal iron targeting.Chemistry202026337416742410.1002/chem.20200033532083773
    [Google Scholar]
  23. LiY. ShiQ. ShaoJ. YuanY. YangZ. ChenS. ZhouX. WenS. JiangZ.X. Synthesis and biological evaluation of 20-epi-amino-20-deoxysalinomycin derivatives.Eur. J. Med. Chem.201814827929010.1016/j.ejmech.2018.02.00429466777
    [Google Scholar]
  24. MaiT.T. HamaïA. HienzschA. CañequeT. MüllerS. WicinskiJ. CabaudO. LeroyC. DavidA. AcevedoV. RyoA. GinestierC. BirnbaumD. Charafe-JauffretE. CodognoP. MehrpourM. RodriguezR. Salinomycin kills cancer stem cells by sequestering iron in lysosomes.Nat. Chem.20179101025103310.1038/nchem.277828937680
    [Google Scholar]
  25. BorgströmB. HuangX. HegardtC. OredssonS. StrandD. Structure-activity relationships in salinomycin: Cytotoxicity and phenotype selectivity of semi-synthetic derivatives.Chemistry20172392077208310.1002/chem.20160362127740704
    [Google Scholar]
  26. ZhangW. WuJ. LiB. XiaJ. WuH. WangL. HaoJ. ZhouQ. WuS. Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives.RSC Advances2016648418854189010.1039/C6RA08967D
    [Google Scholar]
  27. ShiQ. LiY. BoS. LiX. ZhaoP. LiuQ. YangZ. CongH. DengH. ChenM. ChenS. ZhouX. DingH. JiangZ.X. Discovery of a 19 F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells.Chem. Commun. (Camb.)201652295136513910.1039/C6CC01508E26997457
    [Google Scholar]
  28. BorgströmB. HuangX. PoštaM. HegardtC. OredssonS. StrandD. Synthetic modification of salinomycin: Selective O-acylation and biological evaluation.Chem. Commun. (Camb.)201349859944994610.1039/c3cc45983g24037337
    [Google Scholar]
  29. AntoszczakM. MüllerS. CañequeT. ColombeauL. DusettiN. Santofimia-CastañoP. GailletC. PuisieuxA. IovannaJ.L. RodriguezR. Iron-sensitive prodrugs that trigger active ferroptosis in drug-tolerant pancreatic cancer cells.J. Am. Chem. Soc.202214426115361154510.1021/jacs.2c0397335696539
    [Google Scholar]
  30. CzerwonkaD. UrbaniakA. SobczakS. Piña-OviedoS. ChambersT.C. AntoszczakM. HuczyńskiA. Synthesis and anticancer activity of tertiary amides of salinomycin and their C20-oxo analogues.ChemMedChem202015223624610.1002/cmdc.20190059331702860
    [Google Scholar]
  31. AntoszczakM. UrbaniakA. DelgadoM. MajE. BorgströmB. WietrzykJ. HuczyńskiA. YuanY. ChambersT.C. StrandD. Biological activity of doubly modified salinomycin analogs – Evaluation in vitro and ex vivo.Eur. J. Med. Chem.201815651052310.1016/j.ejmech.2018.07.02130025346
    [Google Scholar]
  32. KloseJ. KattnerS. BorgströmB. VolzC. SchmidtT. SchneiderM. OredssonS. StrandD. UlrichA. Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells.Biochem. Biophys. Res. Commun.20184951535910.1016/j.bbrc.2017.10.14729107689
    [Google Scholar]
  33. HuH. LinC. AoM. JiY. TangB. ZhouX. FangM. ZengJ. WuZ. Synthesis and biological evaluation of 1-(2-(adamantane-1-yl)-1H-indol-5-yl)-3-substituted urea/thiourea derivatives as anticancer agents.RSC Advances2017781516405165110.1039/C7RA08149A
    [Google Scholar]
  34. ChenJ.N. WangX.F. LiT. WuD.W. FuX.B. ZhangG.J. ShenX.C. WangH.S. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents.Eur. J. Med. Chem.2016107122510.1016/j.ejmech.2015.10.04526560049
    [Google Scholar]
  35. Kocaİ. ÖzgürA. CoşkunK.A. TutarY. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety.Bioorg. Med. Chem.201321133859386510.1016/j.bmc.2013.04.02123664495
    [Google Scholar]
  36. SaeedS. RashidN. JonesP.G. AliM. HussainR. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents.Eur. J. Med. Chem.20104541323133110.1016/j.ejmech.2009.12.01620056520
    [Google Scholar]
  37. LiH.Q. LvP.C. YanT. ZhuH.L. Urea derivatives as anticancer agents.Anticancer. Agents Med. Chem.20099447148010.2174/187152061090904047119442045
    [Google Scholar]
  38. AntoszczakM. Gadsby-DavisK. SteverdingD. HuczyńskiA. Synthesis of urea and thiourea derivatives of C20-epi-aminosalinomycin and their activity against Trypanosoma brucei. Eur. J. Med. Chem.202325011524110.1016/j.ejmech.2023.11524136870272
    [Google Scholar]
  39. CzerwonkaD. BarcelosY. SteverdingD. CiochA. HuczyńskiA. AntoszczakM. Singly and doubly modified analogues of C20-epi-salinomycin: A new group of antiparasitic agents against Trypanosoma brucei. Eur. J. Med. Chem.202120911290010.1016/j.ejmech.2020.11290033071053
    [Google Scholar]
  40. CzerwonkaD. Mielczarek-PutaM. AntoszczakM. CiochA. StrugaM. HuczyńskiA. Evaluation of the anticancer activity of singly and doubly modified analogues of C20-epi-salinomycin.Eur. J. Pharmacol.202190817434710.1016/j.ejphar.2021.17434734265289
    [Google Scholar]
  41. AntoszczakM. SteverdingD. SulikM. JanczakJ. HuczyńskiA. Anti-trypanosomal activity of doubly modified salinomycin derivatives.Eur. J. Med. Chem.2019173909810.1016/j.ejmech.2019.03.06130986574
    [Google Scholar]
  42. UrbaniakA. ReedM.R. FilD. MoorjaniA. HeflinS. AntoszczakM. SulikM. HuczyńskiA. KupsikM. EoffR.L. MacNicolM.C. ChambersT.C. MacNicolA.M. Single and double modified salinomycin analogs target stem-like cells in 2D and 3D breast cancer models.Biomed. Pharmacother.202114111181510.1016/j.biopha.2021.11181534130123
    [Google Scholar]
  43. KuranD. FlisS. AntoszczakM. PiskorekM. HuczyńskiA. Ester derivatives of salinomycin efficiently eliminate breast cancer cells via ER-stress-induced apoptosis.Eur. J. Pharmacol.202189317382410.1016/j.ejphar.2020.17382433347821
    [Google Scholar]
  44. MichalakM. LachM.S. AntoszczakM. HuczyńskiA. SuchorskaW.M. Overcoming resistance to platinum-based drugs in ovarian cancer by salinomycin and its derivatives ‒ An in vitro study.Molecules202025353710.3390/molecules2503053731991882
    [Google Scholar]
  45. DenizotF. LangR. Rapid colorimetric assay for cell growth and survival.J. Immunol. Methods198689227127710.1016/0022‑1759(86)90368‑63486233
    [Google Scholar]
  46. AnsaB. CoughlinS. Alema-MensahE. SmithS. Evaluation of colorectal cancer incidence trends in the United States (2000–2014).J. Clin. Med.2018722210.3390/jcm702002229385768
    [Google Scholar]
  47. Van CutsemE. OliveiraJ. Advanced colorectal cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up.Ann. Oncol.200920Suppl. 4iv61iv6310.1093/annonc/mdp13019454465
    [Google Scholar]
  48. LittlejohnsP. TamberS. RansonP. CampbellB. AdamsA. SeymourM. MartinD. Treatment for liver metastases from colorectal cancer.Lancet Oncol.2005627310.1016/S1470‑2045(05)01729‑815704298
    [Google Scholar]
  49. SEER Cancer Statistics Review (CSR) 1975-2015.2018Available from: https://seer.cancer.gov/archive/csr/1975_2015/index.html (accessed on: 2024‒04‒09)
  50. YuS.N. KimS.H. KimK.Y. JiJ.H. SeoY.K. YuH.S. AhnS.C. Salinomycin induces endoplasmic reticulum stress-mediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells.Oncol. Rep.20173763321332810.3892/or.2017.561528498472
    [Google Scholar]
  51. LinC.S. LiuL.T. OuL.H. PanS.C. LinC.I. WeiY.H. Role of mitochondrial function in the invasiveness of human colon cancer cells.Oncol. Rep.201739131633010.3892/or.2017.608729138850
    [Google Scholar]
  52. ChengY. LuY. ZhangD. LianS. LiangH. YeY. XieR. LiS. ChenJ. XueX. XieJ. JiaL. Metastatic cancer cells compensate for low energy supplies in hostile microenvironments with bioenergetic adaptation and metabolic reprogramming.Int. J. Oncol.20185362590260410.3892/ijo.2018.458230280201
    [Google Scholar]
  53. BajzikovaM. KovarovaJ. CoelhoA.R. BoukalovaS. OhS. RohlenovaK. SvecD. HubackovaS. EndayaB. JudasovaK. Bezawork-GeletaA. KluckovaK. ChatreL. ZobalovaR. NovakovaA. VanovaK. EzrovaZ. MaghzalG.J. Magalhaes NovaisS. OlsinovaM. KrobovaL. AnY.J. DavidovaE. NahackaZ. SobolM. Cunha-OliveiraT. Sandoval-AcuñaC. StrnadH. ZhangT. HuynhT. SerafimT.L. HozakP. SardaoV.A. KoopmanW.J.H. RicchettiM. OliveiraP.J. KolarF. KubistaM. TruksaJ. Dvorakova-HortovaK. PacakK. GurlichR. StockerR. ZhouY. BerridgeM.V. ParkS. DongL. RohlenaJ. NeuzilJ. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells.Cell Metab.2019292399416.e1010.1016/j.cmet.2018.10.01430449682
    [Google Scholar]
  54. PhanL.M. YeungS.C. LeeM.H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies.Cancer Biol. Med.201411111910.7497/j.issn.2095‑3941.2014.01.00124738035
    [Google Scholar]
  55. NiuY. ZhouY. ZhengH. ZhaoL. LiC. GaoH. Metabonomics analysis of colorectal carcinoma cell lines SW480 and SW620 with different metastatic potentials.J. Wezhou. Med. Univ.20194924324810.3969/j.issn.2095‑9400.2019.04.002
    [Google Scholar]
  56. LuoF. LiJ. WuS. WuX. ChenM. ZhongX. LiuK. Comparative profiling between primary colorectal carcinomas and metastases identifies heterogeneity on drug resistance.Oncotarget2016739639376394910.18632/oncotarget.1157027613840
    [Google Scholar]
  57. DisomaC. ZhouY. LiS. PengJ. XiaZ. Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible?Biochimie2022195395310.1016/j.biochi.2022.01.00935066101
    [Google Scholar]
  58. LeiphrakpamP. AreC. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment.Int. J. Mol. Sci.2024256317810.3390/ijms2506317838542151
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206322603241002064435
Loading
/content/journals/acamc/10.2174/0118715206322603241002064435
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): apoptosis; colorectal cancer; cytotoxicity; Ionophores; lipid peroxidation; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test