Skip to content
2000
Volume 24, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206322163240710112404
2024-10-01
2025-04-22
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. NaveO.P. HareliS. ElbazM. Hayim IluzI. Bunimovich-MendrazitskyS. BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis.Math. Biosci. Eng.20191655346537910.3934/mbe.2019267 31499716
    [Google Scholar]
  3. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  4. YanH. ZouT. TuoQ. XuS. LiH. BelaidiA.A. LeiP. Ferroptosis: mechanisms and links with diseases.Signal Transduct. Target. Ther.2021614910.1038/s41392‑020‑00428‑9 33536413
    [Google Scholar]
  5. LiuX. ChenC. HanD. ZhouW. CuiY. TangX. XiaoC. WangY. GaoY. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity.Oxid. Med. Cell. Longev.2022202211610.1155/2022/3192607 35757509
    [Google Scholar]
  6. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑1 33268902
    [Google Scholar]
  7. BalihodzicA. PrinzF. DenglerM.A. CalinG.A. JostP.J. PichlerM. Non-coding RNAs and ferroptosis: Potential implications for cancer therapy.Cell Death Differ.20222961094110610.1038/s41418‑022‑00998‑x 35422492
    [Google Scholar]
  8. KimT. ReitmairA. Non-coding RNAs: Functional aspects and diagnostic utility in oncology.Int. J. Mol. Sci.20131434934496810.3390/ijms14034934 23455466
    [Google Scholar]
  9. ZuoY.B. ZhangY.F. ZhangR. TianJ.W. LvX.B. LiR. LiS.P. ChengM.D. ShanJ. ZhaoZ. XinH. Ferroptosis in cancer progression: Role of noncoding RNAs.Int. J. Biol. Sci.20221851829184310.7150/ijbs.66917 35342359
    [Google Scholar]
  10. StockwellB.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications.Cell2022185142401242110.1016/j.cell.2022.06.003 35803244
    [Google Scholar]
  11. AltamuraS. MarquesO. ColucciS. MertensC. AlikhanyanK. MuckenthalerM.U. Regulation of iron homeostasis: Lessons from mouse models.Mol. Aspects Med.20207510087210.1016/j.mam.2020.100872 32792212
    [Google Scholar]
  12. ZhaoL. ZhouX. XieF. ZhangL. YanH. HuangJ. ZhangC. ZhouF. ChenJ. ZhangL. Ferroptosis in cancer and cancer immunotherapy.Cancer Commun. (Lond.)20224228811610.1002/cac2.12250 35133083
    [Google Scholar]
  13. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑2 32015325
    [Google Scholar]
  14. RyuM.S. ZhangD. ProtchenkoO. Shakoury-ElizehM. PhilpottC.C. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.J. Clin. Invest.201712751786179710.1172/JCI90519 28375153
    [Google Scholar]
  15. LiK. ChenB. XuA. ShenJ. LiK. HaoK. HaoR. YangW. JiangW. ZhengY. GeF. WangZ. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells.Redox Biol.20225610245110.1016/j.redox.2022.102451 36067704
    [Google Scholar]
  16. CamaschellaC. NaiA. SilvestriL. Iron metabolism and iron disorders revisited in the hepcidin era.Haematologica2020105226027210.3324/haematol.2019.232124 31949017
    [Google Scholar]
  17. FengH. SchorppK. JinJ. YozwiakC.E. HoffstromB.G. DeckerA.M. RajbhandariP. StokesM.E. BenderH.G. CsukaJ.M. UpadhyayulaP.S. CanollP. UchidaK. SoniR.K. HadianK. StockwellB.R. Transferrin receptor Is a specific ferroptosis marker.Cell Rep.2020301034113423.e710.1016/j.celrep.2020.02.049 32160546
    [Google Scholar]
  18. ZhuG. MurshedA. LiH. MaJ. ZhenN. DingM. ZhuJ. MaoS. TangX. LiuL. SunF. JinL. PanQ. O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer.Cell Death Discov.2021718310.1038/s41420‑021‑00468‑2 33863873
    [Google Scholar]
  19. LiuJ. RenZ. YangL. ZhuL. li, Y.; Bie, C.; Liu, H.; Ji, Y.; Chen, D.; Zhu, M.; Kuang, W. The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells.Cell Death Discov.2022819910.1038/s41420‑022‑00902‑z 35249107
    [Google Scholar]
  20. QinX. ZhangJ. WangB. XuG. YangX. ZouZ. YuC. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells.Autophagy202117124266428510.1080/15548627.2021.1911016 33843441
    [Google Scholar]
  21. TangZ. JiangW. MaoM. ZhaoJ. ChenJ. ChengN. Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin.Clin. Transl. Med.2021114e39010.1002/ctm2.390 33931967
    [Google Scholar]
  22. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  23. ManzD.H. BlanchetteN.L. PaulB.T. TortiF.M. TortiS.V. Iron and cancer: Recent insights.Ann. N. Y. Acad. Sci.20161368114916110.1111/nyas.13008 26890363
    [Google Scholar]
  24. HuangY. DuJ. LiD. HeW. LiuZ. LiuL. YangX. ChengX. ChenR. YangY. LASS2 suppresses metastasis in multiple cancers by regulating the ferroptosis signalling pathway through interaction with TFRC.Cancer Cell Int.20242418710.1186/s12935‑024‑03275‑8 38419028
    [Google Scholar]
  25. ZhaoL. MiaoH. QuanM. WangS. ZhangY. ZhouH. ZhangX. LinZ. PiaoJ. β-Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway.Chem. Biol. Interact.202438911086610.1016/j.cbi.2024.110866 38218311
    [Google Scholar]
  26. HuangQ.T. HuQ.Q. WenZ.F. LiY.L. Iron oxide nanoparticles inhibit tumor growth by ferroptosis in diffuse large B-cell lymphoma.Am. J. Cancer Res.2023132498508 36895978
    [Google Scholar]
  27. KaganV.E. MaoG. QuF. AngeliJ.P.F. DollS. CroixC.S. DarH.H. LiuB. TyurinV.A. RitovV.B. KapralovA.A. AmoscatoA.A. JiangJ. AnthonymuthuT. MohammadyaniD. YangQ. PronethB. Klein-SeetharamanJ. WatkinsS. BaharI. GreenbergerJ. MallampalliR.K. StockwellB.R. TyurinaY.Y. ConradM. BayırH. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nat. Chem. Biol.2017131819010.1038/nchembio.2238 27842066
    [Google Scholar]
  28. ZhengJ. ConradM. The Metabolic Underpinnings of Ferroptosis.Cell Metab.202032692093710.1016/j.cmet.2020.10.011 33217331
    [Google Scholar]
  29. JiangM. QiaoM. ZhaoC. DengJ. LiX. ZhouC. Targeting ferroptosis for cancer therapy: Exploring novel strategies from its mechanisms and role in cancers.Transl. Lung Cancer Res.2020941569158410.21037/tlcr‑20‑341 32953528
    [Google Scholar]
  30. HeG.N. BaoN.R. WangS. XiM. ZhangT.H. ChenF.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4.Drug Des. Devel. Ther.2021153965397810.2147/DDDT.S332847 34566408
    [Google Scholar]
  31. YuX.H. RenX.H. LiangX.H. TangY.L. Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Mol. Med. Rep.20181865307531610.3892/mmr.2018.9577 30365095
    [Google Scholar]
  32. TangY. ZhouJ. HooiS. JiangY.M. LuG.D. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long chain acyl CoA synthetases (Review)..Oncol. Lett.20181621390139610.3892/ol.2018.8843 30008815
    [Google Scholar]
  33. ChengJ. FanY.Q. LiuB.H. ZhouH. WangJ.M. ChenQ.X. ACSL4 suppresses glioma cells proliferation via activating ferroptosis.Oncol. Rep.2020431147158 31789401
    [Google Scholar]
  34. FengJ. LuP. ZhuG. HooiS.C. WuY. HuangX. DaiH. ChenP. LiZ. SuW. HanC. YeX. PengT. ZhouJ. LuG. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma.Acta Pharmacol. Sin.202142116017010.1038/s41401‑020‑0439‑x 32541921
    [Google Scholar]
  35. LiuJ. KangR. TangD. Signaling pathways and defense mechanisms of ferroptosis.FEBS J.2022289227038705010.1111/febs.16059 34092035
    [Google Scholar]
  36. LeiG. MaoC. YanY. ZhuangL. GanB. Ferroptosis, radiotherapy, and combination therapeutic strategies.Protein Cell2021121183685710.1007/s13238‑021‑00841‑y 33891303
    [Google Scholar]
  37. KuangF. LiuJ. TangD. KangR. Oxidative Damage and Antioxidant Defense in Ferroptosis.Front. Cell Dev. Biol.2020858657810.3389/fcell.2020.586578 33043019
    [Google Scholar]
  38. LiF.J. LongH.Z. ZhouZ.W. LuoH.Y. XuS.G. GaoL.C. SystemX. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy.Front. Pharmacol.20221391029210.3389/fphar.2022.910292 36105219
    [Google Scholar]
  39. FarajiP. BorchertA. AhmadianS. KuhnH. Butylated hydroxytoluene (BHT) protects SH-SY5Y neuroblastoma cells from ferroptotic cell death: Insights from in vitro and in vivo studies.Antioxidants202413224210.3390/antiox13020242 38397840
    [Google Scholar]
  40. ZhangY. SongQ. ZhangY. XiaoJ. DengX. XingX. HuH. ZhangY. Iron-based nanovehicle delivering Fin56 for hyperthermia-boosted ferroptosis therapy against osteosarcoma.Int. J. Nanomedicine2024199110710.2147/IJN.S441112 38192634
    [Google Scholar]
  41. WangZ. ZhouC. ZhangY. TianX. WangH. WuJ. JiangS. From synergy to resistance: Navigating the complex relationship between sorafenib and ferroptosis in hepatocellular carcinoma.Biomed. Pharmacother.2024170116074
    [Google Scholar]
  42. KoppulaP. LeiG. ZhangY. YanY. MaoC. KondiparthiL. ShiJ. LiuX. HorbathA. DasM. LiW. PoyurovskyM.V. OlszewskiK. GanB. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers.Nat. Commun.2022131220610.1038/s41467‑022‑29905‑1 35459868
    [Google Scholar]
  43. KraftV.A.N. BezjianC.T. PfeifferS. RingelstetterL. MüllerC. ZandkarimiF. Merl-PhamJ. BaoX. AnastasovN. KösslJ. BrandnerS. DanielsJ.D. Schmitt-KopplinP. HauckS.M. StockwellB.R. HadianK. SchickJ.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling.ACS Cent. Sci.202061415310.1021/acscentsci.9b01063 31989025
    [Google Scholar]
  44. LiuD. LiangC. HuangB. ZhuangX. CuiW. YangL. YangY. ZhangY. FuX. ZhangX. DuL. GuW. WangX. YinC. ChaiR. ChuB. Tryptophan metabolism acts as a new anti‐ferroptotic pathway to mediate tumor growth.Adv. Sci. (Weinh.)2023106220400610.1002/advs.202204006 36627132
    [Google Scholar]
  45. GaoM. MonianP. QuadriN. RamasamyR. JiangX. Glutaminolysis and transferrin regulate ferroptosis.Mol. Cell201559229830810.1016/j.molcel.2015.06.011 26166707
    [Google Scholar]
  46. ZhangX. WangL. LiH. ZhangL. ZhengX. ChengW. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression.Cell Death Dis.202011758010.1038/s41419‑020‑02772‑8 32709863
    [Google Scholar]
  47. PanC. ChenG. ZhaoX. XuX. LiuJ. lncRNA BBOX1-AS1 silencing inhibits esophageal squamous cell cancer progression by promoting ferroptosis via miR-513a-3p/SLC7A11 axis.Eur. J. Pharmacol.202293417531710.1016/j.ejphar.2022.175317 36216119
    [Google Scholar]
  48. LinZ. SongJ. GaoY. HuangS. DouR. ZhongP. HuangG. HanL. ZhengJ. ZhangX. WangS. XiongB. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer.Redox Biol.20225210231210.1016/j.redox.2022.102312 35447413
    [Google Scholar]
  49. ZhangH. DengT. LiuR. NingT. YangH. LiuD. ZhangQ. LinD. GeS. BaiM. WangX. ZhangL. LiH. YangY. JiZ. WangH. YingG. BaY. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer.Mol. Cancer20201914310.1186/s12943‑020‑01168‑8 32106859
    [Google Scholar]
  50. TodenS. ZumwaltT.J. GoelA. Non-coding RNAs and potential therapeutic targeting in cancer.Biochim. Biophys. Acta Rev. Cancer20211875118849110.1016/j.bbcan.2020.188491 33316377
    [Google Scholar]
  51. BabuK.R. MuckenthalerM.U. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma.Sci. Rep.201991151810.1038/s41598‑018‑35947‑7 30728365
    [Google Scholar]
  52. KindratI. TryndyakV. de ContiA. ShpylevaS. MudaligeT.K. KobetsT. ErstenyukA.M. BelandF.A. PogribnyI.P. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis.Oncotarget2016721276128710.18632/oncotarget.6004 26657500
    [Google Scholar]
  53. FuY. LinL. XiaL. MiR-107 function as a tumor suppressor gene in colorectal cancer by targeting transferrin receptor 1.Cell. Mol. Biol. Lett.20192413110.1186/s11658‑019‑0155‑z 31131011
    [Google Scholar]
  54. HamaraK. Bielecka-KowalskaA. Przybylowska-SygutK. SygutA. DzikiA. SzemrajJ. Alterations in expression profile of iron-related genes in colorectal cancer.Mol. Biol. Rep.201340105573558510.1007/s11033‑013‑2659‑3 24078156
    [Google Scholar]
  55. ChekhunV.F. LukyanovaN.A.T.A.L.I.A.Y. BurlakaA.P. BezdenezhnykhN.A. ShpylevaS. TryndyakV.P. BelandF.A. PogribnyI.P. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin.Int. J. Oncol.20134351481148610.3892/ijo.2013.2063 23969999
    [Google Scholar]
  56. ZhangR. PanT. XiangY. ZhangM. XieH. LiangZ. ChenB. XuC. WangJ. HuangX. ZhuQ. ZhaoZ. GaoQ. WenC. LiuW. MaW. FengJ. SunX. DuanT. Lai-Han LeungE. XieT. WuQ. SuiX. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis.Bioact. Mater.202213233610.1016/j.bioactmat.2021.11.013 35224289
    [Google Scholar]
  57. LuM. HuangJ. DengC. GuoT. ChenX. ChenP. DuS. Cinobufotalin induces ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway via resibufogenin.Anticancer. Agents Med. Chem.202323671772510.2174/1871520622666221010092922 36221890
    [Google Scholar]
  58. HeM. WangY. XieJ. PuJ. ShenZ. WangA. LiT. WangT. LiG. LiuY. MeiZ. RenZ. WangW. LiuX. HongJ. LiuQ. LeiH. HeX. DuW. YuanY. YangL. M7G modification of FTH1 and pri-miR-26a regulates ferroptosis and chemotherapy resistance in osteosarcoma.Oncogene202443534135310.1038/s41388‑023‑02882‑5 38040806
    [Google Scholar]
  59. ZhengS. HuL. SongQ. ShanY. YinG. ZhuH. KongW. ZhouC. miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling.Aging (Albany NY)20211324261372614710.18632/aging.203801 34954694
    [Google Scholar]
  60. YangG. PanQ. LuY. ZhuJ. GouX. miR-29a-5p modulates ferroptosis by targeting ferritin heavy chain FTH1 in prostate cancer.Biochem. Biophys. Res. Commun.202365261310.1016/j.bbrc.2023.02.030 36806086
    [Google Scholar]
  61. ZhuC. SongZ. ChenZ. LinT. LinH. XuZ. AiF. ZhengS. MicroRNA-4735-3p facilitates ferroptosis in clear Cell renal cell carcinoma by targeting SLC40A1.Anal. Cell. Pathol. (Amst.)2022202211210.1155/2022/4213401 35646516
    [Google Scholar]
  62. XuP. GeF.H. LiW.X. XuZ. WangX.L. ShenJ.L. XuA.B. HaoR.R. MicroRNA-147a targets SLC40A1 to induce ferroptosis in human glioblastoma.Anal. Cell. Pathol. (Amst.)2022202211410.1155/2022/2843990 35942174
    [Google Scholar]
  63. ChenX. KangR. KroemerG. TangD. Broadening horizons: the role of ferroptosis in cancer.Nat. Rev. Clin. Oncol.202118528029610.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  64. MaL.L. LiangL. ZhouD. WangS.W. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4.Neoplasma202168116517310.4149/neo_2020_200707N705 33038905
    [Google Scholar]
  65. QiR. BaiY. LiK. LiuN. XuY. DalE. WangY. LinR. WangH. LiuZ. LiX. WangX. ShiB. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resistance Updates.Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy202368100960
    [Google Scholar]
  66. WangW. WangT. ZhangY. DengT. ZhangH. BaY. Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells.Oncol. Res.202432348950210.32604/or.2023.046676 38370339
    [Google Scholar]
  67. YangH. SunW. BiT. SunJ. LuZ. LiJ. WeiH. ZNF8-miR-552-5p axis modulates ACSL4-mediated ferroptosis in hepatocellular carcinoma.DNA Cell Biol.202342633634710.1089/dna.2022.0582 37126948
    [Google Scholar]
  68. MashimaR. OkuyamaT. The role of lipoxygenases in pathophysiology; new insights and future perspectives.Redox Biol.2015629731010.1016/j.redox.2015.08.006 26298204
    [Google Scholar]
  69. TomitaK. NagasawaT. KuwaharaY. ToriiS. IgarashiK. RoudkenarM.H. RoushandehA.M. KurimasaA. SatoT. MiR-7-5p Is involved in ferroptosis signaling and radioresistance thru the generation of ROS in radioresistant HeLa and SAS cell lines.Int. J. Mol. Sci.20212215830010.3390/ijms22158300 34361070
    [Google Scholar]
  70. YangX. LiuJ. WangC. ChengK.K. XuH. LiQ. HuaT. JiangX. ShengL. MaoJ. LiuZ. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities.Oncogenesis20211021510.1038/s41389‑021‑00304‑3 33579899
    [Google Scholar]
  71. GongH. LiZ. WuZ. LianG. SuZ. Modulation of ferroptosis by non coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy.Pathol. Res. Pract.202425315504210.1016/j.prp.2023.155042 38184963
    [Google Scholar]
  72. ShaoC.J. ZhouH.L. GaoX.Z. XuC.F. Downregulation of miR-221–3p promotes the ferroptosis in gastric cancer cells via upregulation of ATF3 to mediate the transcription inhibition of GPX4 and HRD1.Transl. Oncol.20233210164910.1016/j.tranon.2023.101649 36947996
    [Google Scholar]
  73. YuR. ZhouY. ShiS. WangX. HuangS. RenY. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis.Phytomedicine202210215418210.1016/j.phymed.2022.154182 35636172
    [Google Scholar]
  74. HouY. CaiS. YuS. LinH. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer.Acta Biochim. Biophys. Sin. (Shanghai)202153333334110.1093/abbs/gmaa180 33522578
    [Google Scholar]
  75. DengS. WuD. LiL. LiuT. ZhangT. LiJ. YuY. HeM. ZhaoY.Y. HanR. XuY. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549.Biochem. Biophys. Res. Commun.2021549546010.1016/j.bbrc.2021.02.077 33662669
    [Google Scholar]
  76. HanB. LiuY. ZhangQ. LiangL. Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis.J. Proteomics202327410477710.1016/j.jprot.2022.104777 36427803
    [Google Scholar]
  77. HuZ. YinY. JiangJ. YanC. WangY. WangD. LiL. Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression.J. Gastrointest. Oncol.202213275476710.21037/jgo‑21‑916 35557596
    [Google Scholar]
  78. NiH. QinH. SunC. LiuY. RuanG. GuoQ. XiT. XingY. ZhengL. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis.Stem Cell Res. Ther.202112132510.1186/s13287‑021‑02394‑7 34090492
    [Google Scholar]
  79. ElrebehyM.A. AbdelghanyT.M. ElshafeyM.M. GomaaM.H. DoghishA.S. miR-509–5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11.Pathol. Res. Pract.202324715455710.1016/j.prp.2023.154557 37229918
    [Google Scholar]
  80. SunD. LiY.C. ZhangX.Y. Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer.Front. Pharmacol.20211268122310.3389/fphar.2021.681223 34122108
    [Google Scholar]
  81. YadavP. SharmaP. SundaramS. VenkatramanG. BeraA.K. KarunagaranD. SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells.Cancer Lett.202152221122410.1016/j.canlet.2021.09.033 34571083
    [Google Scholar]
  82. ZhuJ.H. De MelloR.A. YanQ.L. WangJ.W. ChenY. YeQ.H. WangZ.J. TangH.J. HuangT. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway.Biochim. Biophys. Acta Mol. Basis Dis.20201866616574710.1016/j.bbadis.2020.165747 32109492
    [Google Scholar]
  83. LuX. KangN. LingX. PanM. DuW. GaoS. MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis.Front. Oncol.20211175934610.3389/fonc.2021.759346 34722314
    [Google Scholar]
  84. LuoM. WuL. ZhangK. WangH. ZhangT. GutierrezL. O’ConnellD. ZhangP. LiY. GaoT. RenW. YangY. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma.Cell Death Differ.20182581457147210.1038/s41418‑017‑0053‑8 29348676
    [Google Scholar]
  85. ZhangK. WuL. ZhangP. LuoM. DuJ. GaoT. O’ConnellD. WangG. WangH. YangY. miR‐9 regulates ferroptosis by targeting glutamic‐oxaloacetic transaminase GOT1 in melanoma.Mol. Carcinog.201857111566157610.1002/mc.22878 30035324
    [Google Scholar]
  86. SongZ. JiaG. MaP. CangS. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis.Life Sci.202127611939910.1016/j.lfs.2021.119399 33781830
    [Google Scholar]
  87. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  88. LuoW. WangJ. XuW. MaC. WanF. HuangY. YaoM. ZhangH. QuY. YeD. ZhuY. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer.Cell Death Dis.20211211104310.1038/s41419‑021‑04296‑1 34728613
    [Google Scholar]
  89. LuoY. HuangS. WeiJ. ZhouH. WangW. YangJ. DengQ. WangH. FuZ. Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1–Wnt/β‐catenin–TFE3 feedback loop signalling.Clin. Transl. Med.2022124e75210.1002/ctm2.752 35485210
    [Google Scholar]
  90. JiangX. GuoS. ZhangY. ZhaoY. LiX. JiaY. XuY. MaB. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p.Cell. Signal.20206510942210.1016/j.cellsig.2019.109422 31672604
    [Google Scholar]
  91. LiX. LiY. LianP. lv, Q.; Liu, F. Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma.Hum. Exp. Toxicol.20234210.1177/09603271221142818 36786348
    [Google Scholar]
  92. LeiS. CaoW. ZengZ. ZhangZ. JinB. TianQ. WuY. ZhangT. LiD. HuC. LanJ. ZhangJ. ChenT. JUND/linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis.Cell Death Dis.2022131196710.1038/s41419‑022‑05412‑5 36400758
    [Google Scholar]
  93. MaQ. DaiX. LuW. QuX. LiuN. ZhuC. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis.Biochem. Biophys. Res. Commun.2021556727810.1016/j.bbrc.2021.03.132 33839417
    [Google Scholar]
  94. LiY. ZhuH.C. DuY. ZhaoH. WangL. Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling.Technol. Cancer Res. Treat.20222110.1177/15330338221077803 35167383
    [Google Scholar]
  95. JiangX. GuoS. XuM. MaB. LiuR. XuY. ZhangY. TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling.Front. Oncol.20221286201510.3389/fonc.2022.862015 35402284
    [Google Scholar]
  96. LiuL. SuS. YeD. YuZ. LuW. LiX. Long non-coding RNA OGFRP1 regulates cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer.Anticancer Drugs202233982683910.1097/CAD.0000000000001328 36066402
    [Google Scholar]
  97. KangR. KroemerG. TangD. The tumor suppressor protein p53 and the ferroptosis network.Free Radic. Biol. Med.201913316216810.1016/j.freeradbiomed.2018.05.074 29800655
    [Google Scholar]
  98. MaoC. WangX. LiuY. WangM. YanB. JiangY. ShiY. ShenY. LiuX. LaiW. YangR. XiaoD. ChengY. LiuS. ZhouH. CaoY. YuW. MueggeK. YuH. TaoY.A. G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53.Cancer Res.201878133484349610.1158/0008‑5472.CAN‑17‑3454 29588351
    [Google Scholar]
  99. FuH. ZhangZ. LiD. LvQ. ChenS. ZhangZ. WuM. LncRNA Pelaton, a ferroptosis suppressor and prognositic sigNATURE for GBM.Front. Oncol.20221281773710.3389/fonc.2022.817737 35574340
    [Google Scholar]
  100. HanY. GaoX. WuN. JinY. ZhouH. WangW. LiuH. ChuY. CaoJ. JiangM. YangS. ShiY. XieX. ChenF. HanY. QinW. XuB. LiangJ. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2.Cell Death Dis.202213874210.1038/s41419‑022‑05192‑y 36038548
    [Google Scholar]
  101. ZhengJ. ZhangQ. ZhaoZ. QiuY. ZhouY. WuZ. JiangC. WangX. JiangX. Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1.J. Exp. Clin. Cancer Res.202342112710.1186/s13046‑023‑02684‑3 37202791
    [Google Scholar]
  102. ZhangB. BaoW. ZhangS. ChenB. ZhouX. ZhaoJ. ShiZ. ZhangT. ChenZ. WangL. ZhengX. ChenG. WangY. LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination.Cell Death Dis.202213873410.1038/s41419‑022‑05173‑1 36008384
    [Google Scholar]
  103. LiH. WeiY. WangJ. YaoJ. ZhangC. YuC. TangY. ZhuD. YangJ. ZhouJ. Long noncoding RNA LINC00578 inhibits ferroptosis in pancreatic cancer via regulating SLC7A11 ubiquitination.Oxid. Med. Cell. Longev.2023202311710.1155/2023/1744102 36846713
    [Google Scholar]
  104. KristensenL.S. HansenT.B. VenøM.T. KjemsJ. Circular RNAs in cancer: opportunities and challenges in the field.Oncogene201837555556510.1038/onc.2017.361 28991235
    [Google Scholar]
  105. VerduciL. TarcitanoE. StranoS. YardenY. BlandinoG. CircRNAs: role in human diseases and potential use as biomarkers.Cell Death Dis.202112546810.1038/s41419‑021‑03743‑3 33976116
    [Google Scholar]
  106. OuR. LuS. WangL. WangY. LvM. LiT. XuY. LuJ. GeR. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis.Front. Oncol.20221285859810.3389/fonc.2022.858598 35321435
    [Google Scholar]
  107. LiuY. LiJ. Circular RNA 0016142 knockdown induces ferroptosis in hepatocellular carcinoma cells via modulation of the microRNA-188-3p/glutathione peroxidase 4 axis.Biochem. Genet.202462133335110.1007/s10528‑023‑10417‑6 37344692
    [Google Scholar]
  108. LiZ. LuoY. WangC. HanD. SunW. Circular RNA circBLNK promotes osteosarcoma progression and inhibits ferroptosis in osteosarcoma cells by sponging miR 188 3p and regulating GPX4 expression.Oncol. Rep.202350519210.3892/or.2023.8629 37711054
    [Google Scholar]
  109. TanY.R. JiangB.H. FengW.J. HeZ.L. JiangY.L. XunY. WuX.P. LiY.H. ZhuH.B. Circ0060467 sponges miR-6805 to promote hepatocellular carcinoma progression through regulating AIFM2 and GPX4 expression.Aging (Albany NY)20241621796180710.18632/aging.205460 38244593
    [Google Scholar]
  110. LiZ. FanM. ZhouZ. SangX. Circ_0082374 promotes the tumorigenesis and suppresses ferroptosis in non-small cell lung cancer by up-regulating GPX4 through sequestering miR-491-5p.Mol. Biotechnol.202410.1007/s12033‑024‑01059‑z 38438754
    [Google Scholar]
  111. MaY. GaoJ. GuoH. Circ_0000140 alters miR-527/SLC7A11-mediated ferroptosis to influence oral squamous cell carcinoma cell resistance to DDP.Pharm. Genomics Pers. Med.2023161079108910.2147/PGPM.S426205 38105907
    [Google Scholar]
  112. LiQ. LiK. GuoQ. YangT. CIRCRNA CIRCSTIL inhibits ferroptosis in colorectal cancer via MIR ‐431/SLC7A11 axis.Environ. Toxicol.202338598198910.1002/tox.23670 36840697
    [Google Scholar]
  113. JiangY. ZhaoJ. LiR. LiuY. ZhouL. WangC. LvC. GaoL. CuiD. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis.J. Exp. Clin. Cancer Res.202241130710.1186/s13046‑022‑02518‑8 36266731
    [Google Scholar]
  114. WangL. WuS. HeH. AiK. XuR. ZhangL. ZhuX. CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis.Lab. Invest.2022102121323133410.1038/s41374‑022‑00826‑3 35945269
    [Google Scholar]
  115. LiuZ. WangQ. WangX. XuZ. WeiX. LiJ. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5.Cell Death Discov.2020617210.1038/s41420‑020‑00306‑x 32802409
    [Google Scholar]
  116. ZhangX. XuY. MaL. YuK. NiuY. XuX. ShiY. GuoS. XueX. WangY. QiuS. CuiJ. WangH. TianX. MiaoY. MengF. QiaoY. YuY. WangJ. Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma.Cancer Commun. (Lond.)202242428731310.1002/cac2.12275 35184419
    [Google Scholar]
  117. ViswanathanV.S. RyanM.J. DhruvH.D. GillS. EichhoffO.M. Seashore-LudlowB. KaffenbergerS.D. EatonJ.K. ShimadaK. AguirreA.J. ViswanathanS.R. ChattopadhyayS. TamayoP. YangW.S. ReesM.G. ChenS. BoskovicZ.V. JavaidS. HuangC. WuX. TsengY.Y. RoiderE.M. GaoD. ClearyJ.M. WolpinB.M. MesirovJ.P. HaberD.A. EngelmanJ.A. BoehmJ.S. KotzJ.D. HonC.S. ChenY. HahnW.C. LevesqueM.P. DoenchJ.G. BerensM.E. ShamjiA.F. ClemonsP.A. StockwellB.R. SchreiberS.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.Nature2017547766445345710.1038/nature23007 28678785
    [Google Scholar]
  118. HangauerM.J. ViswanathanV.S. RyanM.J. BoleD. EatonJ.K. MatovA. GaleasJ. DhruvH.D. BerensM.E. SchreiberS.L. McCormickF. McManusM.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.Nature2017551767924725010.1038/nature24297 29088702
    [Google Scholar]
  119. LiZ. DaiH. HuangX. FengJ. DengJ. WangZ. YangX. LiuY. WuY. ChenP. ShiH. WangJ. ZhouJ. LuG. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma.Acta Pharmacol. Sin.202142230131010.1038/s41401‑020‑0478‑3 32699265
    [Google Scholar]
  120. GuoJ. XuB. HanQ. ZhouH. XiaY. GongC. DaiX. LiZ. WuG. Ferroptosis: A Novel Anti-tumor Action for Cisplatin.Cancer Res. Treat.201850244546010.4143/crt.2016.572 28494534
    [Google Scholar]
  121. SlackF.J. ChinnaiyanA.M. The Role of Non-coding RNAs in Oncology.Cell201917951033105510.1016/j.cell.2019.10.017 31730848
    [Google Scholar]
  122. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics — challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  123. WangW.T. HanC. SunY.M. ChenT.Q. ChenY.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development.J. Hematol. Oncol.20191215510.1186/s13045‑019‑0748‑z 31174564
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206322163240710112404
Loading
/content/journals/acamc/10.2174/0118715206322163240710112404
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; clinical applications; drug resistance; Ferroptosis; non-coding RNAs; prospects
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test