Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Oral Squamous Cell Carcinoma (OSCC) is the most common cancer arising from squamous epithelium in the oral cavity and is characterized by high aggressiveness and metastatic potential, which together with a late diagnosis results in a 5-year survival rate of only 50% of patients. The therapeutic options for OSCC management are limited and largely influenced by the cancer stage. While radical surgery can be curative in early stage of disease, most cases require adjuvant therapies, including chemotherapy and radiotherapy which, however, often achieve poor curative rates and are associated with important negative effects. Therefore, there is an urgent need to discover new alternative treatment strategies to improve patients’ outcomes. Several medicinal herbs are being studied for their preventive or therapeutic effect in several diseases, including cancer. In particular, the Indian spice curcumin, largely used in oriental countries, has been studied as a chemopreventive or adjuvant agent for different malignancies. Indeed, curcumin is characterized by important biological properties, including antioxidant, anti-inflammatory, and anticancer effects, which could also be exploited in OSCC. However, due to its limited bioavailability and poor aqueous solubility, this review is focused on studies designing new synthetic analogues and developing novel types of curcumin delivery systems to improve its pharmacokinetic and biological properties. Thus, this review analyses the potential therapeutic role of curcumin in OSCC by providing an overview of current and studies demonstrating the beneficial effects of curcumin and its analogues in OSCC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206297840240510063330
2024-05-16
2025-04-02
Loading full text...

Full text loading...

References

  1. RiveraC. Essentials of oral cancer.Int. J. Clin. Exp. Pathol.201589118841189426617944
    [Google Scholar]
  2. PickeringC.R. ZhangJ. YooS.Y. BengtssonL. MoorthyS. NeskeyD.M. ZhaoM. Ortega AlvesM.V. ChangK. DrummondJ. CortezE. XieT. ZhangD. ChungW. IssaJ.P.J. Zweidler-McKayP.A. WuX. El-NaggarA.K. WeinsteinJ.N. WangJ. MuznyD.M. GibbsR.A. WheelerD.A. MyersJ.N. FrederickM.J. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers.Cancer Discov.20133777078110.1158/2159‑8290.CD‑12‑053723619168
    [Google Scholar]
  3. FatimaJ. FatimaE. MehmoodF. IshtiaqI. KhanM.A. KhurshidH.M.S. KashifM. Comprehensive analysis of oral squamous cell carcinomas: Clinical, epidemiological, and histopathological insights with a focus on prognostic factors and survival time.Cureus2024162e5439410.7759/cureus.5439438505442
    [Google Scholar]
  4. MauceriR. BazzanoM. CoppiniM. TozzoP. PanzarellaV. CampisiG. Diagnostic delay of oral squamous cell carcinoma and the fear of diagnosis: A scoping review.Front. Psychol.202213100908010.3389/fpsyg.2022.1009080
    [Google Scholar]
  5. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  6. WangJ. XieT. WangB. WilliamW.N.Jr HeymachJ.V. El-NaggarA.K. MyersJ.N. CaulinC. PD-1 blockade prevents the development and progression of carcinogen-induced oral premalignant lesions.Cancer Prev. Res.2017101268469310.1158/1940‑6207.CAPR‑17‑010829018057
    [Google Scholar]
  7. VigneswaranN. WilliamsM.D. Epidemiologic trends in head and neck cancer and aids in diagnosis.Oral Maxillofac. Surg. Clin. North Am.201426212314110.1016/j.coms.2014.01.00124794262
    [Google Scholar]
  8. YangJ. GuoK. ZhangA. ZhuY. LiW. YuJ. WangP. Survival analysis of age-related oral squamous cell carcinoma: A population study based on SEER.Eur. J. Med. Res.202328141310.1186/s40001‑023‑01345‑737814268
    [Google Scholar]
  9. KruseA.L. BredellM. GrätzK.W. Oral cancer in men and women: Are there differences?Oral Maxillofac. Surg.2011151515510.1007/s10006‑010‑0253‑621052752
    [Google Scholar]
  10. GüneriP. EpsteinJ.B. Late stage diagnosis of oral cancer: Components and possible solutions.Oral Oncol.201450121131113610.1016/j.oraloncology.2014.09.00525255960
    [Google Scholar]
  11. KowalskiL.P. CarvalhoA.L. Natural history of untreated head and neck cancer.Eur. J. Cancer20003681032103710.1016/S0959‑8049(00)00054‑X10885608
    [Google Scholar]
  12. CampagnaR. PozziV. SalvucciA. TogniL. MascittiM. SartiniD. SalvoliniE. SantarelliA. Lo MuzioL. EmanuelliM. Paraoxonase-2 expression in oral squamous cell carcinoma.Hum. Cell20233631211121310.1007/s13577‑023‑00875‑w36774414
    [Google Scholar]
  13. SarodeG. ManiyarN. SarodeS.C. JaferM. PatilS. AwanK.H. Epidemiologic aspects of oral cancer.Dis. Mon.2020661210098810.1016/j.disamonth.2020.10098832605720
    [Google Scholar]
  14. ChamoliA. GosaviA.S. ShirwadkarU.P. WangdaleK.V. BeheraS.K. KurreyN.K. KaliaK. MandoliA. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics.Oral. Oncol.202112110545110.1016/j.oraloncology.2021.105451
    [Google Scholar]
  15. CampagnaR. BelloniA. PozziV. SalvucciA. NotarstefanoV. TogniL. MascittiM. SartiniD. GiorginiE. SalvoliniE. SantarelliA. Lo MuzioL. EmanuelliM. Role played by paraoxonase-2 enzyme in cell viability, proliferation and sensitivity to chemotherapy of oral squamous cell carcinoma cell lines.Int. J. Mol. Sci.202224133810.3390/ijms2401033836613780
    [Google Scholar]
  16. WittekindtC. WagnerS. SharmaS.J. WurdemannN. KnuthJ. RederH. KlussmannJ.P. HPV : A different view on head and neck cancer.Laryngorhinootologie201897S01S48S11310.1055/s‑0043‑121596
    [Google Scholar]
  17. JavadiP. SharmaA. ZahndW.E. JenkinsW.D. Evolving disparities in the epidemiology of oral cavity and oropharyngeal cancers.Can. Caus. Cont.201728663564510.1007/s10552‑017‑0889‑828391376
    [Google Scholar]
  18. MehrotraR. GuptaD.K. Exciting new advances in oral cancer diagnosis: Avenues to early detection.Head. Neck. Oncol.201133310.1186/1758‑3284‑3‑33
    [Google Scholar]
  19. SartiniD. CampagnaR. LucariniG. PompeiV. SalvoliniE. Mattioli-BelmonteM. MolinelliE. BrisigottiV. CampanatiA. BacchettiT. FerrettiG. OffidaniA. EmanuelliM. Differential immunohistochemical expression of paraoxonase-2 in actinic keratosis and squamous cell carcinoma.Hum. Cell20213461929193110.1007/s13577‑021‑00581‑534302630
    [Google Scholar]
  20. BelcherR. HayesK. FedewaS. ChenA.Y. Current treatment of head and neck squamous cell cancer.J. Surg. Oncol.2014110555157410.1002/jso.2372425053506
    [Google Scholar]
  21. PandeyM. KannepaliK.K. DixitR. KumarM. Effect of neoadjuvant chemotherapy and its correlation with HPV status, EGFR, Her-2-neu, and GADD45 expression in oral squamous cell carcinoma.World J. Surg. Oncol.20181612010.1186/s12957‑018‑1308‑729386013
    [Google Scholar]
  22. TossettaG. FantoneS. GoteriG. GiannubiloS.R. CiavattiniA. MarzioniD. The Role of NQO1 in ovarian cancer.Int. J. Mol. Sci.2023249783910.3390/ijms2409783937175546
    [Google Scholar]
  23. CampagnaR. PozziV. GiorginiS. MorichettiD. GoteriG. SartiniD. SerritelliE.N. EmanuelliM. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance.Hum. Cell20233631108111910.1007/s13577‑023‑00892‑936897549
    [Google Scholar]
  24. TossettaG. Metformin improves ovarian cancer sensitivity to paclitaxel and platinum-based drugs: A review of in vitro findings.Int. J. Mol. Sci.202223211289310.3390/ijms23211289336361682
    [Google Scholar]
  25. TossettaG. MarzioniD. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers.Eur. J. Pharmacol.202394117550310.1016/j.ejphar.2023.175503
    [Google Scholar]
  26. SchombergJ. Identification of targetable pathways in oral cancer patients via random forest and chemical informatics.Cancer Inform.201928117693511988991110.1177/1176935119889911
    [Google Scholar]
  27. HuangS.H. O SullivanB. Oral cancer: Current role of radiotherapy and chemotherapy.Med. Oral Patol. Oral Cir. Bucal2013182e233e24010.4317/medoral.1877223385513
    [Google Scholar]
  28. WilkenR. VeenaM.S. WangM.B. SrivatsanE.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma.Mol. Cancer.2011101210.1186/1476‑4598‑10‑12
    [Google Scholar]
  29. AlsharairiN.A. Quercetin derivatives as potential therapeutic agents: An updated perspective on the treatment of nicotine-induced non-small cell lung cancer.Int. J. Mol. Sci.202324201520810.3390/ijms24201520837894889
    [Google Scholar]
  30. TossettaG. FantoneS. GesuitaR. GoteriG. SenzacquaM. MarcheggianiF. TianoL. MarzioniD. MazzucchelliR. Ciliary neurotrophic factor modulates multiple downstream signaling pathways in prostate cancer inhibiting cell invasiveness.Cancers20221423591710.3390/cancers1423591736497399
    [Google Scholar]
  31. GuoY. LiZ. ChenF. ChaiY. Polyphenols in oral health: Homeostasis maintenance, disease prevention, and therapeutic applications.Nutrients20231520438410.3390/nu1520438437892459
    [Google Scholar]
  32. TossettaG. FantoneS. LiciniC. MarzioniD. Mattioli-BelmonteM. The multifaced role of HtrA1 in the development of joint and skeletal disorders.Bone202215711635010.1016/j.bone.2022.116350
    [Google Scholar]
  33. TossettaG. MarzioniD. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway.Pharmacol. Res.202218310636510.1016/j.phrs.2022.106365
    [Google Scholar]
  34. BakunP. MlynarczykD.T. KoczorowskiT. Cerbin-KoczorowskaM. PiwowarczykL. KolasinskiE. StawnyM. KuzminskaJ. JelinskaA. GoslinskiT. Tea-break with epigallocatechin gallate derivatives : Powerful polyphenols of great potential for medicine.Eur. J. Med. Chem.202326111582010.1016/j.ejmech.2023.115820
    [Google Scholar]
  35. NiedzwieckiA. RoomiM. KalinovskyT. RathM. Anticancer efficacy of polyphenols and their combinations.Nutrients20168955210.3390/nu809055227618095
    [Google Scholar]
  36. KothaR.R. LuthriaD.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects.Molecules20192416293010.3390/molecules2416293031412624
    [Google Scholar]
  37. YuandaniI. RohaniA.S. SumantriI.B. Immunomodulatory effects and mechanisms of Curcuma Species and their bioactive compounds: A review.Front. Pharmacol.20211264311910.3389/fphar.2021.643119
    [Google Scholar]
  38. Sutarsi JatiP.T. WiradiestiaD. AltwayA. WinardiS. Wahyudiono MachmudahS. Extraction process optimization of curcumin from Curcuma xanthorrhiza Roxb. with supercritical carbon dioxide using ethanol as a cosolvent.ACS Omega2024911251126410.1021/acsomega.3c0749738239285
    [Google Scholar]
  39. CaiJ. QiaoY. ChenL. LuY. ZhengD. Regulation of the notch signaling pathway by natural products for cancer therapy.J. Nutr. Biochem.202310948310.1016/j.jnutbio.2023.10948337848105
    [Google Scholar]
  40. MundekkadD. ChoW.C. Applications of curcumin and its nanoforms in the treatment of cancer.Pharmaceutics2023159222310.3390/pharmaceutics1509222337765192
    [Google Scholar]
  41. ZhuX. QuanY.Y. YinZ.J. LiM. WangT. ZhengL.Y. FengS.Q. ZhaoJ.N. LiL. Sources, morphology, phytochemistry, pharmacology of Curcumae Longae Rhizoma, Curcumae Radix, and Curcumae Rhizoma : A review of the literature.Front. Pharmacol.202314122996310.3389/fphar.2023.1229963
    [Google Scholar]
  42. TossettaG. FantoneS. GiannubiloS.R. MarzioniD. The multifaced actions of curcumin in pregnancy outcome.Antioxidants202110112610.3390/antiox1001012633477354
    [Google Scholar]
  43. PassosC.L.A. PolinatiR.M. FerreiraC. dos SantosN.A.N. LimaD.G.V. da SilvaJ.L. FialhoE. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells.Sci. Rep.20231311344610.1038/s41598‑023‑40535‑537596331
    [Google Scholar]
  44. IwealaE.J. OluwapelumiA.E. DaniaO.E. UgboguE.A. Bioactive phytoconstituents and their therapeutic potentials in the treatment of haematological cancers: A review.Life2023137142210.3390/life1307142237511797
    [Google Scholar]
  45. LuthraP.M. LalN. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.Eur. J. Med. Chem.2016109233510.1016/j.ejmech.2015.11.049
    [Google Scholar]
  46. NelsonK.M. DahlinJ.L. BissonJ. GrahamJ. PauliG.F. WaltersM.A. The essential medicinal chemistry of curcumin.J. Med. Chem.20176051620163710.1021/acs.jmedchem.6b0097528074653
    [Google Scholar]
  47. MingT. TaoQ. TangS. ZhaoH. YangH. LiuM. RenS. XuH. Curcumin: An epigenetic regulator and its application in cancer.Biomed. Pharmacother.202215611395610.1016/j.biopha.2022.113956
    [Google Scholar]
  48. MoetlediwaM.T. RamashiaR. PheifferC. TitinchiS.J.J. Mazibuko-MbejeS.E. JackB.U. Therapeutic effects of curcumin derivatives against obesity and associated metabolic complications: A Review of in vitro and in vivo Studies.Int. J. Mol. Sci.202324181436610.3390/ijms24181436637762669
    [Google Scholar]
  49. PerroneD. ArditoF. GiannatempoG. DioguardiM. TroianoG. Lo RussoL. De LilloA. LainoL. Lo MuzioL. Biological and therapeutic activities, and anticancer properties of curcumin.Exp. Ther. Med.20151051615162310.3892/etm.2015.274926640527
    [Google Scholar]
  50. GoelA. KunnumakkaraA.B. AggarwalB.B. Curcumin as “Curecumin”: From kitchen to clinic.Biochem. Pharmacol.200875478780910.1016/j.bcp.2007.08.01617900536
    [Google Scholar]
  51. XuC. WangM. GuoW. SunW. LiuY. Curcumin in osteosarcoma therapy: Combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy.Front. Oncol.20211167249010.3389/fonc.2021.672490
    [Google Scholar]
  52. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  53. TossettaG. FantoneS. MontanariE. MarzioniD. GoteriG. Role of NRF2 in ovarian cancer.Antioxidants202211466310.3390/antiox1104066335453348
    [Google Scholar]
  54. TossettaG. FantoneS. MarzioniD. MazzucchelliR. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.Cancers20231511303710.3390/cancers1511303737296999
    [Google Scholar]
  55. EmanuelliM. SartiniD. MolinelliE. CampagnaR. PozziV. SalvoliniE. SimonettiO. CampanatiA. OffidaniA. The double-edged sword of oxidative stress in skin damage and melanoma: From physiopathology to therapeutical approaches.Antioxidants202211461210.3390/antiox1104061235453297
    [Google Scholar]
  56. CampagnaR. MateuszukŁ. Wojnar-LasonK. KaczaraP. TworzydłoA. KijA. BujokR. MlynarskiJ. WangY. SartiniD. EmanuelliM. ChlopickiS. Nicotinamide N-methyltransferase in endothelium protects against oxidant stress-induced endothelial injury.Biochim. Biophys. Acta Mol. Cell Res.202118681011908210.1016/j.bbamcr.2021.11908234153425
    [Google Scholar]
  57. MourtasS. LazarA.N. MarkoutsaE. DuyckaertsC. AntimisiarisS.G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease.Eur. J. Med. Chem.20148017518310.1016/j.ejmech.2014.04.050
    [Google Scholar]
  58. MotterliniR. ForestiR. BassiR. GreenC.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress.Free Radic. Biol. Med.20002881303131210.1016/S0891‑5849(00)00294‑X10889462
    [Google Scholar]
  59. LinX. BaiD. WeiZ. ZhangY. HuangY. DengH. HuangX. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway.PLoS One2019145e021671110.1371/journal.pone.021671131112588
    [Google Scholar]
  60. SunM. LiuN. SunJ. LiX. WangH. ZhangW. XieQ. WangM. Curcumin regulates anti-inflammatory responses by AXL/JAK2/STAT3 signaling pathway in experimental autoimmune encephalomyelitis.Neurosci. Lett.202278713682110.1016/j.neulet.2022.136821
    [Google Scholar]
  61. AggarwalS. TakadaY. SinghS. MyersJ.N. AggarwalB.B. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor‐κB signaling.Int. J. Cancer2004111567969210.1002/ijc.2033315252836
    [Google Scholar]
  62. ZhouH. BeeversC.S. HuangS. The targets of curcumin.Curr. Drug Targets201112333234710.2174/13894501179481535620955148
    [Google Scholar]
  63. KuhadA. ChopraK. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences.Eur. J. Pharmacol.20075761-3344210.1016/j.ejphar.2007.08.00117822693
    [Google Scholar]
  64. SubbaramaiahK. DannenbergA.J. Cyclooxygenase 2: A molecular target for cancer prevention and treatment.Trends Pharmacol. Sci.20032429610210.1016/S0165‑6147(02)00043‑312559775
    [Google Scholar]
  65. BesasieB.D. SahaA. DiGiovanniJ. LissM.A. Effects of curcumin and ursolic acid in prostate cancer: A systematic review.Urologia20239119010610.1177/0391560323120230437776274
    [Google Scholar]
  66. MarzioniD. MazzucchelliR. FantoneS. TossettaG. NRF2 modulation in TRAMP mice: An in vivo model of prostate cancer.Mol. Biol. Rep.202250187388110.1007/s11033‑022‑08052‑236335520
    [Google Scholar]
  67. SaharkhizS. ZarepourA. NasriN. CordaniM. ZarrabiA. A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy.Eur. J. Pharm. Sci.202350119119210.1016/j.ejps.2023.106600
    [Google Scholar]
  68. LiuE. WuJ. CaoW. ZhangJ. LiuW. JiangX. ZhangX. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma.J. Neurooncol.200785326327010.1007/s11060‑007‑9421‑417594054
    [Google Scholar]
  69. RinaldiA.L. MorseM.A. FieldsH.W. RothasD.A. PeiP. RodrigoK.A. RennerR.J. MalleryS.R. Curcumin activates the aryl hydrocarbon receptor yet significantly inhibits (-)-benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivation in oral squamous cell carcinoma cells and oral mucosa.Cancer Res.200262195451545612359752
    [Google Scholar]
  70. ChenA. XuJ. Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR.Am. J. Physiol. Gastrointest. Liver Physiol.20052883G447G45610.1152/ajpgi.00209.200415486348
    [Google Scholar]
  71. KhojasteE. AhmadizadehC. Catechin metabolites along with curcumin inhibit proliferation and induce apoptosis in cervical cancer cells by regulating VEGF expression In-vitro.Nutr. Cancer20227431048105710.1080/01635581.2021.193608234121550
    [Google Scholar]
  72. BaeJ.H. ParkJ.W. KwonT.K. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release.Biochem. Biophys. Res. Commun.200330341073107910.1016/S0006‑291X(03)00479‑012684045
    [Google Scholar]
  73. MemarziaA. KhazdairM.R. BehrouzS. GholamnezhadZ. JafarnezhadM. SaadatS. BoskabadyM.H. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review.Biofactors202147331135010.1002/biof.171633606322
    [Google Scholar]
  74. JiangM. GanY. LiY. QiY. ZhouZ. FangX. JiaoJ. HanX. GaoW. ZhaoJ. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review.Int. J. Biol. Macromol.2023254012615310.1016/j.ijbiomac.2023.126153
    [Google Scholar]
  75. LaoC.D. RuffinM.T.t. NormolleD. HeathD.D. MurrayS.I. BaileyJ.M. BoggsM.E. CrowellJ. RockC.L. BrennerD.E. Dose escalation of a curcuminoid formulation.BMC Complement. Altern. Med.200661010.1186/1472‑6882‑6‑10
    [Google Scholar]
  76. TabanelliR. BrogiS. CalderoneV. Improving curcumin bioavailability: Current strategies and future perspectives.Pharmaceutics20211310171510.3390/pharmaceutics1310171534684008
    [Google Scholar]
  77. Abd El-HackM.E. El-SaadonyM.T. SwelumA.A. ArifM. Abo GhanimaM.M. ShukryM. NoreldinA. TahaA.E. El-TarabilyK.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability.J. Sci. Food Agric.2021101145747576210.1002/jsfa.1137234143894
    [Google Scholar]
  78. HsuK.Y. HoC.T. PanM.H. The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies.Yao Wu Shi Pin Fen Xi202331219421110.38212/2224‑6614.345437335161
    [Google Scholar]
  79. HeY. YueY. ZhengX. ZhangK. ChenS. DuZ. Curcumin, inflammation, and chronic diseases: How are they linked?Molecules20152059183921310.3390/molecules2005918326007179
    [Google Scholar]
  80. PengY. AoM. DongB. JiangY. YuL. ChenZ. HuC. XuR. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures.Drug. Des. Devel. Ther.2021154503452510.2147/DDDT.S327378
    [Google Scholar]
  81. PivariF. MingioneA. BrasacchioC. SoldatiL. Curcumin and type 2 diabetes mellitus: Prevention and treatment.Nutrients2019118183710.3390/nu1108183731398884
    [Google Scholar]
  82. ManghaniC. GuptaA. TripathiV. RaniV. Cardioprotective potential of curcumin against norepinephrine‐induced cell death: A microscopic study.J. Microsc.2017265223224410.1111/jmi.1249227779739
    [Google Scholar]
  83. AbadiA.J. MirzaeiS. MahabadyM.K. HashemiF. ZabolianA. HashemiF. RaeeP. AghamiriS. AshrafizadehM. ArefA.R. HamblinM.R. HushmandiK. ZarrabiA. SethiG. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects.Phytother. Res.202236118921310.1002/ptr.730534697839
    [Google Scholar]
  84. JurenkaJ.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research.Altern. Med. Rev.200914214115319594223
    [Google Scholar]
  85. PlummerS.M. HollowayK.A. MansonM.M. MunksR.J.L. KapteinA. FarrowS. HowellsL. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex.Oncogene199918446013602010.1038/sj.onc.120298010557090
    [Google Scholar]
  86. TerminiD. Den HartoghD.J. JaglanianA. TsianiE. Curcumin against prostate cancer: Current evidence.Biomolecules20201011153610.3390/biom1011153633182828
    [Google Scholar]
  87. Wan Mohd TajuddinW.N.B. LajisN.H. AbasF. OthmanI. NaiduR. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer.Nutrients20191112298910.3390/nu1112298931817718
    [Google Scholar]
  88. HuC. LiM. GuoT. WangS. HuangW. YangK. LiaoZ. WangJ. ZhangF. WangH. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT.Phytomedicine20195815274010.1016/j.phymed.2018.11.001
    [Google Scholar]
  89. NagarajuG.P. BentonL. BethiS.R. ShojiM. El-RayesB.F. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis.Int. J. Cancer20191451101910.1002/ijc.3186730226272
    [Google Scholar]
  90. AlmalkiZ. AlgregriM. AlhosinM. AlkhaledM. DamiatiS. ZamzamiM.A. In vitro cytotoxicity of curcuminoids against head and neck cancer HNO97 cell line.Braz. J. Biol.202183e248708
    [Google Scholar]
  91. ZhouH. NingY. ZengG. ZhouC. DingX. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT.Oncol. Rep.20214541110.3892/or.2021.796233649826
    [Google Scholar]
  92. SandurS.K. PandeyM.K. SungB. AhnK.S. MurakamiA. SethiG. LimtrakulP. BadmaevV. AggarwalB.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism.Carcinogenesis20072881765177310.1093/carcin/bgm12317522064
    [Google Scholar]
  93. SimonA. AllaisD.P. DurouxJ.L. BaslyJ.P. Durand-FontanierS. DelageC. Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure–activity relationships.Cancer Lett.1998129111111610.1016/S0304‑3835(98)00092‑59714342
    [Google Scholar]
  94. ChearwaeW. AnuchapreedaS. NandigamaK. AmbudkarS.V. LimtrakulP. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder.Biochem. Pharmacol.200468102043205210.1016/j.bcp.2004.07.00915476675
    [Google Scholar]
  95. BontéF. Noel-HudsonM.S. WepierreJ. MeybeckA. Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress.Planta Med.199763326526610.1055/s‑2006‑9576699225611
    [Google Scholar]
  96. AnandP. ThomasS.G. KunnumakkaraA.B. SundaramC. HarikumarK.B. SungB. TharakanS.T. MisraK. PriyadarsiniI.K. RajasekharanK.N. AggarwalB.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature.Biochem. Pharmacol.200876111590161110.1016/j.bcp.2008.08.00818775680
    [Google Scholar]
  97. NoureddinS.A. El-ShishtawyR.M. Al-FootyK.O. Curcumin analogues and their hybrid molecules as multifunctional drugs.Eur. J. Med. Chem.201918211163110.1016/j.ejmech.2019.111631
    [Google Scholar]
  98. ZhaoC. ZhouX. CaoZ. YeL. CaoY. PanJ. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms.Phytomedicine202311915498610.1016/j.phymed.2023.154986
    [Google Scholar]
  99. TomehM. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms2005103330818786
    [Google Scholar]
  100. LuK.H. LuP.W.A. LuE.W.H. LinC.W. YangS.F. Curcumin and its analogs and carriers: Potential therapeutic strategies for human osteosarcoma.Int. J. Biol. Sci.20231941241126510.7150/ijbs.8059036923933
    [Google Scholar]
  101. DendeC. MeenaJ. NagarajanP. NagarajV.A. PandaA.K. PadmanabanG. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria.Sci. Rep.2017711006210.1038/s41598‑017‑10672‑928855623
    [Google Scholar]
  102. AmanoC. MinematsuH. FujitaK. IwashitaS. AdachiM. IgarashiK. HinumaS. Nanoparticles containing curcumin useful for suppressing macrophages in vivo in mice.PLoS One2015109e013720710.1371/journal.pone.013720726361331
    [Google Scholar]
  103. LeeW.H. LooC.Y. YoungP.M. TrainiD. MasonR.S. RohanizadehR. Recent advances in curcumin nanoformulation for cancer therapy.Expert Opin. Drug Deliv.20141181183120110.1517/17425247.2014.91668624857605
    [Google Scholar]
  104. MangalathillamS. RejinoldN.S. NairA. LakshmananV.K. NairS.V. JayakumarR. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route.Nanoscale20124123925010.1039/C1NR11271F22080352
    [Google Scholar]
  105. HatefiA. AmsdenB. Biodegradable injectable in situ forming drug delivery systems.J. Control. Release2002801-392810.1016/S0168‑3659(02)00008‑111943384
    [Google Scholar]
  106. AltunbasA. LeeS.J. RajasekaranS.A. SchneiderJ.P. PochanD.J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles.Biomaterials201132255906591410.1016/j.biomaterials.2011.04.06921601921
    [Google Scholar]
  107. LomisN. WestfallS. FarahdelL. MalhotraM. Shum-TimD. PrakashS. Human serum albumin nanoparticles for use in cancer drug delivery: Process optimization and in vitro characterization.Nanomaterials20166611610.3390/nano606011628335244
    [Google Scholar]
  108. SongW. MuthanaM. MukherjeeJ. FalconerR.J. BiggsC.A. ZhaoX. Magnetic-silk core–shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells.ACS Biomater. Sci. Eng.2017361027103810.1021/acsbiomaterials.7b0015333429579
    [Google Scholar]
  109. YallapuM.M. JaggiM. ChauhanS.C. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells.Colloids Surf. B Biointerfaces201079111312510.1016/j.colsurfb.2010.03.03920456930
    [Google Scholar]
  110. BanoN. YadavM. DasB.C. Differential inhibitory effects of curcumin between HPV+ve and HPV-ve Oral cancer stem cells.Front Oncol2018841210.3389/fonc.2018.00412
    [Google Scholar]
  111. MishraA. KumarR. TyagiA. KohaarI. HedauS. BhartiA.C. SarkerS. DeyD. SalujaD. DasB. Curcumin modulates cellular AP-1, NF-κB, and HPV16 E6 proteins in oral cancer.Ecancer. Med. Sci.2015952510.3332/ecancer.2015.525
    [Google Scholar]
  112. PozziV. SalvoliniE. LucariniG. SalvucciA. CampagnaR. RubiniC. SartiniD. EmanuelliM. Cancer stem cell enrichment is associated with enhancement of nicotinamide N‐methyltransferase expression.IUBMB Life20207271415142510.1002/iub.226532150326
    [Google Scholar]
  113. PajonkF. VlashiE. McBrideW.H. Radiation resistance of cancer stem cells: The 4 R’s of radiobiology revisited.Stem Cells201028463964810.1002/stem.31820135685
    [Google Scholar]
  114. LiuC. KelnarK. LiuB. ChenX. Calhoun-DavisT. LiH. PatrawalaL. YanH. JeterC. HonorioS. WigginsJ.F. BaderA.G. FaginR. BrownD. TangD.G. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.Nat. Med.201117221121510.1038/nm.228421240262
    [Google Scholar]
  115. LelliD. PedoneC. MajeedM. SahebkarA. Curcumin and lung cancer: The role of microRNAs.Curr. Pharm. Des.201723233440344410.2174/138161282366617010914481828067164
    [Google Scholar]
  116. AlamM. KashyapT. PramanikK.K. SinghA.K. NaginiS. MishraR. The elevated activation of NFκB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance.Clin. Oral Investig.20172192721273110.1007/s00784‑017‑2074‑628233171
    [Google Scholar]
  117. LiuT. LongT. LiH. Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway.Exp. Ther. Med.202121320210.3892/etm.2021.963533500696
    [Google Scholar]
  118. HungC.M. SuY.H. LinH.Y. LinJ.N. LiuL.C. HoC.T. WayT.D. Demethoxycurcumin modulates prostate cancer cell proliferation via AMPK-induced down-regulation of HSP70 and EGFR.J. Agric. Food Chem.201260348427843410.1021/jf302754w22849866
    [Google Scholar]
  119. WuJ. PatmoreD.M. JousmaE. EavesD.W. BrevingK. PatelA.V. SchwartzE.B. FuchsJ.R. CripeT.P. Stemmer-RachamimovA.O. RatnerN. EGFR–STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors.Oncogene201433217318010.1038/onc.2012.57923318430
    [Google Scholar]
  120. ZhenL. FanD. YiX. CaoX. ChenD. WangL. Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways.Int. J. Clin. Exp. Pathol.20147106438644625400722
    [Google Scholar]
  121. ThieryJ.P. AcloqueH. HuangR.Y.J. NietoM.A. Epithelial-mesenchymal transitions in development and disease.Cell2009139587189010.1016/j.cell.2009.11.00719945376
    [Google Scholar]
  122. IwatsukiM. MimoriK. YokoboriT. IshiH. BeppuT. NakamoriS. BabaH. MoriM. Epithelial–mesenchymal transition in cancer development and its clinical significance.Cancer Sci.2010101229329910.1111/j.1349‑7006.2009.01419.x19961486
    [Google Scholar]
  123. LeeA.Y.L. FanC.C. ChenY.A. ChengC.W. SungY.J. HsuC.P. KaoT.Y. Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway.Integr. Cancer Ther.201514548449010.1177/153473541558893026036622
    [Google Scholar]
  124. TossettaG. FantoneS. GiannubiloS.R. Marinelli BusilacchiE. CiavattiniA. CastellucciM. Di SimoneN. Mattioli-BelmonteM. MarzioniD. Pre‐eclampsia onset and SPARC: A possible involvement in placenta development.J. Cell. Physiol.201923456091609810.1002/jcp.2734430426491
    [Google Scholar]
  125. SarrandJ. SoyfooM.S. Involvement of epithelial-mesenchymal transition (EMT) in autoimmune diseases.Int. J. Mol. Sci.202324191448110.3390/ijms24191448137833928
    [Google Scholar]
  126. AkhurstR.J. From shape shifting embryonic cells to oncology: The fascinating history of epithelial mesenchymal transition.Semin. Cancer. Biol.20239610011410.1016/j.semcancer.2023.10.003
    [Google Scholar]
  127. AcloqueH. AdamsM.S. FishwickK. Bronner-FraserM. NietoM.A. Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease.J. Clin. Invest.200911961438144910.1172/JCI3801919487820
    [Google Scholar]
  128. ThieryJ.P. Epithelial–mesenchymal transitions in tumour progression.Nat. Rev. Cancer20022644245410.1038/nrc82212189386
    [Google Scholar]
  129. KrisanaprakornkitS. IamaroonA. Epithelial-mesenchymal transition in oral squamous cell carcinoma.ISRN Oncol.2012201268146910.5402/2012/681469
    [Google Scholar]
  130. CampagnaR. CecatiM. PozziV. FumarolaS. PompeiV. MilaneseG. GalosiA.B. SartiniD. EmanuelliM. Involvement of transforming growth factor beta 1 in the transcriptional regulation of nicotinamide N-methyltransferase in clear cell renal cell carcinoma.Cell. Mol. Biol.2018647515510.14715/cmb/2018.64.7.929974846
    [Google Scholar]
  131. HuangX. GanG. WangX. XuT. XieW. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance.Autophagy20191571258127910.1080/15548627.2019.158010530786811
    [Google Scholar]
  132. OhnishiY. SakamotoT. ZhengguangL. YasuiH. HamadaH. KuboH. NakajimaM. Curcumin inhibits epithelial‑mesenchymal transition in oral cancer cells via c‑Met blockade.Oncol. Lett.20201964177418210.3892/ol.2020.1152332391111
    [Google Scholar]
  133. ChenH.W. HuangH.C. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells.Br. J. Pharmacol.199812461029104010.1038/sj.bjp.07019149720770
    [Google Scholar]
  134. SahinK. OrhanC. TuzcuM. SahinN. TastanH. Özercanİ.H. GülerO. KahramanN. KucukO. OzpolatB. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model.Cancer Prev. Res.2018111596710.1158/1940‑6207.CAPR‑16‑028929089332
    [Google Scholar]
  135. Díaz OstermanC.J. GondaA. StiffT. SigaranU. Asuncion ValenzuelaM.M. Ferguson BennitH.R. MoyronR.B. KhanS. WallN.R. Curcumin induces pancreatic adenocarcinoma cell death via reduction of the inhibitors of apoptosis.Pancreas201645110110910.1097/MPA.000000000000041126348467
    [Google Scholar]
  136. ChienM.H. YangW.E. YangY.C. KuC.C. LeeW.J. TsaiM.Y. LinC.W. YangS.F. Dual targeting of the p38 MAPK-HO-1 Axis and cIAP1/XIAP by demethoxycurcumin triggers caspase-mediated apoptotic cell death in oral squamous cell carcinoma cells.Cancers202012370310.3390/cancers1203070332188144
    [Google Scholar]
  137. QiS. MogiS. TsudaH. TanakaY. KozakiK. ImotoI. InazawaJ. HasegawaS. OmuraK. Expression of cIAP-1 correlates with nodal metastasis in squamous cell carcinoma of the tongue.Int. J. Oral Maxillofac. Surg.200837111047105310.1016/j.ijom.2008.06.00418621506
    [Google Scholar]
  138. NagataM. NakayamaH. TanakaT. YoshidaR. YoshitakeY. FukumaD. KawaharaK. NakagawaY. OtaK. HirakiA. ShinoharaM. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma.Br. J. Cancer201110591322133010.1038/bjc.2011.38721952624
    [Google Scholar]
  139. TanakaT. NakayamaH. YoshitakeY. IrieA. NagataM. KawaharaK. TakamuneY. YoshidaR. NakagawaY. OgiH. ShinrikiS. OtaK. HirakiA. IkebeT. NishimuraY. ShinoharaM. Selective inhibition of nuclear factor‐κB by nuclear factor‐κB essential modulator‐binding domain peptide suppresses the metastasis of highly metastatic oral squamous cell carcinoma.Cancer Sci.2012103345546310.1111/j.1349‑7006.2011.02174.x22136381
    [Google Scholar]
  140. TanimotoT. TsudaH. ImazekiN. OhnoY. ImotoI. InazawaJ. MatsubaraO. Nuclear expression of cIAP-1, an apoptosis inhibiting protein, predicts lymph node metastasis and poor patient prognosis in head and neck squamous cell carcinomas.Cancer Lett.2005224114115110.1016/j.canlet.2004.11.04915911110
    [Google Scholar]
  141. YanagawaT. OmuraK. HaradaH. NakasoK. IwasaS. KoyamaY. OnizawaK. YusaH. YoshidaH. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas.Oral Oncol.2004401212710.1016/S1368‑8375(03)00128‑314662411
    [Google Scholar]
  142. MarkopoulosA.K. Current aspects on oral squamous cell carcinoma.Open Dent J.2012612613010.2174/1874210601206010126
    [Google Scholar]
  143. TanakaT. IshigamoriR. Understanding carcinogenesis for fighting oral cancer.J. Oncol.2011201160374010.1155/2011/603740
    [Google Scholar]
  144. MaulinaT. WidayantiR. HardiantoA. SjamsudinE. PontjoB. YusufH.Y. The usage of curcumin as chemopreventive agent for oral squamous cell carcinoma: An experimental study on sprague-dawley rat.Integr Cancer Ther20192019153473541882209410.1177/1534735418822094
    [Google Scholar]
  145. HsiehM.T. ChangL.C. HungH.Y. LinH.Y. ShihM.H. TsaiC.H. KuoS.C. LeeK.H. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo.Eur J Med Chem201713114115110.1016/j.ejmech.2017.03.006
    [Google Scholar]
  146. ChiuY.J. TsaiF.J. BauD.T. ChangL.C. HsiehM.T. LuC.C. KuoS.C. YangJ.S. Next‑generation sequencing analysis reveals that MTH‑3, a novel curcuminoid derivative, suppresses the invasion of MDA‑MB‑231 triple‑negative breast adenocarcinoma cells.Oncol. Rep.202146113310.3892/or.2021.808434013378
    [Google Scholar]
  147. TsaiS.C. YangJ.S. LuC.C. TsaiF.J. ChiuY.J. KuoS.C. MTH-3 sensitizes oral cancer cells to cisplatin via regulating TFEB.J. Pharm. Pharmacol.20227491261127310.1093/jpp/rgac05635880728
    [Google Scholar]
  148. SelvendiranK. AhmedS. DaytonA. KuppusamyM.L. RiveraB.K. KálaiT. HidegK. KuppusamyP. HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition.Cancer Biol. Ther.201112983784510.4161/cbt.12.9.1771321885917
    [Google Scholar]
  149. DaytonA. SelvendiranK. KuppusamyM.L. RiveraB.K. MeduruS. KálaiT. HidegK. KuppusamyP. Cellular uptake, retention and bioabsorption of HO-3867, a fluorinated curcumin analog with potential antitumor properties.Cancer Biol. Ther.201010101027103210.4161/cbt.10.10.1325020798598
    [Google Scholar]
  150. MadanE. ParkerT.M. BauerM.R. DhimanA. PelhamC.J. NaganeM. KuppusamyM.L. HolmesM. HolmesT.R. ShaikK. SheeK. KiparoidzeS. SmithS.D. ParkY.S.A. GommJ.J. JonesL.J. TomásA.R. CunhaA.C. SelvendiranK. HansenL.A. FershtA.R. HidegK. GognaR. KuppusamyP. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53.J. Biol. Chem.2018293124262427610.1074/jbc.RA117.00095029382728
    [Google Scholar]
  151. ChenC.W. HsiehM.J. JuP.C. HsiehY.H. SuC.W. ChenY.L. YangS.F. LinC.W. Curcumin analog HO‐3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells.J. Cell. Mol. Med.20222682273228410.1111/jcmm.1724835191177
    [Google Scholar]
  152. HeY. LiW. HuG. SunH. KongQ. Bioactivities of EF24, a novel curcumin analog: A review.Front Oncol2018861410.3389/fonc.2018.00614
    [Google Scholar]
  153. HoffmannM. Saleh-EbrahimiL. ZwickerF. HaeringP. SchwahoferA. DebusJ. HuberP.E. RoederF. Long term results of postoperative Intensity-Modulated Radiation Therapy (IMRT) in the treatment of Squamous Cell Carcinoma (SCC) located in the oropharynx or oral cavity.Radiat. Oncol.20151045110.1186/s13014‑015‑0561‑y
    [Google Scholar]
  154. SantabarbaraG. MaioneP. RossiA. GridelliC. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy.Expert Opin. Pharmacother.201617456157010.1517/14656566.2016.112275726581586
    [Google Scholar]
  155. KimC.D. ChaJ.D. LiS. ChaI.H. The mechanism of acacetin-induced apoptosis on oral squamous cell carcinoma.Arch. Oral Biol.20156091283129810.1016/j.archoralbio.2015.05.00926099663
    [Google Scholar]
  156. IwayamaH. SakamotoT. NawaA. UedaN. Crosstalk between smad and mitogen-activated protein kinases for the regulation of apoptosis in cyclosporine a induced renal tubular injury.Nephron Extra20111117818910.1159/00033301422470391
    [Google Scholar]
  157. LinC. TuC. MaY. YeP. ShaoX. YangZ. FangY. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma.Mol. Med. Rep.20171644927493310.3892/mmr.2017.718928791378
    [Google Scholar]
  158. ShimazuK. InoueM. SugiyamaS. FukudaK. YoshidaT. TaguchiD. UeharaY. KuriyamaS. TanakaM. MiuraM. NanjyoH. IwabuchiY. ShibataH. Curcumin analog, GO ‐Y078, overcomes resistance to tumor angiogenesis inhibitors.Cancer Sci.2018109103285329310.1111/cas.1374130024080
    [Google Scholar]
  159. ChienM.H. ShihP.C. DingY.F. ChenL.H. HsiehF.K. TsaiM.Y. LiP.Y. LinC.W. YangS.F. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity.Expert Opin. Ther. Targets202226437538810.1080/14728222.2022.206134935361044
    [Google Scholar]
  160. LinL. DeangelisS. FoustE. FuchsJ. LiC. LiP.K. SchwartzE.B. LesinskiG.B. BensonD. LuJ. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells.Mol. Cancer2010921710.1186/1476‑4598‑9‑217
    [Google Scholar]
  161. LinL. HutzenB. ZuoM. BallS. DeangelisS. FoustE. PanditB. IhnatM.A. ShenoyS.S. KulpS. LiP.K. LiC. FuchsJ. LinJ. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells.Cancer Res.20107062445245410.1158/0008‑5472.CAN‑09‑246820215512
    [Google Scholar]
  162. JahangiriA. DadmaneshM. GhorbanK. STAT3 inhibition reduced PD‐L1 expression and enhanced antitumor immune responses.J. Cell. Physiol.2020235129457946310.1002/jcp.2975032401358
    [Google Scholar]
  163. SuC.W. ChuangC.Y. ChenY.T. YangW.E. PanY.P. LinC.W. YangS.F. FLLL32 triggers caspase-mediated apoptotic cell death in human oral cancer cells by regulating the p38 pathway.Int. J. Mol. Sci.202122211186010.3390/ijms22211186034769290
    [Google Scholar]
  164. YadavV.R. SahooK. AwasthiV. Preclinical evaluation of 4‐[3,5‐bis(2‐chlorobenzylidene)‐4‐oxo‐piperidine‐1‐yl]‐4‐oxo‐2‐butenoic acid, in a mouse model of lung cancer xenograft.Br. J. Pharmacol.201317071436144810.1111/bph.1240624102070
    [Google Scholar]
  165. YangJ.S. LinR.C. HsiehY.H. WuH.H. LiG.C. LinY.C. YangS.F. LuK.H. CLEFMA activates the extrinsic and intrinsic apoptotic processes through JNK1/2 and p38 pathways in human osteosarcoma cells.Molecules20192418328010.3390/molecules2418328031505816
    [Google Scholar]
  166. ChenP.N. LinC.W. YangS.F. ChangY.C. CLEFMA induces the apoptosis of oral squamous carcinoma cells through the regulation of the P38/HO-1 signalling pathway.Cancers20221422551910.3390/cancers1422551936428612
    [Google Scholar]
  167. MaZ. WangN. HeH. TangX. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application.J. Control Release201931635938010.1016/j.jconrel.2019.10.053
    [Google Scholar]
  168. HingerD. NavarroF. KächA. ThomannJ.S. MittlerF. CouffinA.C. MaakeC. Photoinduced effects of m-tetrahydroxyphenylchlorin loaded lipid nanoemulsions on multicellular tumor spheroids.J. Nanobiotechnol.20161416810.1186/s12951‑016‑0221‑x27604187
    [Google Scholar]
  169. GonçalvesR.F.S. MartinsJ.T. AbrunhosaL. VicenteA.A. PinheiroA.C. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: Effect of emulsifier type.Nanomaterials202111381510.3390/nano1103081533806777
    [Google Scholar]
  170. Akbari DilmaghaniN. Safaroghli-AzarA. Pourbagheri-SigaroodiA. BashashD. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies.IUBMB Life202173461864210.1002/iub.244633476088
    [Google Scholar]
  171. HarshaC. BanikK. AngH.L. GirisaS. VikkurthiR. ParamaD. RanaV. ShabnamB. KhatoonE. KumarA.P. KunnumakkaraA.B. Targeting AKT/mTOR in oral cancer: Mechanisms and advances in clinical trials.Int. J. Mol. Sci.2020219328510.3390/ijms2109328532384682
    [Google Scholar]
  172. LiuW. WangJ. ZhangC. BaoZ. WuL. Curcumin nanoemulsions inhibit oral squamous cell carcinoma cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation: A preliminary study.Oral Dis.20222983183319210.1111/odi.1427135689522
    [Google Scholar]
  173. GotaV.S. MaruG.B. SoniT.G. GandhiT.R. KocharN. AgarwalM.G. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers.J. Agric. Food Chem.20105842095209910.1021/jf902480720092313
    [Google Scholar]
  174. SetthacheewakulS. MahattanadulS. PhadoongsombutN. PichayakornW. WiwattanapatapeeR. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats.Eur. J. Pharm. Biopharm.201076347548510.1016/j.ejpb.2010.07.01120659556
    [Google Scholar]
  175. KonwarhR. SaikiaJ.P. KarakN. KonwarB.K. ‘Poly(ethylene glycol)-magnetic nanoparticles-curcumin’ trio: Directed morphogenesis and synergistic free-radical scavenging.Colloids Surf. B Biointerfaces201081257858610.1016/j.colsurfb.2010.07.06220729041
    [Google Scholar]
  176. LinH.Y. ThomasJ.L. ChenH.W. ShenC.M. YangW.J. LeeM.H. In vitro suppression of oral squamous cell carcinoma growth by ultrasound-mediated delivery of curcumin microemulsions.Int. J. Nanomed.2012794195110.2147/IJN.S28510
    [Google Scholar]
  177. GuoY. WangX.Y. ChenY.L. LiuF.Q. TanM.X. AoM. YuJ.H. RanH.T. WangZ.X. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.Acta Biomater.20188030832610.1016/j.actbio.2018.09.024
    [Google Scholar]
  178. CsabaN. Garcia-FuentesM. AlonsoM.J. The performance of nanocarriers for transmucosal drug delivery.Expert Opin. Drug Deliv.20063446347810.1517/17425247.3.4.46316822222
    [Google Scholar]
  179. AriasJ. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems.Molecules200813102340236910.3390/molecules1310234018830159
    [Google Scholar]
  180. GaoZ. LiZ. YanJ. WangP. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy.Drug. Des. Devel. Ther.2017112595260410.2147/DDDT.S140797
    [Google Scholar]
  181. SafarzadehE. Sandoghchian ShotorbaniS. BaradaranB. Herbal medicine as inducers of apoptosis in cancer treatment.Adv. Pharm. Bull.20144Suppl. 142142710.5681/apb.2014.06225364657
    [Google Scholar]
  182. ZhangR.X. WongH.L. XueH.Y. EohJ.Y. WuX.Y. Nanomedicine of synergistic drug combinations for cancer therapy : Strategies and perspectives.J. Control Release201624048950310.1016/j.jconrel.2016.06.012
    [Google Scholar]
  183. SrivastavaS. MohammadS. PantA.B. MishraP.R. PandeyG. GuptaS. FarooquiS. Co-delivery of 5-fluorouracil and curcumin nanohybrid formulations for improved chemotherapy against oral squamous cell carcinoma.J. Maxillofac. Oral Surg.201817459761010.1007/s12663‑018‑1126‑z30344406
    [Google Scholar]
  184. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑823143785
    [Google Scholar]
  185. KimS.G. VeenaM.S. BasakS.K. HanE. TajimaT. GjertsonD.W. StarrJ. EidelmanO. PollardH.B. SrivastavaM. SrivatsanE.S. WangM.B. Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: A pilot study.Clin. Cancer Res.201117185953596110.1158/1078‑0432.CCR‑11‑127221821700
    [Google Scholar]
  186. CohenA.N. VeenaM.S. SrivatsanE.S. WangM.B. Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa beta kinase.Arch. Otolaryngol. Head Neck Surg.2009135219019710.1001/archotol.135.2.19019221248
    [Google Scholar]
  187. DuarteV.M. HanE. VeenaM.S. SalvadoA. SuhJ.D. LiangL.J. FaullK.F. SrivatsanE.S. WangM.B. Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKβ protein of the NFκB pathway.Mol. Cancer Ther.20109102665267510.1158/1535‑7163.MCT‑10‑006420937593
    [Google Scholar]
  188. St JohnM.A. LiY. ZhouX. DennyP. HoC.M. MontemagnoC. ShiW. QiF. WuB. SinhaU. JordanR. WolinskyL. ParkN.H. LiuH. AbemayorE. WongD.T. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma.Arch. Otolaryngol. Head Neck Surg.2004130892993510.1001/archotol.130.8.92915313862
    [Google Scholar]
  189. RhodusN.L. HoV. MillerC.S. MyersS. OndreyF. NF-κB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma.Cancer Detect. Prev.2005291424510.1016/j.cdp.2004.10.00315734216
    [Google Scholar]
  190. LauraV. MattiaF. RobertaG. FedericoI. EmiD. ChiaraT. LucaB. ElenaC. Potential of curcumin in skin disorders.Nutrients2019119216910.3390/nu1109216931509968
    [Google Scholar]
  191. GiordanoA. TommonaroG. Curcumin and cancer.Nutrients20191110237610.3390/nu1110237631590362
    [Google Scholar]
  192. AgrawalD.K. MishraP.K. Curcumin and its analogues: Potential anticancer agents.Med. Res. Rev.201030581886010.1002/med.2018820027668
    [Google Scholar]
  193. SethiyaA. AgarwalD.K. AgarwalS. Current trends in drug delivery system of curcumin and its therapeutic applications.Mini Rev. Med. Chem.202020131190123210.2174/138955752066620042910364732348221
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206297840240510063330
Loading
/content/journals/acamc/10.2174/0118715206297840240510063330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test