Skip to content
2000
image of Urea and Thiourea Derivatives of Salinomycin as Agents Targeting Malignant Colon Cancer Cells

Abstract

Background

Since it was discovered that a natural polyether ionophore called salinomycin (SAL) selectively inhibits human cancer cells, the scientific world has been paying special attention to this compound. It has been studied for nearly 15 years.

Objective

Thus, a very interesting research direction is the chemical modification of structure, which could give more biologically active agents.

Methods

We evaluated the anticancer activity of (thio)urea analogues class of C20--aminosalinomycin (compound ). The studies covered the generation of reactive oxygen species (ROS), proapoptotic activity, cytotoxic activity, and lipid peroxidation .

Results

Thioureas showed antiproliferative activity against selected human colon cancer cell lines greater than that of chemically unmodified , with a 2~10-fold higher potency towards a metastatic variant of colon cancer cells (SW620). Mechanistically, derivatives showed pro-apoptotic activity in primary colon cancer cells and induced the production of reactive oxygen species (ROS) in these cells. In SW620 cells, derivatives increased lipid peroxidation with a weak effect on apoptosis and low ROS formation with cytotoxic effects followed by cytostatic ones, suggesting different modes of action of the compounds against primary and metastatic colon cancer cells.

Conclusion

The results of this study suggested that urea and thiourea derivatives of provide promising leads for the rational development of new anticancer active agents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206322603241002064435
2024-10-14
2024-12-04
Loading full text...

Full text loading...

References

  1. Colorectal cancer. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer(Accessed on: 2024‒04‒09)
  2. Antoszczak M. Steverding D. Huczyński A. Anti-parasitic activity of polyether ionophores. Eur. J. Med. Chem. 2019 166 32 47 10.1016/j.ejmech.2019.01.035 30684869
    [Google Scholar]
  3. Zhou S. Wang F. Wong E. Fonkem E. Hsieh T.C. Wu J. Wu E. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities. Curr. Med. Chem. 2013 20 33 4095 4101 10.2174/15672050113109990199 23931281
    [Google Scholar]
  4. Kevin D.A. Meujo D.A.F. Hamann M.T. Polyether ionophores: Broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin. Drug Discov. 2009 4 2 109 146 10.1517/17460440802661443 23480512
    [Google Scholar]
  5. Gupta P.B. Onder T.T. Jiang G. Tao K. Kuperwasser C. Weinberg R.A. Lander E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009 138 4 645 659 10.1016/j.cell.2009.06.034 19682730
    [Google Scholar]
  6. Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur. J. Med. Chem. 2019 164 366 377 10.1016/j.ejmech.2018.12.057 30611056
    [Google Scholar]
  7. Jiang J. Li H. Qaed E. Zhang J. Song Y. Wu R. Bu X. Wang Q. Tang Z. Salinomycin, as an autophagy modulator - A new avenue to anticancer: A review. J. Exp. Clin. Cancer Res. 2018 37 1 26 10.1186/s13046‑018‑0680‑z 29433536
    [Google Scholar]
  8. Klose J. Eissele J. Volz C. Schmitt S. Ritter A. Ying S. Schmidt T. Heger U. Schneider M. Ulrich A. Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/β-catenin signaling in CD133+ human colorectal cancer cells. BMC Cancer 2016 16 1 896 10.1186/s12885‑016‑2879‑8 27855654
    [Google Scholar]
  9. Zhou J. Li P. Xue X. He S. Kuang Y. Zhao H. Chen S. Zhi Q. Guo X. Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species. Toxicol. Lett. 2013 222 2 139 145 10.1016/j.toxlet.2013.07.022 23916687
    [Google Scholar]
  10. Verdoodt B. Vogt M. Schmitz I. Liffers S.T. Tannapfel A. Mirmohammadsadegh A. Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species. PLoS One 2012 7 9 e44132 10.1371/journal.pone.0044132 23028492
    [Google Scholar]
  11. Dong T.T. Zhou H.M. Wang L.L. Feng B. Lv B. Zheng M.H. Salinomycin selectively targets 'CD133+' cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann. Surg. Oncol. 2011 18 6 1797 1804 10.1245/s10434‑011‑1561‑2 21267784
    [Google Scholar]
  12. Wang Z. Zhou L. Xiong Y. Yu S. Li H. Fan J. Li F. Su Z. Song J. Sun Q. Liu S.S. Xia Y. Zhao L. Li S. Guo F. Huang P. Carson D.A. Lu D. Salinomycin exerts anti‐colorectal cancer activity by targeting the β‐catenin/T‐cell factor complex. Br. J. Pharmacol. 2019 176 17 3390 3406 10.1111/bph.14770 31236922
    [Google Scholar]
  13. Klose J. Trefz S. Wagner T. Steffen L. Preißendörfer Charrier A. Radhakrishnan P. Volz C. Schmidt T. Ulrich A. Dieter S.M. Ball C. Glimm H. Schneider M. Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model. PLoS One 2019 14 2 e0211916 10.1371/journal.pone.0211916 30763370
    [Google Scholar]
  14. Antoszczak M. A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur. J. Med. Chem. 2019 166 48 64 10.1016/j.ejmech.2019.01.034 30684870
    [Google Scholar]
  15. Versini A. Saier L. Sindikubwabo F. Müller S. Cañeque T. Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018 74 39 5585 5614 10.1016/j.tet.2018.07.028
    [Google Scholar]
  16. Li B. Wu J. Zhang W. Li Z. Chen G. Zhou Q. Wu S. Synthesis and biological activity of salinomycin-hydroxamic acid conjugates. Bioorg. Med. Chem. Lett. 2017 27 7 1624 1626 10.1016/j.bmcl.2017.01.080 28262526
    [Google Scholar]
  17. Borgström B. Huang X. Chygorin E. Oredsson S. Strand D. Salinomycin hydroxamic acids: Synthesis, structure, and biological activity of polyether ionophore hybrids. ACS Med. Chem. Lett. 2016 7 6 635 640 10.1021/acsmedchemlett.6b00079 27326340
    [Google Scholar]
  18. Antoszczak M. Maj E. Stefańska J. Wietrzyk J. Janczak J. Brzezinski B. Huczyński A. Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin. Bioorg. Med. Chem. Lett. 2014 24 7 1724 1729 10.1016/j.bmcl.2014.02.042 24631190
    [Google Scholar]
  19. Antoszczak M. Popiel K. Stefańska J. Wietrzyk J. Maj E. Janczak J. Michalska G. Brzezinski B. Huczyński A. Synthesis, cytotoxicity and antibacterial activity of new esters of polyether antibiotic – Salinomycin. Eur. J. Med. Chem. 2014 76 435 444 10.1016/j.ejmech.2014.02.031 24602789
    [Google Scholar]
  20. Czerwonka D. Müller S. Cañeque T. Colombeau L. Huczyński A. Antoszczak M. Rodriguez R. Expeditive synthesis of potent C20-epi-amino derivatives of salinomycin against cancer stem-like cells. ACS Org. Inorg. Au 2022 2 3 214 221 10.1021/acsorginorgau.1c00046 35673680
    [Google Scholar]
  21. Antoszczak M. Müller S. Colombeau L. Cañeque T. Rodriguez R. Rapid access to ironomycin derivatives by click chemistry. ACS Org. Inorg. Au 2022 2 3 222 228 10.1021/acsorginorgau.1c00045 35673682
    [Google Scholar]
  22. Versini A. Colombeau L. Hienzsch A. Gaillet C. Retailleau P. Debieu S. Müller S. Cañeque T. Rodriguez R. Salinomycin derivatives kill breast cancer stem cells by lysosomal iron targeting. Chemistry 2020 26 33 7416 7424 10.1002/chem.202000335 32083773
    [Google Scholar]
  23. Li Y. Shi Q. Shao J. Yuan Y. Yang Z. Chen S. Zhou X. Wen S. Jiang Z.X. Synthesis and biological evaluation of 20-epi-amino-20-deoxysalinomycin derivatives. Eur. J. Med. Chem. 2018 148 279 290 10.1016/j.ejmech.2018.02.004 29466777
    [Google Scholar]
  24. Mai T.T. Hamaï A. Hienzsch A. Cañeque T. Müller S. Wicinski J. Cabaud O. Leroy C. David A. Acevedo V. Ryo A. Ginestier C. Birnbaum D. Charafe-Jauffret E. Codogno P. Mehrpour M. Rodriguez R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 2017 9 10 1025 1033 10.1038/nchem.2778 28937680
    [Google Scholar]
  25. Borgström B. Huang X. Hegardt C. Oredsson S. Strand D. Structure-activity relationships in salinomycin: Cytotoxicity and phenotype selectivity of semi-synthetic derivatives. Chemistry 2017 23 9 2077 2083 10.1002/chem.201603621 27740704
    [Google Scholar]
  26. Zhang W. Wu J. Li B. Xia J. Wu H. Wang L. Hao J. Zhou Q. Wu S. Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives. RSC Advances 2016 6 48 41885 41890 10.1039/C6RA08967D
    [Google Scholar]
  27. Shi Q. Li Y. Bo S. Li X. Zhao P. Liu Q. Yang Z. Cong H. Deng H. Chen M. Chen S. Zhou X. Ding H. Jiang Z.X. Discovery of a 19 F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells. Chem. Commun. (Camb.) 2016 52 29 5136 5139 10.1039/C6CC01508E 26997457
    [Google Scholar]
  28. Borgström B. Huang X. Pošta M. Hegardt C. Oredsson S. Strand D. Synthetic modification of salinomycin: Selective O-acylation and biological evaluation. Chem. Commun. (Camb.) 2013 49 85 9944 9946 10.1039/c3cc45983g 24037337
    [Google Scholar]
  29. Antoszczak M. Müller S. Cañeque T. Colombeau L. Dusetti N. Santofimia-Castaño P. Gaillet C. Puisieux A. Iovanna J.L. Rodriguez R. Iron-sensitive prodrugs that trigger active ferroptosis in drug-tolerant pancreatic cancer cells. J. Am. Chem. Soc. 2022 144 26 11536 11545 10.1021/jacs.2c03973 35696539
    [Google Scholar]
  30. Czerwonka D. Urbaniak A. Sobczak S. Piña-Oviedo S. Chambers T.C. Antoszczak M. Huczyński A. Synthesis and anticancer activity of tertiary amides of salinomycin and their C20-oxo analogues. ChemMedChem 2020 15 2 236 246 10.1002/cmdc.201900593 31702860
    [Google Scholar]
  31. Antoszczak M. Urbaniak A. Delgado M. Maj E. Borgström B. Wietrzyk J. Huczyński A. Yuan Y. Chambers T.C. Strand D. Biological activity of doubly modified salinomycin analogs – Evaluation in vitro and ex vivo. Eur. J. Med. Chem. 2018 156 510 523 10.1016/j.ejmech.2018.07.021 30025346
    [Google Scholar]
  32. Klose J. Kattner S. Borgström B. Volz C. Schmidt T. Schneider M. Oredsson S. Strand D. Ulrich A. Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells. Biochem. Biophys. Res. Commun. 2018 495 1 53 59 10.1016/j.bbrc.2017.10.147 29107689
    [Google Scholar]
  33. Hu H. Lin C. Ao M. Ji Y. Tang B. Zhou X. Fang M. Zeng J. Wu Z. Synthesis and biological evaluation of 1-(2-(adamantane-1-yl)-1H-indol-5-yl)-3-substituted urea/thiourea derivatives as anticancer agents. RSC Advances 2017 7 81 51640 51651 10.1039/C7RA08149A
    [Google Scholar]
  34. Chen J.N. Wang X.F. Li T. Wu D.W. Fu X.B. Zhang G.J. Shen X.C. Wang H.S. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur. J. Med. Chem. 2016 107 12 25 10.1016/j.ejmech.2015.10.045 26560049
    [Google Scholar]
  35. Koca İ. Özgür A. Coşkun K.A. Tutar Y. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety. Bioorg. Med. Chem. 2013 21 13 3859 3865 10.1016/j.bmc.2013.04.021 23664495
    [Google Scholar]
  36. Saeed S. Rashid N. Jones P.G. Ali M. Hussain R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 2010 45 4 1323 1331 10.1016/j.ejmech.2009.12.016 20056520
    [Google Scholar]
  37. Li H.Q. Lv P.C. Yan T. Zhu H.L. Urea derivatives as anticancer agents. Anticancer. Agents Med. Chem. 2009 9 4 471 480 10.2174/1871520610909040471 19442045
    [Google Scholar]
  38. Antoszczak M. Gadsby-Davis K. Steverding D. Huczyński A. Synthesis of urea and thiourea derivatives of C20-epi-aminosalinomycin and their activity against Trypanosoma brucei. Eur. J. Med. Chem. 2023 250 115241 10.1016/j.ejmech.2023.115241 36870272
    [Google Scholar]
  39. Czerwonka D. Barcelos Y. Steverding D. Cioch A. Huczyński A. Antoszczak M. Singly and doubly modified analogues of C20-epi-salinomycin: A new group of antiparasitic agents against Trypanosoma brucei. Eur. J. Med. Chem. 2021 209 112900 10.1016/j.ejmech.2020.112900 33071053
    [Google Scholar]
  40. Czerwonka D. Mielczarek-Puta M. Antoszczak M. Cioch A. Struga M. Huczyński A. Evaluation of the anticancer activity of singly and doubly modified analogues of C20-epi-salinomycin. Eur. J. Pharmacol. 2021 908 174347 10.1016/j.ejphar.2021.174347 34265289
    [Google Scholar]
  41. Antoszczak M. Steverding D. Sulik M. Janczak J. Huczyński A. Anti-trypanosomal activity of doubly modified salinomycin derivatives. Eur. J. Med. Chem. 2019 173 90 98 10.1016/j.ejmech.2019.03.061 30986574
    [Google Scholar]
  42. Urbaniak A. Reed M.R. Fil D. Moorjani A. Heflin S. Antoszczak M. Sulik M. Huczyński A. Kupsik M. Eoff R.L. MacNicol M.C. Chambers T.C. MacNicol A.M. Single and double modified salinomycin analogs target stem-like cells in 2D and 3D breast cancer models. Biomed. Pharmacother. 2021 141 111815 10.1016/j.biopha.2021.111815 34130123
    [Google Scholar]
  43. Kuran D. Flis S. Antoszczak M. Piskorek M. Huczyński A. Ester derivatives of salinomycin efficiently eliminate breast cancer cells via ER-stress-induced apoptosis. Eur. J. Pharmacol. 2021 893 173824 10.1016/j.ejphar.2020.173824 33347821
    [Google Scholar]
  44. Michalak M. Lach M.S. Antoszczak M. Huczyński A. Suchorska W.M. Overcoming resistance to platinum-based drugs in ovarian cancer by salinomycin and its derivatives ‒ An in vitro study. Molecules 2020 25 3 537 10.3390/molecules25030537 31991882
    [Google Scholar]
  45. Denizot F. Lang R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods 1986 89 2 271 277 10.1016/0022‑1759(86)90368‑6 3486233
    [Google Scholar]
  46. Ansa B. Coughlin S. Alema-Mensah E. Smith S. Evaluation of colorectal cancer incidence trends in the United States (2000–2014). J. Clin. Med. 2018 7 2 22 10.3390/jcm7020022 29385768
    [Google Scholar]
  47. Van Cutsem E. Oliveira J. Advanced colorectal cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol. 2009 20 Suppl. 4 iv61 iv63 10.1093/annonc/mdp130 19454465
    [Google Scholar]
  48. Littlejohns P. Tamber S. Ranson P. Campbell B. Adams A. Seymour M. Martin D. Treatment for liver metastases from colorectal cancer. Lancet Oncol. 2005 6 2 73 10.1016/S1470‑2045(05)01729‑8 15704298
    [Google Scholar]
  49. SEER Cancer Statistics Review (CSR) 1975-2015. 2018 Available from: https://seer.cancer.gov/archive/csr/1975_2015/index.html (accessed on: 2024‒04‒09)
  50. Yu S.N. Kim S.H. Kim K.Y. Ji J.H. Seo Y.K. Yu H.S. Ahn S.C. Salinomycin induces endoplasmic reticulum stress-mediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells. Oncol. Rep. 2017 37 6 3321 3328 10.3892/or.2017.5615 28498472
    [Google Scholar]
  51. Lin C.S. Liu L.T. Ou L.H. Pan S.C. Lin C.I. Wei Y.H. Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol. Rep. 2017 39 1 316 330 10.3892/or.2017.6087 29138850
    [Google Scholar]
  52. Cheng Y. Lu Y. Zhang D. Lian S. Liang H. Ye Y. Xie R. Li S. Chen J. Xue X. Xie J. Jia L. Metastatic cancer cells compensate for low energy supplies in hostile microenvironments with bioenergetic adaptation and metabolic reprogramming. Int. J. Oncol. 2018 53 6 2590 2604 10.3892/ijo.2018.4582 30280201
    [Google Scholar]
  53. Bajzikova M. Kovarova J. Coelho A.R. Boukalova S. Oh S. Rohlenova K. Svec D. Hubackova S. Endaya B. Judasova K. Bezawork-Geleta A. Kluckova K. Chatre L. Zobalova R. Novakova A. Vanova K. Ezrova Z. Maghzal G.J. Magalhaes Novais S. Olsinova M. Krobova L. An Y.J. Davidova E. Nahacka Z. Sobol M. Cunha-Oliveira T. Sandoval-Acuña C. Strnad H. Zhang T. Huynh T. Serafim T.L. Hozak P. Sardao V.A. Koopman W.J.H. Ricchetti M. Oliveira P.J. Kolar F. Kubista M. Truksa J. Dvorakova-Hortova K. Pacak K. Gurlich R. Stocker R. Zhou Y. Berridge M.V. Park S. Dong L. Rohlena J. Neuzil J. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 2019 29 2 399 416.e10 10.1016/j.cmet.2018.10.014 30449682
    [Google Scholar]
  54. Phan L.M. Yeung S.C. Lee M.H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 2014 11 1 1 19 10.7497/j.issn.2095‑3941.2014.01.001 24738035
    [Google Scholar]
  55. Niu Y. Zhou Y. Zheng H. Zhao L. Li C. Gao H. Metabonomics analysis of colorectal carcinoma cell lines SW480 and SW620 with different metastatic potentials. J Wezhou Med Univ 2019 49 243 248 10.3969/j.issn.2095‑9400.2019.04.002
    [Google Scholar]
  56. Luo F. Li J. Wu S. Wu X. Chen M. Zhong X. Liu K. Comparative profiling between primary colorectal carcinomas and metastases identifies heterogeneity on drug resistance. Oncotarget 2016 7 39 63937 63949 10.18632/oncotarget.11570 27613840
    [Google Scholar]
  57. Disoma C. Zhou Y. Li S. Peng J. Xia Z. Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie 2022 195 39 53 10.1016/j.biochi.2022.01.009 35066101
    [Google Scholar]
  58. Leiphrakpam P. Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int. J. Mol. Sci. 2024 25 6 3178 10.3390/ijms25063178 38542151
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206322603241002064435
Loading
/content/journals/acamc/10.2174/0118715206322603241002064435
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: colorectal cancer ; ROS ; Ionophores ; apoptosis ; lipid peroxidation ; cytotoxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test