Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Cancer is regarded as one of the main causes of death globally. Future predictions indicate that the death rate from cancer will keep rising, which may reach 11.4 million in 2030. Carcinogenesis refers to the phenomenon of transforming a normal cell into a cancer cell. Cancer is characterized by unregulated and uncontrolled cell division due to alterations at the molecular and genetic levels. Gene mutations can speed up the rate of cell division, which leads to cancer. Metastasis entails the dissemination of cancer cells from the primary site to distant regions of the body the circulatory or lymphatic systems.

Objective

This review is mainly focusing on the anticancer properties of terpenoids. In the case of human beings, several types of cancers can be treated clinically based on the form and phase of the cancer. So, there are different types of treatment regimens available for the management of cancer, such as immunotherapy, hormonal therapy, radiation therapy, and chemotherapy.

Methods

Several problems are associated with cancer therapy, including chemoresistance, severe toxicity, relapse, and metastasis. To minimize these complications, natural products like terpenoids seem to be beneficial for the effective management of cancer.

Results

Experimental results revealed that the anticancer potential of terpenoids is due to activation of apoptosis and stimulation of cell cycle arrest. Some of the terpenoids exhibit anticancer effects by inhibiting angiogenesis and metastasis the regulation of several signaling pathways intracellularly. Certain terpenoids have been shown to work in concert with anticancer medications (doxorubicin, cisplatin, paclitaxel, and 5-fluorouracil) to provide synergistic effects. These terpenoids have also been shown to be effective against cancer cells that are resistant to several drug therapies.

Conclusion

The current study will focus on signaling pathways and mode of action of several types of terpenoids as anticancer agents. Further, it will provide insights into the ongoing clinical trials and prospective pathways for the advancement of terpenoids as possible anti-cancer agents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206342920241008062115
2024-10-22
2025-05-09
Loading full text...

Full text loading...

References

  1. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience20191396110.3332/ecancer.2019.96131537986
    [Google Scholar]
  2. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.466130570109
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  5. KueteV. OmosaL.K. MidiwoJ.O. KaraosmanoğluO. SivasH. Cytotoxicity of naturally occurring phenolics and terpenoids from Kenyan flora towards human carcinoma cells.J. Ayurveda Integr. Med.201910317818410.1016/j.jaim.2018.04.00130389223
    [Google Scholar]
  6. SinghS. SharmaB. KanwarS.S. KumarA. Lead phytochemicals for anticancer drug development.Front. Plant Sci.20167166710.3389/fpls.2016.0166727877185
    [Google Scholar]
  7. Vijay AvinB.R. PrabhuT. RameshC.K. VigneshwaranV. RiazM. JayashreeK. PrabhakarB.T. New role of lupeol in reticence of angiogenesis, the cellular parameter of neoplastic progression in tumorigenesis models through altered gene expression.Biochem. Biophys. Res. Commun.2014448213914410.1016/j.bbrc.2014.04.09024780400
    [Google Scholar]
  8. SubarmaniamT. Mahmad RR.N. PerumalK.V. YongY.K. HadizahS. OthmanF. SalemK. ShafieN.H. HashamR. YinK.B. Abdul KadirK.K. BahariH. ZakariaZ.A. The potential chemopreventive effect of Andrographis paniculata on 1,2-dimethylhydrazine and high-fat-diet-induced colorectal cancer in sprague dawley rats.Int. J. Mol. Sci.2023246522410.3390/ijms2406522436982300
    [Google Scholar]
  9. AgrawalR.C. JainR. RajaW. OvaisM. Anticarcinogenic effects of Solanum lycopersicum fruit extract on Swiss albino and C57 Bl mice.Asian Pac. J. Cancer Prev.200910337938219640177
    [Google Scholar]
  10. KumarP. FebriyantiR. SofyanF. LuftimasD. AbdulahR. Anticancer potential of Syzygium aromaticum L. in MCF-7 human breast cancer cell lines.Pharmacognosy Res.20146435035410.4103/0974‑8490.13829125276075
    [Google Scholar]
  11. MesmarJ. FardounM.M. AbdallahR. Al DhaheriY. YassineH.M. IratniR. BadranA. EidA.H. BaydounE. Ziziphus nummularia attenuates the malignant phenotype of human pancreatic cancer cells: Role of ROS.Molecules20212614429510.3390/molecules2614429534299570
    [Google Scholar]
  12. MacLeanM.A. ScottB.E. DezielB.A. NunnelleyM.C. LibertyA.M. Gottschall-PassK.T. NetoC.C. HurtaR.A. North American cranberry (Vaccinium macrocarpon) stimulates apoptotic pathways in DU145 human prostate cancer cells in vitro.Nutr. Cancer201163110912021161819
    [Google Scholar]
  13. PaunovicD. RajkovicJ. NovakovicR. Grujic-MilanovicJ. MekkyR.H. PopaD. CalinaD. Sharifi-RadJ. The potential roles of gossypol as anticancer agent: Advances and future directions.Chin. Med.202318116310.1186/s13020‑023‑00869‑838098026
    [Google Scholar]
  14. LangS.J. SchmiechM. HafnerS. PaetzC. SteinbornC. HuberR. GaafaryM.E. WernerK. SchmidtC.Q. SyrovetsT. SimmetT. Antitumor activity of an Artemisia annua herbal preparation and identification of active ingredients.Phytomedicine20196215296210.1016/j.phymed.2019.15296231132755
    [Google Scholar]
  15. LimC.B. KyN. NgH.M. HamzaM.S. Yan Zhao, Curcuma wenyujin extract induces apoptosis and inhibits proliferation of human cervical cancer cells in vitro and in vivo.Integr. Cancer Ther.201091364910.1177/153473540935977320150221
    [Google Scholar]
  16. SurS. RayR.B. Bitter melon (Momordica charantia), a nutraceutical approach for cancer prevention and therapy.Cancers (Basel)2020128206410.3390/cancers1208206432726914
    [Google Scholar]
  17. MehmoodT. MuanprasatC. Deoxyelephantopin and its isomer isodeoxyelephantopin: Anti-cancer natural products with multiple modes of action.Molecules2022277208610.3390/molecules2707208635408483
    [Google Scholar]
  18. HuangM. LuJ.J. HuangM.Q. BaoJ.L. ChenX.P. WangY.T. Terpenoids: Natural products for cancer therapy.Expert Opin. Investig. Drugs201221121801181810.1517/13543784.2012.72739523092199
    [Google Scholar]
  19. ChopraB. DhingraA.K. DharK.L. NepaliK. Emerging role of terpenoids for the treatment of cancer: A review.Mini Rev. Med. Chem.202121162300233610.2174/138955752166621011214302433438537
    [Google Scholar]
  20. WagnerK.H. ElmadfaI. Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes.Ann. Nutr. Metab.2003473-49510610.1159/00007003012743459
    [Google Scholar]
  21. RabiT. BishayeeA. Terpenoids and breast cancer chemoprevention.Breast Cancer Res. Treat.2009115222323910.1007/s10549‑008‑0118‑y18636327
    [Google Scholar]
  22. GouldM.N. Cancer chemoprevention and therapy by monoterpenes.Environ. Health Perspect.1997105Suppl 4Suppl. 497797910.1289/ehp.97105s49779255590
    [Google Scholar]
  23. SalakhutdinovN.F. VolchoK.P. YarovayaO.I. Monoterpenes as a renewable source of biologically active compounds.Pure Appl. Chem.20178981105111710.1515/pac‑2017‑0109
    [Google Scholar]
  24. KoziołA. StryjewskaA. LibrowskiT. SałatK. GawełM. MoniczewskiA. LochyńskiS. An overview of the pharmacological properties and potential applications of natural monoterpenes.Mini Rev. Med. Chem.201514141156116810.2174/138955751466614112714582025429661
    [Google Scholar]
  25. IwasakiK. ZhengY.W. MurataS. ItoH. NakayamaK. KurokawaT. SanoN. NowatariT. VillarealM.O. NaganoY.N. IsodaH. MatsuiH. OhkohchiN. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer.World J. Gastroenterol.201622449765977410.3748/wjg.v22.i44.976527956800
    [Google Scholar]
  26. EfferthT. Cancer therapy with natural products and medicinal plants.Planta Med.201076111035103610.1055/s‑0030‑125006220665401
    [Google Scholar]
  27. JaafariA. TilaouiM. MouseH.A. M’barkL.A. AboufatimaR. ChaitA. LepoivreM. ZyadA. Comparative study of the antitumor effect of natural monoterpenes: Relationship to cell cycle analysis.Rev. Bras. Farmacogn.201222353454010.1590/S0102‑695X2012005000021
    [Google Scholar]
  28. FanK. LiX. CaoY. QiH. LiL. ZhangQ. SunH. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells.Anticancer Drugs201526881382310.1097/CAD.000000000000026326214321
    [Google Scholar]
  29. Araújo-FilhoH.G. dos SantosJ.F. CarvalhoM.T.B. PicotL. Fruitier-ArnaudinI. GroultH. Quintans-JúniorL.J. QuintansJ.S.S. Anticancer activity of limonene: A systematic review of target signaling pathways.Phytother. Res.20213594957497010.1002/ptr.712533864293
    [Google Scholar]
  30. ChenT.C. da FonsecaC.O. LevinD. SchönthalA.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers.Pharmaceutics20211312216710.3390/pharmaceutics1312216734959448
    [Google Scholar]
  31. BeckerV. HuiX. NalbachL. AmpofoE. LippP. MengerM.D. LaschkeM.W. GuY. Linalool inhibits the angiogenic activity of endothelial cells by downregulating intracellular ATP levels and activating TRPM8.Angiogenesis202124361363010.1007/s10456‑021‑09772‑y33655414
    [Google Scholar]
  32. ArunasreeK.M. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231.Phytomedicine2010178-958158810.1016/j.phymed.2009.12.00820096548
    [Google Scholar]
  33. PattanayakM. K SethP. SmitaS. K GuptaS. Geraniol and limonene interaction with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase for their role as cancer chemopreventive agents.J. Proteomics Bioinform.200921146647410.4172/jpb.1000107
    [Google Scholar]
  34. CrowellP.L. Prevention and therapy of cancer by dietary monoterpenes.J. Nutr.19991293775S778S10.1093/jn/129.3.775S10082788
    [Google Scholar]
  35. LiQ. WangX. YangZ. WangB. LiS. Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24.Oncology200977633534110.1159/00026462719955836
    [Google Scholar]
  36. WangZ. LiQ. XiaL. LiX. SunC. WangQ. CaiX. YangG. Borneol promotes apoptosis of Human Glioma Cells through regulating HIF-1a expression via mTORC1/eIF4E pathway.J. Cancer202011164810482210.7150/jca.4530432626528
    [Google Scholar]
  37. ElbeH. YigitturkG. CavusogluT. UyanikgilY. OzturkF. Apoptotic effects of thymol, a novel monoterpene phenol, on different types of cancer.Bratisl. Lek Listy2020121212212832115964
    [Google Scholar]
  38. LeeJ.H. LeeK. LeeD.H. ShinS.Y. YongY. LeeY.H. Anti-invasive effect of β-myrcene, a component of the essential oil from Pinus koraiensis cones, in metastatic MDA-MB-231 human breast cancer cells.J. Korean Soc. Appl. Biol. Chem.201558456356910.1007/s13765‑015‑0081‑3
    [Google Scholar]
  39. ZhiH. CuiJ. YangH. ZhangY. ZhuM. Research progress of geraniol in tumor therapy.Proceed. Anticancer Res.202151263010.26689/par.v5i1.1882
    [Google Scholar]
  40. SobralM.V. XavierA.L. LimaT.C. de SousaD.P. Antitumor activity of monoterpenes found in essential oils.Sci. World, J.2014201413510.1155/2014/95345125401162
    [Google Scholar]
  41. RussoR. CiociaroA. BerliocchiL. CassianoM.G.V. RombolàL. RagusaS. BagettaG. BlandiniF. CorasanitiM.T. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.Fitoterapia201389485710.1016/j.fitote.2013.05.01423707744
    [Google Scholar]
  42. MoayediY. GreenbergS.A. JenkinsB.A. MarshallK.L. DimitrovL.V. NelsonA.M. OwensD.M. LumpkinE.A. Camphor white oil induces tumor regression through cytotoxic T cell‐dependent mechanisms.Mol. Carcinog.201958572273410.1002/mc.2296530582219
    [Google Scholar]
  43. HassanS.B. Gali-MuhtasibH. GöranssonH. LarssonR. Alpha terpineol: A potential anticancer agent which acts through suppressing NF-kappaB signalling.Anticancer Res.20103061911191920651334
    [Google Scholar]
  44. KumarR. SinghH. MazumderA. Salahuddin. YadavR.K. ChauhanB. AbdulahM.M. Camphor and menthol as anticancer agents: Synthesis, structure-activity relationship and interaction with cancer cell lines.Anticancer. Agents Med. Chem.202323661462310.2174/187152062266622081015373535950244
    [Google Scholar]
  45. ChenJ. LiL. SuJ. LiB. ChenT. LingF. ZhangX. Enhancing effect of natural borneol on the cellular uptake of demethoxycurcumin and their combined induction of G2/M arrest in HepG2 cells via ROS generation.J. Funct. Foods20151710311410.1016/j.jff.2015.05.013
    [Google Scholar]
  46. SistoF. CarradoriS. GuglielmiP. TraversiC.B. SpanoM. SobolevA.P. SecciD. Di MarcantonioM.C. HalociE. GrandeR. MincioneG. Synthesis and biological evaluation of carvacrol-based derivatives as dual inhibitors of H. pylori strains and AGS cell proliferation.Pharmaceuticals (Basel)2020131140510.3390/ph1311040533228095
    [Google Scholar]
  47. SistoF. CarradoriS. GuglielmiP. SpanoM. SecciD. GraneseA. SobolevA.P. GrandeR. CampestreC. Di MarcantonioM.C. MincioneG. Synthesis and evaluation of thymol-based synthetic derivatives as dual-action inhibitors against different strains of H. pylori and AGS cell line.Molecules2021267182910.3390/molecules2607182933805064
    [Google Scholar]
  48. AlmajaliB. Al-JamalH.A.N. TaibW.R.W. IsmailI. JohanM.F. DoolaaneaA.A. IbrahimW.N. Thymoquinone, as a novel therapeutic candidate of cancers.Pharmaceuticals (Basel)202114436910.3390/ph1404036933923474
    [Google Scholar]
  49. PincigherL. ValentiF. BergaminiC. PrataC. FatoR. AmoratiR. JinZ. FarruggiaG. FiorentiniD. CalonghiN. ZalambaniC. Myrcene: A natural compound showing anticancer activity in hela cells.Molecules20232818672810.3390/molecules2818672837764505
    [Google Scholar]
  50. YuX. LinH. WangY. LvW. ZhangS. QianY. DengX. FengN. YuH. QianB. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer.OncoTargets Ther.2018111833184710.2147/OTT.S15571629670359
    [Google Scholar]
  51. YeruvaL. PierreK.J. ElegbedeA. WangR.C. CarperS.W. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells.Cancer Lett.2007257221622610.1016/j.canlet.2007.07.02017888568
    [Google Scholar]
  52. RahamanA. ChaudhuriA. SarkarA. ChakrabortyS. BhattacharjeeS. MandalD.P. Eucalyptol targets PI3K/Akt/mTOR pathway to inhibit skin cancer metastasis.Carcinogenesis202243657158310.1093/carcin/bgac02035165685
    [Google Scholar]
  53. CalcabriniA. StringaroA. ToccacieliL. MeschiniS. MarraM. ColoneM. AranciaG. MolinariA. SalvatoreG. MondelloF. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells.J. Invest. Dermatol.2004122234936010.1046/j.0022‑202X.2004.22236.x15009716
    [Google Scholar]
  54. NordinN. YeapS.K. RahmanH.S. ZamberiN.R. MohamadN.E. AbuN. MasarudinM.J. AbdullahR. AlitheenN.B. Antitumor and anti-metastatic effects of citral-loaded nanostructured lipid carrier in 4T1-induced breast cancer mouse model.Molecules20202511267010.3390/molecules2511267032526880
    [Google Scholar]
  55. PatelP.B. ThakkarV.R. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines.Nutr. Cancer201466345346210.1080/01635581.2014.88423024611509
    [Google Scholar]
  56. ChenW. LiuY. LiM. MaoJ. ZhangL. HuangR. JinX. YeL. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest.J. Pharmacol. Sci.2015127333233810.1016/j.jphs.2015.01.00825837931
    [Google Scholar]
  57. SalehiB. UpadhyayS. Erdogan OrhanI. KumarJ.A. L D JayaweeraS. A DiasD. SharopovF. TaheriY. MartinsN. BaghalpourN. ChoW.C. Sharifi-RadJ. Therapeutic Potential of α- and β-Pinene: A miracle gift of nature.Biomolecules201991173810.3390/biom911073831739596
    [Google Scholar]
  58. ChoM. SoI. ChunJ.N. JeonJ.H. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review).Int. J. Oncol.20164851772178210.3892/ijo.2016.342726983575
    [Google Scholar]
  59. ChangM.Y. ShiehD.E. ChenC.C. YehC.S. DongH.P. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs.Int. J. Mol. Sci.20151612281692817910.3390/ijms16122608926703569
    [Google Scholar]
  60. ModzelewskaA. SurS. KumarS. KhanS. Sesquiterpenes: Natural products that decrease cancer growth.Curr. Med. Chem. Anticancer Agents20055547749910.2174/156801105486697316178774
    [Google Scholar]
  61. CaiY. GaoK. PengB. XuZ. PengJ. LiJ. ChenX. ZengS. HuK. YanY. Alantolactone: A natural plant extract as a potential therapeutic agent for cancer.Front. Pharmacol.20211278103310.3389/fphar.2021.78103334899346
    [Google Scholar]
  62. LeeS.H. ChoY.C. LimJ.S. Costunolide, a sesquiterpene lactone, suppresses skin cancer via induction of apoptosis and blockage of cell proliferation.Int. J. Mol. Sci.2021224207510.3390/ijms2204207533669832
    [Google Scholar]
  63. KaleemS. SiddiquiS. SiddiquiH.H. Badruddeen. HussainA. ArshadM. AkhtarJ. RizviA. Eupalitin induces apoptosis in prostate carcinoma cells through ROS generation and increase of caspase‐3 activity.Cell Biol. Int.201640219620310.1002/cbin.1055226493029
    [Google Scholar]
  64. Sztiller-SikorskaM. CzyzM. Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies.Pharmaceuticals (Basel)202013819410.3390/ph1308019432823992
    [Google Scholar]
  65. El-NajjarN. DakdoukiS. DarwicheN. El-SabbanM. SalibaN. Gali-MuhtasibH. Anti-colon cancer effects of Salograviolide A isolated from Centaurea ainetensis.Oncol. Rep.200819489790410.3892/or.19.4.89718357373
    [Google Scholar]
  66. EfferthT. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib.Phytomedicine201737586110.1016/j.phymed.2017.11.00329174651
    [Google Scholar]
  67. NguyenN.H. NguyenM.T. LittleP.J. DoA.T. TranP.T. VoX.N. DoB.H. Vernolide-A and vernodaline: Sesquiterpene lactones with cytotoxicity against cancer.J. Environ. Pathol. Toxicol. Oncol.202039429930810.1615/JEnvironPatholToxicolOncol.202003406633389902
    [Google Scholar]
  68. PratheeshkumarP. KuttanG. Vernolide-A, a sesquiterpene lactone from Vernonia cinerea, induces apoptosis in B16F-10 melanoma cells by modulating p53 and caspase-3 gene expressions and regulating NF-κB-mediated bcl-2 activation.Drug Chem. Toxicol.201134326127010.3109/01480545.2010.52001721649480
    [Google Scholar]
  69. LiuJ. ZhangY. QuJ. XuL. HouK. ZhangJ. QuX. LiuY. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis.BMC Cancer201111118310.1186/1471‑2407‑11‑18321595977
    [Google Scholar]
  70. NasimS. CrooksP.A. Antileukemic activity of aminoparthenolide analogs.Bioorg. Med. Chem. Lett.200818143870387310.1016/j.bmcl.2008.06.05018590961
    [Google Scholar]
  71. LiuJ.W. CaiM.X. XinY. WuQ.S. MaJ. YangP. XieH.Y. HuangD.S. Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro.J. Exp. Clin. Cancer Res.201029110810.1186/1756‑9966‑29‑10820698986
    [Google Scholar]
  72. PrietoJ.M. SilveiraD. Natural cytotoxic diterpenoids, a potential source of drug leads for melanoma therapy.Curr. Pharm. Des.201924364237425010.2174/138161282566619011114364830636590
    [Google Scholar]
  73. IslamM.T. Diterpenes and their derivatives as potential anticancer agents.Phytother. Res.201731569171210.1002/ptr.580028370843
    [Google Scholar]
  74. TatipamulaV.B. ThonangiC.V. DakalT.C. VedulaG.S. DhabhaiB. PolimatiH. AkulaA. NguyenH.T. Potential anti-hepatocellular carcinoma properties and mechanisms of action of clerodane diterpenes isolated from Polyalthia longifolia seeds.Sci. Rep.2022121926710.1038/s41598‑022‑13383‑y35661799
    [Google Scholar]
  75. GaoC. YanX. WangB. YuL. HanJ. LiD. ZhengQ. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.Sci. Rep.2016613611410.1038/srep3611427796318
    [Google Scholar]
  76. WangY. MaX. YanS. ShenS. ZhuH. GuY. WangH. QinG. YuQ. 17-hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells.Cancer Res.200969187302731010.1158/0008‑5472.CAN‑09‑046219706767
    [Google Scholar]
  77. XieR. XiaG. ZhuJ. LinP. FanX. ZiJ. Daphnane-type diterpenoids from Euphorbia fischeriana Steud and their cytotoxic activities.Fitoterapia202114910481010.1016/j.fitote.2020.10481033359422
    [Google Scholar]
  78. LiL. ShuklaS. LeeA. GarfieldS.H. MaloneyD.J. AmbudkarS.V. YuspaS.H. The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature.Cancer Res.201070114509451910.1158/0008‑5472.CAN‑09‑430320460505
    [Google Scholar]
  79. ZhangJ. WangY. ZhouY. HeQ.Y. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway.Oncotarget2017853912239123710.18632/oncotarget.2007729207638
    [Google Scholar]
  80. RajagopalS. KumarR.A. DeeviD.S. SatyanarayanaC. RajagopalanR. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.J. Exp. Ther. Oncol.20033314715810.1046/j.1359‑4117.2003.01090.x14641821
    [Google Scholar]
  81. MengC. ZhuH. SongH. WangZ. HuangG. LiD. MaZ. MaJ. QinQ. SunX. MaJ. Targets and molecular mechanisms of triptolide in cancer therapy.Chin. J. Cancer Res.201426562262625400429
    [Google Scholar]
  82. FuL. HanB. ZhouY. RenJ. CaoW. PatelG. KaiG. ZhangJ. The anticancer properties of tanshinones and the pharmacological effects of their active ingredients.Front Pharmacol.20201119310.3389/fphar.2020.00193
    [Google Scholar]
  83. QinJ. TangJ. JiaoL. JiJ. ChenW.D. FengG.K. GaoY.H. ZhuX.F. DengR. A diterpenoid compound, excisanin A, inhibits the invasive behavior of breast cancer cells by modulating the integrin β1/FAK/PI3K/AKT/β-catenin signaling.Life Sci.20139318-1965566310.1016/j.lfs.2013.09.00224044886
    [Google Scholar]
  84. BishayeeA. AhmedS. BrankovN. PerloffM. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer.Front. Biosci.201116198099610.2741/373021196213
    [Google Scholar]
  85. PitchaiD. RoyA. IgnatiusC. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line.J. Adv. Pharm. Technol. Res.20145417918410.4103/2231‑4040.14303725364696
    [Google Scholar]
  86. LeeS.O. KimJ.S. LeeM.S. LeeH.J. Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells.BMC Cancer201616170110.1186/s12885‑016‑2730‑227581969
    [Google Scholar]
  87. ZhuB. WeiY. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway.Cancer Med.2019201911431957323
    [Google Scholar]
  88. FuldaS. Betulinic acid for cancer treatment and prevention.Int. J. Mol. Sci.2008961096110710.3390/ijms906109619325847
    [Google Scholar]
  89. NiuG. SunL. PeiY. WangD. Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway.Anticancer. Agents Med. Chem.201818458359010.2174/187152061766617102012491629065844
    [Google Scholar]
  90. AlghashamA.A. Cucurbitacins - a promising target for cancer therapy.Int. J. Health Sci. (Qassim)201371778910.12816/000602523559908
    [Google Scholar]
  91. ChopraB. DhingraA. DharK.L. PrasadM.D.N. Role of terpenoids as anticancer compounds: An insight into prevention and treatment.Key Heterocyclic Cores for Smart Anticancer Drug Design Part I202215710410.2174/9789815040074122010005
    [Google Scholar]
  92. OnoM. TakeshimaM. NakanoS. Mechanism of the anticancer effect of lycopene (tetraterpenoids).Enzymes20153713916610.1016/bs.enz.2015.06.00226298459
    [Google Scholar]
  93. SunS.Q. ZhaoY.X. LiS.Y. QiangJ.W. JiY.Z. Anti-tumor effects of astaxanthin by inhibition of the expression of STAT3 in prostate cancer.Mar. Drugs202018841510.3390/md1808041532784629
    [Google Scholar]
  94. GongX. SmithJ. SwansonH. RubinL. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ros-mediated mechanisms.Molecules201823490510.3390/molecules2304090529662002
    [Google Scholar]
  95. ZhangY. YangJ. NaX. ZhaoA. Association between β-carotene supplementation and risk of cancer: A meta-analysis of randomized controlled trials.Nutr. Rev.20238191118113010.1093/nutrit/nuac11036715090
    [Google Scholar]
  96. KapałaA. SzlendakM. MotackaE. The anti-cancer activity of lycopene: A systematic review of human and animal studies.Nutrients20221423515210.3390/nu1423515236501182
    [Google Scholar]
  97. ShengY.N. LuoY.H. LiuS.B. XuW.T. ZhangY. ZhangT. XueH. ZuoW.B. LiY.N. WangC.Y. JinC.H. Zeaxanthin induces apoptosis via ROS-regulated MAPK and AKT signaling pathway in human gastric cancer cells.OncoTargets Ther.202013109951100610.2147/OTT.S27251433149614
    [Google Scholar]
  98. TanakaT. MorishitaY. SuzuiM. KojimaT. OkumuraA. MoriH. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin.Carcinogenesis1994151151910.1093/carcin/15.1.158293542
    [Google Scholar]
  99. ThirumalaivasanN. VenkatesanP. LaiP.S. WuS.P. In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles.ACS Appl. Bio Mater.2019293886389610.1021/acsabm.9b0048135021323
    [Google Scholar]
  100. ThoppilR.J. BishayeeA. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.World J. Hepatol.20113922824910.4254/wjh.v3.i9.22821969877
    [Google Scholar]
  101. RajapandiS. NanganS. NatesanT. KumarA. DharmanG. PandeeswaranM. VermaD. UbaidullahM. PanditB. DhaliwalN. SehgalS.S. RangappanR. KousalyaG.N. Ziziphus mauritiana-derived nitrogen-doped biogenic carbon dots: Eco-friendly catalysts for dye degradation and antibacterial applications.Chemosphere202333813958410.1016/j.chemosphere.2023.13958437478987
    [Google Scholar]
  102. SinghJ. LuqmanS. MeenaA. Carvacrol as a prospective regulator of cancer targets/signalling pathways.Curr. Mol. Pharmacol.202316554255835792130
    [Google Scholar]
  103. VieiraA.J. BeserraF.P. SouzaM.C. TottiB.M. RozzaA.L. Limonene: Aroma of innovation in health and disease.Chem. Biol. Interact.20182839710610.1016/j.cbi.2018.02.00729427589
    [Google Scholar]
  104. TanS. LiD. ZhuX. Cancer immunotherapy: Pros, cons and beyond.Biomed. Pharmacother.202012410982110.1016/j.biopha.2020.10982131962285
    [Google Scholar]
  105. VenkatesanP. ThirumalaivasanN. YuH.P. LaiP.S. WuS.P. Redox stimuli delivery vehicle based on transferrin-capped MSNPs for targeted drug delivery in cancer therapy.ACS Appl. Bio Mater.2019241623163310.1021/acsabm.9b0003635026896
    [Google Scholar]
  106. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.20201010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  107. KamranS. SinniahA. AbdulghaniM.A.M. AlshawshM.A. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review.Cancers (Basel)2022145110010.3390/cancers1405110035267408
    [Google Scholar]
  108. IrvingG.R.B. IwujiC.O.O. MorganB. BerryD.P. StewardW.P. ThomasA. BrownK. HowellsL.M. Combining curcumin (C3-complex, Sabinsa) with standard care FOLFOX chemotherapy in patients with inoperable colorectal cancer (CUFOX): Study protocol for a randomised control trial.Trials201516111010.1186/s13063‑015‑0641‑125872567
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206342920241008062115
Loading
/content/journals/acamc/10.2174/0118715206342920241008062115
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): carcinogenesis; chemotherapy; immunotherapy; mode of action; Terpenoids; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test